等离子原位冶金碳化钨结晶过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为突破粉末冶金硬质合金技术瓶颈,本文采用等离子原位冶金技术制备碳化钨复合材料。讨论了原位冶金碳化钨复合材料的的显微组织结构和机械性能,研究了原位冶金碳化钨工艺中在等离子弧高温和富碳液相条件下钨碳反应及碳化钨相结晶长大的现象与规律性。
     组织分析结果表明,电流的大小直接影响最终得到复合材料的成型性;等离子原位冶金碳化钨中相组成主要为WC、W2C、M6C (Fe3W3C)、γ-Fe以及少量的Cr7C3和(Fe, Ni)3C,组织均匀,具有三角形或四边形的硬质相颗粒尺寸约为5-30μm。
     等离子在原位冶金加热过程中,在等离子束高温作用下同步送入的粉末与基体共同形成熔池。冶金区剧烈反应产生的气体、熔渣上浮。WC成核后,以具有平滑固液界面的形式成长。在WC结晶过程中,由于晶面的各向异性等原因引起WC晶粒各晶面表面能的差异,决定了特定的截断因子r和伸长率k,生成具有特殊形貌的WC晶粒。晶粒的特殊结构和复杂的界面环境使WC晶粒以(0001)面为基面,沿<0001>方向生长形成多层堆垛结构。
     得到的WC复合材料的平均硬度都能达到HRA82以上。对合金内部不同物相的显微硬度分别进行分析发现,WCp相的硬度最高,能达到2000 HV0.2以上,而组织中的η相—Fe3 W3C相的硬度也能达到1100 HV0.2以上,而基体相由于固溶了一定的合金元素也表现较高的显微硬度,达到600-800 HV0.2左右。耐磨性能能够接近甚至达到粉末冶金硬质合金水平。
WC-based composite material was successfully fabricated by plasma in-situ metallurgy to break through the bottleneck of powder metallurgy cemented carbide in this paper. Microstructure and mechanical property were analyzed, reaction between W and C and the crystallizing process of WCP in a high temperature and C-rich situation were discussed.
     The structure analysis results reveal that level of electric current would influence the mouldability of the final composite; Main phases in the composite obtained by plasma in-situ metallurgy are WC,W2C,M6C (Fe3W3C),y-Fe and small amount of Cr7C3 and (Fe, Ni)3C.The composite has a uniform microstructure and the triangle and rectangle shape hard phase is with the length of 5-30μm.
     During the heating process of plasma in-situ metallurgy, the synchronously feeding powder and the matrix melst and form a molten bath together. Gases and slag produced by the intense reactions in the metallurgy area float upon. Once the crystal nucleus formed, it would grow up with a smooth solid-liquid interface.During the crystallization of WC, the anisotropy of crystal faces causes different surface energy of different crystal faces, then determine specific guillotine factor r and elongation k,then WC grain with characteristic of special morphological formed. WC crystal grow up along the crystal orientation<0001> based on (0001) crystal face because of the special construction of crystal and complex interfaces.
     The average hardness of all the prepared WC composite materials could exceed HRA82. The WCP phase has the highest hardness and the microhardness of it can reach above 2000HV0.2; the microhardness of Fe3W3C phase can reach above 1100 HV0.2; the microhardness of the matrix can reach around 600-800 HV0.2 because of high solid solubility of alloy elements. And the property of wear-resisting could approach or even achieve the level of powder metallurgy cemented carbide.
引文
1. 邹序枚.粗晶碳化钨粉的应用[J].硬质合金,1996(2):111-116
    2. 李勇,谢淑华.WC粗晶硬质合金的研究进展[J].材料研究与应用,2009(2):77-80
    3. 王淑峰,李惠琪,迟静,李敏.等离子原位冶金快速制备钨基硬质合金的研究[J].山东科技大学学报(自然科学版),2010(1):85-89
    4. 崔洪芝,李惠琪,孙宏飞,孙玉宗,李敏,王灿明,赵增玉,姬强,张启明,姚树玉,宋强,陈聚武.等离子控制原位冶金反应技术与工程应用.中国科技奖励,2008(9):53
    5. 任莹.原位合成碳化钨增强金属陶瓷涂层的基础研究[D].天津:天津大学,2008
    6. 迟静,李惠琪,王淑峰,李敏.矿用WC硬质合金的研究进展与趋势[J].矿山机械,2010(8):23-28
    7. 周建华,卢伟民.国内外硬质合金生产现状及近期发展动向分析[J].稀有金属与硬质合金,2006(1):36-41
    8. 张启修,赵秦生主编.钨钼冶金[M].北京:冶金工业出版社,2005
    9. 王国栎.硬质合金原理[M].北京:冶金工业出版社,1988
    10.饶岩岩,张久兴,王澈,张国珍.钨/钻氧化物SPS直接碳化原位合成超细WC-Co硬质合金[J].稀有金属与硬质合金,2006(1):18-21
    11. Jiuxing Zhang, Guozhen Zhang, Shixian Zhao. Binder-free WC bulk synthesized by spark plasma sintering[J]. Journal of Alloys and Compounds,2009,479(1-2):427-431
    12. Anklekar R. M, Agrawal D. K, Roy R. Microwave sintering and mechanical Properties of PM copper steel[J]. Powder Metallurgy,2001,44(4):355-362
    13.周建华,卢伟民.G413型矿用截齿的开发与应用[J].凿岩机械气动工具,2009(1):27-30
    14.李沐山.八十年代世界硬质合金技术进展[M].株洲:硬质合金编辑部,1992
    15.孙东平.我国矿用硬质合金的发展现状与趋势[J].粉末冶金材料科学与工程,1998(4):281-284
    16. He Xianeng, Shi Jianhua. Study on technology for carburization of high quality coarse-grained WC[J]. Rare Metal Letters,2005(10):28-31
    17.罗斌辉,张华明.不同氧化钨原料对钨粉性能的影响研究[J].硬质合金,2006(3): 139-142
    18.孙宝琦,陈一鸣.锂活化钨氧化物氢还原制取粗结晶钨粉过程的初步探讨[J].稀有金属与硬质合金,1999(1)
    19.高辉.钨粉分级在粗晶碳化钨粉生产中的应用[J].硬质合金,2006(2):92-96
    20.黄新.优质粗晶WC粉末及合金的研制[D].重庆大学,2004
    21.黄新,孙亚丽,颜态,唐凯,刘清才,何宪峰,李伟.两步碳化法生产优质粗颗粒WC粉末[J].中国钨业,2007(6):39-42
    22.霍影,宣天鹏.稀土对真空熔覆Ni基/WC涂层组织结构的影响[J].材料保护,2005(8):13-15
    23. Minhai Zhao, Aiguo Liu, Mianhuan Guo, Dejian Liu, Zhijian Wang, Changbai Wang. WC reinforced surface metal matrix composite produced by plasma melt injection[J]. Surface and Coatings Technology,2006,201(3-4):1655-1659
    24.赵天林,赵海,陈道友,赵钢,赵洋,夏明,王志连,徐传福,顾小红,徐晓丽.碳化钨—钢梯度耐磨材料制造技术[P].1366091
    25.黄民建,骆灼旋.铸造颗粒增强金属基复合材料及其发展前景[M].1999
    26.张淑英,孟繁琴,陈玉勇,李庆春.颗粒增强金属基复合材料的研究进展[J].材料导报,1996(2):66-71
    27.王建江,叶明惠,赵忠民,杜心康.SHS陶瓷内衬复合弯管的制备[J].金属热处理,1998(12)
    28.熊容廷,段汉桥,严有为,魏伯康.原位合成颗粒增强铁基复合材料的研究进展[J].现代铸铁,2004(3):22-26
    29.李奎,汤爱涛,潘复生.金属基复合材料原位反应合成技术现状与展望[J].重庆大学学报(自然科学版),2002(9):155-160
    30.蔡利芳,张永忠,席明哲,石力开.原位合成法在材料制备中的应用及进展[J].金属热处理,2005(10):1-6
    31.冯婷,李惠琪,李敏,孙玉宗,任勇强.等离子梯度冶金碳化物高强韧截齿刀头[J].金属热处理,2009(12):61-64
    32.陈颢,李惠琪,于盛旺.工艺参数对等离子束表面冶金铁基涂层组织及性能的影响[J].热加工工艺,2007(15):47-49
    33.李敏,李惠东,李惠琪,孙玉宗.等离子体表面改性技术的发展[J].金属热处理,2004(7):5-9
    34. Hao Chen, Hui-qi Li. Microstructure and wear resistance of Fe-based coatings formed by plasma jet surface metallurgy[J]. Materials Letters,2006,60(11):1311-1314
    35.株洲硬质合金厂著.硬质合金的生产[M].北京:冶金工业出版社,1974
    36.龙运兰,史顺亮,杨蓉.中颗粒钨粉高温碳化制取粗晶碳化钨粉的研制[J].硬质合金,2007(4):211-214
    37.张国珍,张利平,王澈,张久兴,周美玲,钟涛兴.氧化钨直接碳化SPS原位合成WC的反应过程[J].稀有金属材料与工程,2005(11)
    38. Wenbin Liu, Xiaoyan Song, Jiuxing Zhang, Guozhen Zhang, Xuemei Liu. Preparation of ultrafine WC-Co composite powder by in situ reduction and carbonization reactions[J]. International Journal of Refractory Metals & Hard Materials,2009,27(1):115-120
    39.张久兴,张国珍,张利平,王澈,宋晓艳,周美玲,钟涛兴.氧化钨/碳SPS原位合成WC硬质合金的XPS研究[J].稀有金属材料与工程,2006(6):937-940
    40.朱心昆,林秋实,陈铁力,程抱昌,曹建春.机械合金化的研究及进展[J].粉末冶金技术,1999(4):291-296
    41.缪伟民,鲁玉祥,刘彦霞,任云鹏,娄琦.热机械合金化合成WC-Co硬质合金研究[J].热加工工艺,2007(18):14-17
    42.刘俊友,许振兴,许振华,孙晶,赵天林,赵钢.采用离子注渗技术原位合成纳米级碳化钨颗粒[J].纳米技术与精密工程,2008(3):180-184
    43.任莹,路学成,赵蓉,刘占东,谢坤.原位合成碳化钨涂层的基础研究[J].陶瓷,2010(4):37-40
    44.武宏,牛立斌,许云华.通过电磁场法原位合成WC颗粒[J].硅酸盐学报,2010(8):1591-1595
    45.张庆茂,何金江,刘文今,钟敏霖.激光熔覆制备原位颗粒增强金属基复合表层组织性能的研究[J].应用激光,2002(2):109-112
    46. E. Taheri-Nassaj, S. H. Mirhosseini. An in situ WC-Ni composite fabricated by the SHS method[J]. Journal of Materials Processing Technology,2003,142(2):422-426
    47. B. Vamsi Krishna, K. V. Gaganpreet, H. Bhunia. Synthesis of WC-Co Nanocomposites by Using Polymers as In Situ Carbon Source.[J]. International Journal of Nanoscience, 2002,1(2):139
    48.李春彦,张松,康煜平,刘常升.综述激光熔覆材料的若干问题[J].激光杂志,2002(3):5-9
    49.唐鹏.铁镍代钴型硬质合金应用研究[D].广西大学,2006
    50.车荫昌,梁英教.无机物热力学数据手册[M].沈阳:东北大学出版社,1994
    51.叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002
    52. I. R. Shein A. D. V. Suetin. Structure, electronic and magnetic properties of η carbides(Fe3W3C, Fe6W6C, Co3W3C, Co6W6C) from first principles calculations[J]. Physica B,2009,404:3544-3549
    53.孙文山,赵品,谢辅洲.材料科学基础[M].哈尔滨:哈尔滨工业大学出版社,1999
    54.常国威,王建中.金属凝固过程中的晶体生长与控制[M].北京:冶金工业出版社,2002
    55.张宇,钟敏霖,刘文今.送粉激光熔覆合成制备WC/Ni硬质合金涂层及其耐磨性[J].金属热处理,2005(11)
    56. Nasr M. Ghoniem Adienne Marios D. Demetriou. Kinetic modeling of phase selection during non-equilibrium solidification of a tungsten-carbon system[J]. Acta Materialia, 2002,50:1421-1432
    57. Gu Dongdong, Meiners Wilhelm. Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by Selective Laser Melting[J]. Materials Science and Engineering A,2009(527):7585-7592
    58. Aurelie Delanoe, Sabine Lay. Evolution of the WC grain shapeEvolution of the WC grain shape in WC-Co alloys during sintering:Effect of C content[J]. Int.Journal of Refractory Metals&Hard Materials,2009(27):140-148
    59. M. Christensen, G. Wahnstrmob, Lay S. Morphology of WCMorphology of WC grains in WC-Co alloys:Theoretical determination of grain shape[J]. Acta Materialia,2007(55): 1515-1521
    60. S. Lay, C. H. Allbert, M. Christensen, G. Wahnstrom. Morphology of WC grains in WC-Co alloys[J]. Materials Science and Engineering A,2008(486):253-261
    61. Liu Yongchang, Feng Lan, Yang Gencang, Zhou Yaohe. Microstructural evolution of rapidly solidified Ti-Al peritectic alloy [J]. Journal of Crystal Growth,2004,271(1-2): 313-318
    62.张丽民,刘邦武,李惠琪.等离子束表面冶金技术冶金过程研究[J].材料导报,2004,18(10)专辑Ⅲ:192-197
    63.胡汉起,周香林,叶以富,等.激光熔覆陶瓷涂层中的缺陷及防止[J].热加工工艺,1995(6)
    64.束德林.工程材料力学性能[M].北京:化学工业出版社,2006
    65.赵敏海.等离子熔化注射制备碳化物增强涂层组织及耐磨性研究[D].哈尔滨:哈尔滨工业大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700