氩弧熔覆—注射球形WC耐磨表层复合材料的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,WC颗粒增强耐磨表层复合材料的制备存在增强颗粒严重烧损、分解和复合材料层开裂等问题。针对上述问题,本文采用氩弧熔覆-注射技术,在预先喷涂Ni基自熔性合金的Q235钢表面,熔覆-注射250~420μm的球形WC陶瓷颗粒,成功制备出WC颗粒分布均匀密实、成形良好、无宏观缺陷,与母材为冶金结合的耐磨复合材料层。
     在氩弧熔覆-注射工艺特性研究的基础上,研究了多道搭接方法的合理性、复合材料层不同部位组织的结构及其形成过程、复合材料层的耐磨性和磨损机理。在优化工艺参数下,采用顺序搭接、间隔搭接两种方法进行多道搭接试验。通过XRD衍射和SEM、EDS显微分析确定了复合材料层物相组成,对复合材料层不同区域的微观组织特征进行观察,对复合材料层的显微硬度和耐磨性能进行分析测试。
     结果表明,采用顺序搭接方法成功制得无裂纹的多道搭接复合材料层,采用间隔搭接方法制备的复合材料层易在后间隔搭接的复合材料层中产生粗大裂纹。
     复合材料层中相主要由WC、γ-(Fe,Ni)和Fe3W3C-Fe4W2C(M6C)等组成,多道搭接复合材料层中出现W2C相。在复合材料层上、中、下部位,深灰色/浅灰色γ-(Fe,Ni)固溶体形貌大体相同;白色碳化物的形貌差异很大,主要有鱼骨状、块状、小平面状。复合材料层中WC颗粒间的平均显微硬度约为HV0.2731.83,是Q235钢的6.5倍,多道搭接区和非搭接区的显微硬度值接近。在相同磨损条件下,母材的磨损量是单道复合材料层的20倍,多道搭接区的磨损量是单道复合材料层的2倍。母材的磨损形式以粘着磨损为主,伴随着磨粒磨损;复合材料层的磨损形式主要是磨粒磨损。
To overcome problems of burning, dissolution, sinking of WC cermet particles and cracking in WC reinforced composite coatings, the argon-arc clad injection (ACI) was used to make WC particle reinforced wear-resistance composite coating. By clad-injecting 250~420μm spherical WC cermet particles on the surface of a Q235 steel substrate pre-coated with nickel-based self-fluxing alloy, a wear resistant composite coating with non macro-defects, particles distributed uniformly and densely, metallurgically bonded to the substrate, was successfully produced.
     Based on the study of the ACI technological process, the rationality of overlapping methods, structure and formation of microstructure in different parts of the composite coating were studied. In addition, wear resistance and wear mechanism were studied. With optimized process parameters, the two methods of sequence overlapping and interval overlapping were tested to make multi-passes overlapped composite coating. The microstructure and composition of the coatings were analyzed by means of scanning electron microscopy(SEM), X-ray diffraction (XRD) and energy diffraction spectrum (EDS). Microhardness and wear resistance were also tested using microhardness tester and sliding wear tester respectively.
     The results show that crack-free composite coating is successfully obtained with sequence overlapping; while cracks appear in the interval pass produced by interval overlapping.
     Complex microstructure is found in the ACI composite coating, which consists of WC,γ-(Fe,Ni) and Fe3W3C-Fe4W2C(M6C) phases. W2C phase is found in the overlapped composite coating. In the upper, the middle and the bottom parts of composite coating, the morphologies of dark gray / light grayγ-(Fe, Ni) solid solution are roughly same, but the white carbides are very different, and show mainly herringbone, blocks, small flat-shaped. The microhardness around particles of the composite coating is about HV0.2731.83, 6.5 times higher than that of Q235 steel. The microhardness of overlapped and non-overlapped zone is close. In the same wear conditions, the wear volume of Q235 steel is 23 times as that of the single-pass composite layer, and the wear volume of overlapped layer is 2 times as that of the single-pass composite layer. The abrasion wear is the main wearing mechanism for carbides composite coating, while Q235 steel is adhesive wear, with a little abrasive wear.
引文
1徐晋勇,张健全,高清.现代先进表面技术的发展及应用.电子工艺技术. 2006,27(3):129~134
    2 J. A. Vreeling, V. Ocelik, J. T. M. De Hosson. Ti–6Al–4V Strengthened by Laser Melt Injection of WCp Particles. Acta Materialia. 2002,50:4913~4924
    3赵敏海,刘爱国,郭面焕.等离子熔化-注射WC金属陶瓷层组织研究.热处理技术与装备. 2007,28(5):18~20
    4 Georg Mauer, Robert Va?en and Detlev St?ver. Controlling the Oxygen Contents in Vacuum Plasma Sprayed Metal Alloy Coatings. Surface and Coatings Technology. 2002,201(8):4796~4799
    5 Y. L. WANG. Fiction and Wear Performances of Detection Gun and Plasma-Sprayed Ceramic and Ceramic Hard Coating under Dry Friction. Wear. 2003,161:69~78
    6 R. A. Mcpherson. Review of Microstructure and Properties of Plasma Spray Ceramic Coatings. Surface and Coating Technology. 1999,39(2):173~180
    7 J. F. Li, L. Li, C. X. Ding. Thermal Diffusivity of Plasma-Sprayed Cr3C2–NiCr Coatings. Materials Science and Engineering A. 2005,394(1-2):229~237
    8顾兴媛,王世华,耿家.等离子喷涂碳化钨涂层.航空制造技术. 1995,(1):50~53
    9 H. L. V. De. Lovelock. Powder-processing-structure Relationships in WC-Co Thermal Spray Coatings. Journal of Thermal Spray Technology. 1998,(7):357~362
    10 R. Ahmeda, M. Hadfield. Failure Modes of Plasma Sprayed WC-15%Co Coated Rolling Elements. Wear. 1999,230:39~55
    11丁彰雄,裴振林,王天荣.煤粉风机防磨涂层耐磨性及应用研究.中国电力. 2002,35(5):9~13
    12郭面焕,段志林.熔-喷ZrO2+WC陶瓷涂层组织结构.焊接学报. 2004,25(1):13~16
    13赵敏海,刘爱国,郭面焕. WC颗粒增强耐磨材料的研究现状.焊接. 2006,(11): 26~29
    14吕圭清. WC型管状焊条焊芯填充率对堆焊金属表面硬度的影响.焊接. 2001,(12):33~34
    15 Schweissen, Schneiden. Innovations in welding technology in 2000. Welding Research Abroad. 2001,47(7,8):8~9
    16 Suleimanov S Kh, Baizakov B B. Cladding of stainless steel on carbon steel. Journal De Physique IV. 1999,9(3):447~452
    17 Grum J, Slube J M. A comparison of Tool-Repair Methods Using CO2 Laser Surfacing and Arc Surfacing. Elsevier Science Slovenia. 2003,(1):1~8
    18 Konvashin Y. Hysroabraxive Wear Behaviour of High Velocity Oxyfuel Thermally Sprayed WC Coatings. Surface and Coatings Technology. 1993,(63):493~498
    19邹大增,王新洪,刘雪梅. WC硬质合金堆焊材料界面组合结构和力学性.金属学报. 2000,36(12):1279~1283
    20沈燕娣.激光熔覆工艺研究.上海海事大学硕士论文. 2006:1~5
    21曾晓雁,吴新伟,陶曾毅等.激光熔覆Ni-WC金属陶瓷层的耐磨性分析.金属学报. 1997,33(8):885~890
    22周二华,曾晓雁,吴新伟等. A3钢表面激光熔敷Fe/WC金属陶瓷复合层的研究.激光技术. 1997,21(1):34~37
    23 Liu Y, Mazumder J, Shibata K. Microstructural Study of the Interface in Laser-Clad Ni-Al Bronze on Al Alloy AA33 and Its Relation to Cracking. Metall Mater Trans A. 1995,26A:15~19
    24 Singh J, Mazumder J. Microstructure and Wear Properties of Laser-Clad Fe-Mn-C Alloy . Metal Trans. 1987,18A:313~317
    25 Wu P, Du H M, Du X L, et al. Influence of WC particle Behavior on the Wear Resistance Properties of Ni-WC Composite Coatings. Wear, 2004,257:142~147
    26吴萍.激光合金化熔覆制备耐磨陶瓷梯度涂层.金属学报. 1994,30:508~512
    27 M. Riabkina-Fishman, E. Rabkin, P. Levin et.al. Laser Produced Functionally Graded Tungsten Carbide Coatings on M2 High-speed Tool Steel. Materials Science and Engineering. 2001,A302:106~114
    28杨胶溪,闫婷,刘华东,等.激光熔覆W C-Ni基超硬梯度复合涂层的组织与性能.金属热处理. 2009,34(11):6~9
    29 Wu Wanlang. Microstructure of TiC dendrites reinforced titarriurn matrix composite layer by laser claddings [J]. Journal of Materials Science Lettere. 2003,22:1169~1171
    30 J. A. Vreeling, V. Ocelik, Y. T. Pei, et al. Laser Melt Injection in Aluminum Alloys on the Role of the Oxide Skin. Acta Materialia. 2000,48:4225~4233
    31 Y.T.Pei, V.Ocelik, DE.Hosson. SiCp/Ti6Al4V Functionally Graded Materials Produced by Laser Melt Injection. Acta Materialia. 2002,50:2035~2051
    32 J.A.Vreeling, V.Ocelik, DE.Hosson. Ti6Al4V Strengthened by Laser Melt Injection of WCp Particles. Acta Materialia. 2002,50:4913~4924
    33 Dejian Liu, Yanbin Chen, Liqun Li, Fuquan Li. WCp/Ti-Al-4V graded metal matrix composites layer produced by laser melt injection. Surface & Coating Technology. 2008,202:4880~4887
    34 Minhai Zhao, Aiguo Liu, Mianhuan Guo, et al. WC Reinfoced Surface Metal Matrix Composite Produced by Plasma Melt Injection. Surface and Coating Technology. 2006,201(3~4):1655~1659
    35 Aiguo Liu, Mianhuan Guo, Minhai Zhao, et al. Microstructures and Wear Resistance of Large WC Particles Reinforced Surface Metal Matrix Composites Produced by Plasma Melt Injection. Surface and Coatings Technology. 2007,201(18):7979~798
    36赵玉珍.焊接熔池的流体动力学行为及凝固组织模拟.北京工业大学工学博士论文. 2004:72~78
    37魏晶慧.氩弧熔覆-注射WC-8Co表层复合材料的制备.哈尔滨工业大学工学硕士论文. 2008:51
    38刘富荣,高谦,高登攀等.激光熔覆WC增强复合涂层开裂行为分析.材料工程. 2003,(5):37~38
    39王汝侠,杨永强.牙轮钻头齿面堆焊材料的研究.石油矿场机械. 1987, 16(6):38~41
    40谭业发等.硬质WC粒子增强镍基合金喷熔层耐磨粒磨损性能的研究.摩擦学报. 1996,16(3):206~207
    41曾晓雁.激光熔覆金属陶瓷复合层中陶瓷相行为研究.华中理工大学博士论文. 1993:5~47
    42曾晓雁,朱蓓蒂,陶曾毅等.激光熔覆金属陶瓷涂层内陶瓷相的分布规律研究.华中理工大学学报. 1995,(10):57
    43巴西J L,坦瑞依P A.硬质材料工具技术进展翻译组译.在松散硬质磨粒中的WC-Co合金的磨蚀,硬质材料工具技术进展.冶金工业出版社. 1982:59~169
    44奥格尔维M,佩罗特G M.硬质材料工具技术进展翻译组译.天井钻机钻头上的硬质合金镶齿的磨耗,硬质材料工具技术进展.冶金工业出版社. 1982:79~191
    45曾晓雁,吴新伟,陶曾毅等.激光熔覆Ni-WC金属陶瓷层的耐磨性分析.金属学报. 1997,(8):33~38
    46 C. P. Paul, H. Alemohammad, E. Toyserkani, A. Khajepour, S.Corbin. Cladding of WC-12Co on Low Carbon Steel Using a Pulsed Nd:YAG Laser. Materials Science and Engineering A. 2007,464:170~176
    47 L. St-Georges. Development and Characterization of Composite Ni-Cr+WC Laser Cladding. Wear. 2007,263:562~566
    48崔忠圻,刘北兴.金属学与热处理.机械工业出版社. 2007:77~78
    49刘大江,韩志范,邹志荣.金属表面激光熔覆后表面开裂研究.中国激光. 1990,17(11):669~671
    50奚同庚.无机材料热物理学.上海科学技术出版社. 1981:256~260
    51王振廷,陈华辉.碳化钨颗粒增强金属基复合材料涂层组织及其摩擦磨损性能.摩擦学学报. 2005,25(3):203~206
    52 D斯科特.上海市机械工程学会摩擦学学组译.工业摩擦学.机械工业出版社, 1982:145
    53张剑锋,周志芳.摩擦磨损与抗磨技术.天津科技翻译出版公司. 1993: 104~105
    54刘家浚.材料磨损原理及其耐磨性.清华大学出版社. 1993:98,99,100,144

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700