等离子熔化注射技术制备金属基固体自润滑表层复合材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用等离子熔化-注射技术(Plasma Melt Injection, PMI)制备出Fe/石墨型金属基固体自润滑表层复合材料,并对该材料的制备工艺、组织结构和性能进行了系统研究和分析。
     本文中运用正交试验设计等方法进行工艺试验的设计,以扫描速度、送粉量和送粉嘴直径作为可调参数,构成三因素三水平的正交试验。以粒子粒度(60~80目和20~40目)的影响构成单因素试验。
     运用X射线衍射仪进行物相分析,用金相显微镜和扫描电子显微镜对等离子熔化-注射层组织形貌进行观察,用能谱仪对等离子熔化-注射层进行成分分析,采用显微硬度仪对熔注层的显微硬度进行测量,采用摩擦磨损实验机对熔注层的耐磨性进行检测。
     试验结果表明送粉量相同时,提高扫描速度可以改善试件的外观形貌;扫描速度相同时,提高送粉量也可以改善试件外观形貌。扫描速度和送粉量都能对组织结构产生巨大影响,其中以送粉量的影响最为显著;提高扫描速度利于树枝状晶产生,提高送粉量利于石墨的产生。送粉嘴直径对试样的外观形貌和组织没有明显的影响。SiC颗粒的尺寸会对获得的组织产生重大影响,采用20~40目的SiC颗粒时组织中更容易形成石墨。
     等离子熔化-注射60~80目SiC所获得的组织为珠光体组织加非平衡组织,其非平衡组织中存在着大量的细小缩孔;熔合线上方存在着一条珠光体带。组织中的珠光体的显微硬度为HV675,非平衡组织的显微硬度为HV798。熔注层的耐磨性为Q235钢的4.1倍,磨损机理主要为磨粒磨损。等离子熔化-注射20~40目SiC所获得的组织为大量石墨球和非平衡组织加上少量的珠光体组织;石墨球分布于整个熔注层内;非平衡组织内部存在尺寸在纳米级的石墨球。组织中的珠光体的显微硬度为HV387,非平衡组织的显微硬度为HV358。熔注层的耐磨性为Q235钢的48.3倍,磨损机理主要为磨粒磨损。
Production process, microstructure and properties of Fe/Graphite metal matrix self-lubricating surface composite produced by plasma melt injection (PMI) were investigated.
     In this thesis, orthotropic technology was applied to design engineering testing which was a three factors three levels orthotropic testing. The three factors included scanning velocity, powder flow and diameter of the nozzle of powder supplier. And particle size (60~80mesh and 20~40 mesh) was regarded as a factor to design monofactorial testing.
     XRD was applied to analysis substance. Optical microscope and SEM were applied to observe microstructure. EDX was applied for composition analysis. Hardness tester was applied to detect microhardness of layer and wear resistance tester was applied to detect wear resistance of the layer. The result shows that the morphology of specimen can be improved by increasing scanning velocity at constant powder flow, and it also can be improved by increasing powder flow at constant scanning velocity. Scanning velocity and powder flow both have notable influence on microstructure and the influence of powder flow is more powerful. The increasing of scanning velocity contributes to formation of dendrite. The increasing of powder flow contributes to formation of graphite. The nozzle diameter of the powder supplier has no obvious influence on the morphology and microstructure of specimen. Particle size of SiC has distinct influence on the microstructure and more graphite exist in the microstructure produced by PMI 20~40 mesh SiC particles.
     The constitution of microstructure produced by PMI 60~80 mesh SiC particles is pearlite and nonequlibrium which has a large number of sinkholes. The microhardness of pearlite is HV675 and the microhardness of nonequilibrium is HV798. The wear resistance of the layer is 4.1 times as good as Q235 matrix. Mechanism of wear is adhesion and abrasion. The constitution of microstructure produced by PMI 20~40 mesh SiC particles is a great deal of spherical graphite, nonequlibrium and few of pearlite. Distribution of spherical graphite is homogeneous. Nanometer scare spherical graphite has been found in
引文
1 Kazuhisa Miyoshi. Aerospace mechanisms and tribology technology case study. Tribology International. 1999,(32):673-685
    2 S.Shaji, V.Radhakrisnan. An investigation on solid lubricant moulded grinding wheels.International journal of machine tools & manufacture.2003,(43):965-972
    3 I.Cohen, I.Golding, I.G.Ron, et al. Biofluiddynamics of lubricating bacteria. Mechanical methods in the applied sciences. 2001,(24):1429-1468
    4 Lev Rapoport, Niles Fleischer, Reshef Tenne. Fullerene-like WS2 nanoparticls: superior lubricants for harsh conditions. Advanced materials. 2003,15(7):651-655
    5 Dieter Klaffke. Fundmentals of tribotesting. Tribotest journal. 2000,6(4):373-385
    6 Steven A.Henck. Lubrication of digital micromirrior devices. Tribology letters. 1997,(3):239-147
    7 Qin Ma, Yanqing Yang, Mokuang Kang, et al. Microstructures and mechanical properties of hot-pressed MoSi2-matrix composites reinforced with SiC and ZrO2 particles. Composites science and technology.2001,(61):963-969
    8 S.I.U.Ahmed, G Bregliozzi , H.Haefke. Microtribology of silicon,oxide and carbide surface.Tibotes.2006,12:175-184
    9 Hongling Wang, Haihong Li, Fengyuan Yan. Synthesis and tribological behavior of metakaolinite-based geopolymer composites. Materials letters. 2005,(59):3976-3981
    10 P.Samyn, P.De Baets, G Schoukens, B Handrickx. Tribological behavior of pure and graphite-filled polyimides under atmospheric conditions. Polymer engineering and science. 2003,43 (8):1477-1487
    11 石淼森.固体润滑技术概论.制造技术与机床.1996,(7):49-51
    12 石淼森.高分子和金属基润滑材料.制造技术与机床.1996,(11):53-56
    13 Waldhueter.W. Self lubricating bearings for hydro station equipment.1980.
    14 Umeda Kazunori. Frictional properties of solid lubricant compacts of lead base graphite and WS2. Journal of Japan Society of Lubrication Engineers.1988:54-61
    15 Rohatgi P K, Ray S, Liu Y. Tribological properties of metal matrix-graphiteparticle composites. International materials reviews. 1992,(37): 129-149
    16 Das.S. Microstructure and wear of cast (Al-Si alloy)-graphite composites.Wear.1989,(133):173-187
    17 Jha A.K. Sintered 6061 aluminium alloy-solid lubricant particle composites. Sliding wear and mechanisms of lubrication. Wear 1989,(133):163-172
    18 Okada Katsuzo. New self-lubricating aluminium alloy base composites for vacuum technology. Vacuum. 1990,(41):1876-1878
    19 Dellacorte. Tribological properties of PM212:A high temperatue, self-lubricating, powder metallurgy composite. Lubrication Engineering. 1991(47):298-303
    20 Prasad S V, K R Mecklenburg.Self-lubricating aluminum metal-matrix composites dispersed with tungsten disulfide and silicon carbide. Lubrication Engineering.1994,50(7):511-517
    21 Guo M L T ,C Y A Tsao.Tribological behavior of self –lubricating aluminum/SiC/graphite hybrid composites synthesized by the semisolid powder-densification method. Composites Science and Technology.2000,60(1):65-74
    22 Ning L P , Q H Wang.Study on mechnical and tribological properties tin-bronze net reinforced tin-bronze-matrix self-lubricating composites.Mocaxue Xuebao/Tribology.2003,23(5):380-384
    23 Yin Y G, J W Liu.Effect of graphite on the friction and wear properties of Cu alloy-matrix self-lubricating composites at elevated temperature.Mocaxue Xuebao/Tribology.2005,25(3):216-230
    24 马乃恒,梁工英,苏俊义.激光熔覆工艺参数对TiCp/Al表层复合材料的影响.中国有色金属学报.2001,11(6):1041-1044
    25 曾晓雁,吴新伟,陶曾毅等.激光熔覆 Ni-WC 金属陶瓷层的耐磨性分析.金属学报.1997,33(8):885-890
    26 花国然,黄因慧,赵剑峰等.激光熔覆纳米Al2O3等离子喷涂陶瓷涂层.中国有色金属学报.2004,14(2):199-203
    27 吴玉萍.等离子弧熔覆 Fe 基合金+TiC 涂层中的陶瓷相行为与相结构.焊接学报.2001,22(6):89-91
    28 王存山,夏元良,李刚等.宽带激光熔覆 Ni-WC 梯度复合涂层组织与性能.应用激光.2001,21(3):151-154
    29 M. Riabkina-Fishman, E. Rabkin, P. Levin et al. Laser produced functionallygraded tungsten carbide coatings on M2 high-speed tool steel. Materials Science and Engineering. 2001, A302:106-114
    30 吴玉萍,林萍华,王泽华等.多层预涂敷等离子熔覆 TiC/Ni 梯度涂层研究.材料热处理学报.2004,25(3):74-77
    31 裴宇韬 . 激光熔覆 TiCp/Ni 合金自生梯度涂层及其自生机制 . 金属学报.1998,34(9):987-991
    32 Xiaolei Wu. In situ formation by laser cladding of a TiC composite coating with a gradient distribution. Surface and Coatings Technology. 1999, 115: 111-115
    33 Minhai Zhao, Aiguo liu, Mianhuan Guo, et al. WC reinforced surface metal matrix composite produced by plasma melt injection. Surface & coatings technology. Accepted
    34 吴 树 森 . 金 属 基 复 合 材 料 凝 固 界 面 颗 粒 行 为 的 研 究 进 展 . 材 料 导报.1998,12(5):1-5
    35 闵光辉,于化顺,陈熙琛.凝固过程中粒子在 S-L 界面前沿的行为.材料工程.1999,(7):21-23
    36 J. A. Vreeling, V. Ocelik, Y. T. Pei et al. Laser melt injection in aluminum alloys: on the role of the oxide skin. Acta Materialia. 2000, 48: 4225-4233
    37 J. A. Vreeling, V. Ocelik, J.T.M. De Hosson. Ti–6Al–4V strengthened by laser melt injection of WCp particles. Acta Materialia. 2002, 50: 4913-4924
    38 李荣久.陶瓷金属复合材料.冶金工业出版社.1995:55-57
    39 樊振军.SiC/Fe 基复合材料摩擦磨损性能测试及机理探究.合肥工业大学硕士学位论文.2002,5
    40 石淼森.层状固体润滑材料.制造技术与机床.1996,(10):50-52
    41 胡德林,张帆.三元合金相图.西北工业大学出版社.1995:133
    42 崔忠圻,刘北兴.金属学与热处理原理.哈尔滨工业大学出版社.1998:96-97
    43 何志,罗锡裕.铁-石墨材料的减振减摩性能.钢铁研究学报.1996,(8):31-33
    44 徐滨士,朱绍华等.表面工程的理论与技术.国防工业出版社.1999:38-39
    45 马庆芳,方荣生,项立成,郭禹.实用热物理性质手册.中国农业机械出版社.1986:6-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700