冈底斯西段仲巴地区始新世花岗岩成因及其构造环境
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏仲巴地处世界屋脊-青藏高原的西南边,大地构造位置上属于冈底斯-念青唐古拉构造带的冈底斯岩浆岩带南带,自中生代以来,该带发育有多期次、大规模的中酸性侵入岩及火山岩。
     本文在前人的研究基础上,以仲巴始新世花岗岩为研究对象,进行了岩石学、地球化学、SHRIMP锆石U-Pb年代学、矿相学以及光谱等综合研究,并分析了岩石成因、形成的构造环境,评价了岩石成矿潜力,探讨了仲巴始新世花岗岩所代表的壳幔物质演化与深部作用过程。
     仲巴始新世花岗岩主要岩性为石英二长岩、二长花岗岩、黑云母二长花岗岩、石英闪长岩、钾长花岗岩,中到粗粒结构,发生不同程度的发生碎裂,这可能与本区多次的构造运动有关。
     通过岩石地球化学分析,发现所测样品中,SiO_2含量64.76%-76.96%,平均在69.82%,K_2O含量为3.82%-5.83%,平均在4.83%,同时具有高的K_2O/Na_2O比值(1.21-2.43)和低P_2O_5含量(0.02%-0.27%);里特曼指数(δ)介于1.79-4.00之间,为钙碱性岩类;铝饱和指数A/CNK介于0.86-1.03之间,平均0.95<1.1,为I型花岗岩;CaO、Fe_2O_3、TiO_2、Al_2O_3、MgO、P_2O_5与SiO_2呈现较明显的负相关关系;微量元素含量明显偏高,标准化值多大于1,标准化曲线向右倾斜,表现出相对富集U,而强烈亏损Ba、Nb、Sr、Ti;稀土元素总量∑REE=(84.94-304.51)μg/g,平均211.91μg/g;强烈富集轻稀土元素,LREE/HREE=13.95-20.00,平均17.32;具较强烈的Eu负异常;以上这些数据显示,这可能是壳幔岩浆混合的产物,是地壳不同深度源岩重熔的结果。
     仲巴始新世花岗岩SHRIMP锆石U-Pb测年结果表明,该花岗岩形成于38.25Ma,处于青藏高原的后碰撞阶段,是青藏高原后碰撞阶段的产物。
     通过矿相学发现,本区部分岩石中含有较多的蓝铜矿、黄铜矿、黄铁矿、闪锌矿,通过光谱数据发现,本区个别岩石中Ag、Cu、Sb含量较高,这表明本区有可能存在与碰撞作用相关的矿床。
Zhongba area,located in the southwest of Tibet plateau-the roof of the world,isgeotectonically included to the south belt of Gangdise compound magmatic belts ofGangdise-Nyainqentanglha tectonic zone,where develops of multi-periods, large-scaleintermediate-acidic intrusive rocks and volcanic rocks since Mesozoic time.
     Based on the previous studies,this thesis takes the Cenozoic granites as researchobject,by means of petrology, geochemistry, Zircon SHRIMP U-Pb Geochronology,mineralogy, spectrum analysis,analyzing the petrogenesis and tectonicenvironment,evaluating the mineralization potentiality,discussing the evolution anddeep action processes of crust-mantle materials that they represent.
     The Cenozoic granites are mainly composed of medium-coarse grained quartzmonzonite, monzonitic granite, biotite monzogranite, quartz diorite and potassiumgranite.They contains varied fractures,which may related to multiple tectonicmovements occurring in this area.
     Through geochemical analysis, we find that the SiO_2content is64.76%-76.96%(average,69.82%), the K_2O content is3.82%-5.83%(average,4.83%),with highK_2O/Na_2O ratio(1.21~2.43) and low P_2O_5content(0.02%~0.27%);δ=1.79-4.00,calc-alkaline series; A/CNK=0.86-1.03(average,0.95<1.1), I type granite;CaO,Fe_2O_3,TiO_2,Al_2O_3,MgO,P_2O_5shows obvious negative correlation with SiO_2; thecontents of trace elements,whose standardized values are more often than1,aresignificantly higher,with normalized curves skewing to the right,presenting relativelyhigher U concertration,strongly lossing Ba,Nb,Sr,Ti;∑REE=84.94-304.51μg/g(average,211.91μg/g); intensely enriched in LREE, LREE/HREE=13.95-20.00(average,17.32); strong negative Eu anomalies.The refered datas reveal that thegranites are probably the mixtures of crust-mantle magmas and the results of theremelting of crust-derived rocks from different depths.
     The datas of SHRIMP U–Pb dating of zircon from Mesozoic Zhongba granitesindicate that this granites,which were formed at38.25Ma, were the consequences ofthe post-collisional stage of Tibet plateau.
     The mineralogy shows that some granites contain higher grade of Azurite,chalcopyrite, pyrite and sphalerite. According to spectroscopic datas,we find thatthere are higher grade of Ag,Cu,Sb in several collected samples, it indicates that theremay exist relative deposits.
引文
Andersen T, Correction of common lead in U-Pb analyses that do not report204Pb.ChemicalGeolgy,2002,192:59-79
    Black LP,Gulson BL.The age of the mud tank carbonatite, strangways range, Northern territoryBMR J Austral Geol Geophys.1978),3:227-232
    Boynton WV. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P(ed).Rare earth element geochemistry, Elsevier,1984
    Chappell BW and White AJR. I and S-type granites in the Lachlan Fold Belt. Transactions of theRoyal Society of London. Edinburgh: Earth Sciences,1992,83:1-26
    Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoictectonics and crustal evolution of southern Tibet Geology,2006,34:745-748,
    Chung S L, Liu D Y, Ji J Q, et al. Adadites from continental collision zones Melting of thickenedlower crust beneath southem Tibet. Geology,2003,31:1021-1024
    Coulon C, Maluski H, Bollinger C, et al. Mesozoic and cenozoic volcanic rocks from central andsouthern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamicalsignificance.Earth and Planetary Science Letters,1986,79:281-302
    Debon F, et al. Granitoid belts in West and South Tibet, about their geochemical trends and Rb-Srisotopic studies. Proceedings on the Qinghai-Xizang(Tibet)Plateau,1981,1:395-405
    Debon F, Sonet J, Liu G H, et al. Chemical-mineralogical typology and Rb-Sr dating of the threeplutonic belts in southern Tibet. Terra Cognita,1983,3:265.
    Ding L, Kapp P, Wan X. Paleocene–Eocene record of ophiolite obduction and initial India-Asiacollision, south central Tibet. Tectonics,2005,24:1-18
    Dong G C,Mo X X,Zhao Z D,et al. Geochronologic Constraints on the Magmatic Underplating ofthe Gangdisê Belt in the India-Eurasia Collision: Evidence of SHRIMP II Zircon U-PbDating. Acta Geologica Sinica,2005,79(6):787–794
    Middlemost, E. A. K..Naming materials in magma/igneous rock system. Earth Sci. Rev,1994,37,215–224.
    Franzini M,Leoni L,SaittaM. A simple method to valuate the matrix effect in X-way fluorescenceanalysis. X-ray Spectrom,1972,1:151-154
    Harris NBW, Inger S, Xu RH. Cretaceous plutonism in Central Tibet: an example of post-collisionmagmatism? Journal of Volcanology and Geothermal Research,1990,44:21-32
    He S D, Paul Kapp, Peter G. DeCelles,et al. Cretaceous–Tertiary geology of the Gangdese Arcin the Linzhou area, southern Tibet. Tectonophysics.2007,433:15–37
    Hou Z Q, Gan Y F, Qu X M, et al. Origin of adakitic in trusives generated during mid-Mioceneeast-west extension in south Tibet. Earth Planet Sci Lett,2004,220:139~155
    Jaekson SE,Pearson NJ,Griffin WL,et al.The application of Laser Ablation-Induetively CoupledPlasma-Mass Spectrometer(LA-ICP-MS) to in situ U-Pb Zireon geochronology.ChemicalGeolgy,2004,211:47一69
    Ji W Q, Wu F Y, Chung S L, et al. Zircon U–Pb Geochronology and Hf isotopic constraints onpetrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology,2009,262:229–245
    Liao Z L,MO X X,Pan G T,et al. Spatial and temporal distribution of peraluminous granites inTibet and their tectonic significance. Journal of Asian Earth Sciences,2007,29:378–389
    Liegeois J P.Some work on the post-collisional magmatism.Lithos,1998,45:15-17
    Ludwig KR.ISOPLOT2.49:A Geochronological Toolkit for Microsoft Exeel:BerkeleyGeochronology Centre, Special Publication, no la,2001,1-58
    Maniar P D, Piecoli P M. Tectonic discrimination of granitoids. Geol. Soci. Am. Bull,1989,101:135-143.
    Meng, J.; Wang, C.; Zhao, X,et al. New paleomagnetic results from the Xigaze fore-arc basin:Tectonic implications for the collision of India and Asia. American Geophysical Union, FallMeeting2011,Abstract
    Mo X, Zhao Z, Deng J, et al. Petrology and geochemistry of postcollisional volcanic rocks fromthe Tibetan plateau: Implications for lithosphere heterogeneity and collision-inducedasthenospheric mantle flow, in Dilek Y, and Pavlides S, eds., Postcollisional tectonics andmagmatism in the Mediterranean region and Asia: Geological Society of America SpecialPaper409:507-530
    Mo X, Zhao Z, Zhou S, et al.2002. Evidence for timing of the initiation of India-Asia collisionfrom igneous rocks in Tibet. EOS Trans. AGU,83(47), F1003, Fall Meeting Abstract.S62B-1201
    Mo XX, Hou ZQ, Niu YL, et al. Mantle contributions to crustal thickening during continentalcollision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos,2007,96:225-242
    Mo XX, Niu YL, Dong GC, et al. Contribution of syncollisional felsic magmatism to continentalcrust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet.Chemical Geology,2008,250:49-67
    Mo X X,Dong G C, Zhao Z D, et al. Timing of magma mixing in the Gangdise magmatic beltduing the India-Asia collision: Zircon SHRMP U-Pb dating. Acta Geologica Sinica-EnglishEdition,2005,79:66-76
    Pearce J et al. trace element distribution diagrams for the tectonic interpretation of granitic rocks. J.Petrol,1984,25:956-983.
    Rickwood P.C., Boundary lines within petrologic diagrams which use oxides of major and minorelements.Lithos,1989,22:247-263.
    Sun SS, McDonough WF. Chemical and isotope systematics of oceanic basalts: implications formantle composition and processes. In: Saunders AD, ed. Magmatism in Ocean Basins.SpecialPublication of Geological Society London,1989.42:313-345
    Wan X, Jansa L F, Sarti M, et al. Cretaceous and Tertiary boundary strata in southern Tibet andtheir implication for India-Asia collision. Lethaia2002,35:131-146.
    Wang, C., Li, X., Liu, Z.,et al, Revision of the Cretaceous-Paleogene stratigraphic framework,facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbosuture zone: Gondwana Research,2011,in press
    Wen, D.-J., Chung, S.-L., Song, B. et al. Late Cretaceous Gangdese intrusions of adakiticgeochemical characteristics, SE Tibet: petrogenesis and tectonic implications.Lithos.2008,105:1-11
    Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics,discriminatuon and petrogenesis. Contributions to Mineralogy and Petrology,1987.95:407-419
    Wu FY, Ji WQ, Liu CZ, et al. Detrital zircon U-Pb and Hf isotopic data from the Xigazefore-arcult-crust exposed in the North basin: Constraints on Transhimalayan magmaticevolution in southern Tibet. Chemical Geology,2010,271:13-25
    Yin A, Harrison TM. Geologic Evolution of the Himalayan-Tibet.Orogen Annu. Rev. EarthPlanetSci.2000,28:211-280
    Zhao Z, Mo X, Dilek Y, Niu Y, DePaolo DJ, Robinson P, Zhu D, Sun C, Dong G, Zhou S, LuoZ,Hou Z.2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisionalultrapotassic magmatism in SW Tibet: Petrogenesis and implications forIndiaintra-continental subduction beneath southern Tibet. Lithos,2009,113:190-212
    陈道公,支霞臣,杨海涛.地球化学.合肥:中国科学技术大学出版社,1994,160-216.
    第鹏飞,西准噶尔晚古生代花岗岩地球化学特征及构造意义的初步研究.【硕士学位论文】.兰州:兰州大学,2010
    董传万,彭亚明.青田复式岩体──两种不同类型花岗岩的复合.浙江大学学报(工学版).1994,28:440-448
    董国臣.2002.西藏林周盆地林子宗火山岩及其所含的印度—亚洲碰撞信息.【博士学位论文】.北京:中国地质大学(北京)
    董昕.西藏冈底斯带西南部中新生代花岗岩年代学与地球化学.【硕士学位论文】.北京:中国地质大学(北京),2008
    高剑峰,陆建军,赖鸣远,等.岩石样品中微量元素的高分辨等离子质谱分析.南京大学学报(自然科学).2003,39:844-850
    郭铁鹰,梁定益,张益智,等.西藏阿里地质.武汉:中国地质大学出版社,1991
    韩吟文,马振东,张宏飞,等.地球化学.北京:地质出版社,2003
    和钟铧,杨德明,王天武.冈底斯带桑巴区早白垩世后碰撞花岗岩类的确定及构造意义.岩石矿物学杂志.2006,25:185-193
    侯增谦,杨竹森,徐文艺,等,青藏高原碰撞造山带:I.主碰撞造山成矿作用.矿床地质,2006a,25(4):337-358
    侯增谦,潘桂棠,王安建,等,青藏高原碰撞造山带:II.晚碰撞转换成矿作用.矿床地质,2006b,25(5):521-545
    侯增谦,曲晓明,杨竹森,等,青藏高原碰撞造山带:III.后碰撞伸展成矿作用.矿床地质,2006c.25(6):629-651
    侯增谦,莫言学,高永丰,等.埃达克岩:斑岩铜矿的一种可能的重要母岩.矿床地质,2003,22:1-2
    侯增谦,莫宣学,杨志明,等.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质.2006d.33:348-359.
    侯增谦,王二七,莫宣学,等.青藏高原碰撞造山与成矿作用.北京:地质出版社,2008.
    胡受奚,周顺之,等,矿床学.北京:地质出版社,1982
    纪伟强,吴福元,锺孙霖,等.西藏南部冈底斯岩基花岗岩时代与岩石成因.中国科学D辑.2009,39:849–871
    贾建称,温长顺,王根厚,等.冈底斯地区林子宗群火山岩岩石地球化学特征及地球动力学意义.中国地质.2005,32:396-404
    江元生,周幼云,李建兵,等.中华人民共和国1:25万区域地质调查报告措勤区幅.2003
    金成伟.西藏冈底斯地区的岩浆活动和岛弧演化,地质科研成果选集.北京:文物出版社,1982
    金成伟,许荣华.喜马拉雅和冈底斯中段的花岗岩类,中法喜马拉雅考察成果(1980),北京:地质出版社,1984
    金成伟,周云生.喜马拉雅和冈底斯弧形山系中的岩浆岩带及其成因模式.地质科学,1978,4
    金成伟,N B W Harris,许荣华,等.拉萨至格尔木的深成岩,中-英青藏高原综合地质考察队,青藏高原地质演化.北京:科学出版社,1990
    李昌年.火成岩微量元素地球化学.武汉:中国地质大学出版社,1992
    李璞,戴橦谟,张梅英,等,西藏希夏邦马峰地区岩石绝对年龄数据的测定.科学通报,1965,925-926
    廖忠礼.西藏南部过铝花岗岩的特征、成因及构造意义.【博士学位论文】.北京:中国地质大学(北京),2003
    刘国惠.西藏变质岩及火成岩.北京:地质出版社,1990
    刘增乾,徐宪,潘桂棠,等.青藏高原大地构造与形成演化.北京:地质出版社,1990
    楼亚儿,杜杨松,花岗质岩石成因分类研究述评.地学前缘,2003,10:269-275
    路远发. GeoKit:一个用VBA构建的地球化学工具软件包.地球化学,2004,33:459-464
    路凤香,桑隆康,邬金华,等.岩石学.北京:地质出版社,2002
    耿全如,潘桂棠,王立全,等.西藏冈底斯带叶巴组火山岩同位素地质年代.沉积与特提斯地质.2005,26:1-8
    马文璞.区域构造解析-方法理论和中国板块构造.北京:地质出版社,1992
    孟良义.花岗岩与成矿.北京:科学出版社,1993
    孟良义.中国东部侵入型块状硫化物矿床.中国科学B辑.1994,24:76-80
    莫宣学,赵志丹,喻学惠,等.青藏高原新生代碰撞-后碰撞火成岩.北京:地质出版社,2009
    莫宣学,赵志丹,邓晋福,等.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘.2003.10:135-148.
    莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,2005
    潘桂棠,丁俊,姚冬生,等.青藏高原及邻区地质图(1∶1,500,000,附说明书).成都:成都地图出版社,2004
    潘桂棠,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化.岩石学报.2006,22:521-533
    邱检生,胡建,王孝磊,等.广东河源白石冈岩体:一个高分异的I型花岗岩.地质学报.2005,79,503-514
    涂光炽.西藏南部花岗岩类地球化学.北京:科学出版社,1982
    涂光炽.西藏南部花岗岩类的特征和演化.地球化学,1981, l
    王成善,李祥辉,胡修棉.再论印度-亚洲大陆碰撞的启动时间.地质学报.2003,77:16-24.
    王涛.花岗岩混合成因研究及大陆动力学意义,岩石学报.2000a,16:161-168
    王涛.花岗岩研究与大陆动力学,地学前缘.2000b,7(增刊):137-146
    汪雄武,王晓地.花岗岩成矿的几个判别标志.岩石矿物学杂志.2002,21:119-130
    吴珍汉,孟宪刚,胡道功,等.中华人民共和国1:25万区域地质调查报告当雄县幅.2003
    吴新国,吕继东.雅鲁藏布江缝合带内构造岩片划分及形成-以仲巴-桑桑段为例.大地构造与成矿学.2006,30:320-325
    钱定宇.西藏扎扎拉发现混杂堆积.青藏高原地质文集(7)—地层·古生物.1982:166-170
    夏斌,郭令智,施央申.西藏南部蛇绿岩及其地体构造.广州:中山大学出版社1998
    夏斌,李建峰,张玉泉,等.藏南冈底斯带西段麦拉花岗岩锆石SHRIMP定年及地质意义.大地构造与成矿学.2008,32:243-246
    夏斌,王国庆,钟富泰.喜马拉雅及邻区蛇绿岩和地体构造图说明书,1993
    夏斌,韦振权,张玉泉,等.西藏西部冈仁波齐花岗闪长岩锆石SHRIMP U-Pb定年及其地质意义.地质通报,2007,26:1014-1017
    肖庆辉,邓晋福,马大铨,等.北京,地质出版社.2002
    肖序常,李廷栋,李光岑.喜马拉雅岩石圈构造演化.北京:地质出版社,1988.
    肖序常,王方国.中国蛇绿岩概论.中国地质科学院院报.1984,9:19-30
    许荣华,N B W Harris,C L Lewis,等.拉萨至格尔木的同位素地球化学,中-英青藏高原综合地质考察队,青藏高原地质演化.北京:科学出版社,1990
    许荣科,茨邛,庞振甲,等.中华人民共和国1:25万区域地质调查报告斯诺乌山—狮泉河幅.2004
    许志琴,杨经绥,李海兵,等.印度-亚洲碰撞大地构造.地质学报.2011,85:1-33
    杨学明,杨晓勇,陈双喜.岩石地球化学.合肥:中国科学技术大学出版社,2000
    袁见齐,朱上庆,翟裕生.矿床学.北京:地质出版社,1985
    张宏飞,徐旺春,郭建秋,等.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据.岩石学报.2007,23:1347-1353
    张双增,李金和,李广栋,等.中华人民共和国1:25万区域地质调查报告札达县幅.2005
    张振利,田立富,范永贵,等.中华人民共和国1:25万区域地质调查报告萨嘎县幅.2002
    赵崇贺,李国良.阿里地区蛇绿岩.见:郭铁鹰主编.西藏阿里地质.武汉:中国地质大学出版社,1991
    赵志丹,莫宣学, Nomade S,等.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义.岩石学报,2006,22:787-794
    赵志丹,莫宣学,张双全,等.西藏中部乌郁盆地碰撞后岩浆作用—特提斯洋壳俯冲再循环证据.中国科学(D),2001,31(增刊):20-26
    赵志丹,莫宣学,朱弟成,等.西藏拉萨地块西部扎布耶茶卡火山岩的成因与意义.地质通报,2009,28:1730-1740
    周云生,张旗等.冈底斯中酸性侵入岩带.见:西藏岩浆活动和变质作用.北京:科学出版社,1981
    朱弟成,莫宣学,王立全,等.西藏冈底斯东部察隅高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束.中国科学D辑:地球科学2009,39:833–848
    朱弟成,潘桂棠,王立全,等.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报.2008,27:1535-1550

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700