塔里木克拉通北缘库尔勒地区古元古代表壳岩系的变质作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塔里木克拉通是中国三大古老克拉通之一,古老的前寒武纪基底在库鲁克塔格隆起有着很好的出露。本研究对库鲁克塔格隆起西缘库尔勒地区的兴地塔格群石榴云母片岩及斜长角闪岩进行了锆石U-Pb及Lu-Hf同位素和矿物电子探针分析,此外还对斜长角闪岩进行了岩石地球化学分析,旨在获得兴地塔格群的沉积时代和变质作用时代,兴地塔格群及斜长角闪岩变质温压条件,源区地壳增生时间及斜长角闪岩形成的大地构造背景。
     兴地塔格群中的四块石榴云母片岩中的锆石U-Pb定年表明,它们都记录到1.85Ga的高级变质作用。其中三个样品中的碎屑锆石发生溶解或经历固相重结晶作用,形成变质新生锆石,这些锆石具有一致的1.85Ga的上交点年龄,并且每个样品中锆石具有近于一致的176Hf/177Hf值。库尔勒地区1.85Ga高级变质作用是塔里木北缘对Columbia超大陆聚合的响应。其中的一块样品(T1)除了记录到1.85Ga的变质作用,还保留了原岩中碎屑锆石的年龄信息。该样品中的碎屑锆石最年轻的峰值年龄为2.0Ga,因此兴地塔格群在2.0-1.85Ga之间发生沉积.属于古元古代晚期地层。
     兴地塔格群中的斜长角闪岩的岩石地球化学研究表明,它们的原岩可分为三种类型:碱性OIB. E-MORB、受到地壳组分混染的基性岩。元素的地球化学模拟表明,碱性OIB和E-MORB样品是来自较原始地幔还要富集的地幔源区。而受到地壳组分混染的基性岩,部分可能是通过AFC作用形成,但是其岩浆源非本研究中的碱性OIB或E-MORB样品,而是类似于N-MORB成分。对两个斜长角闪岩样品(09T-2、09T-10)进行了锆石U-Pb定年及Lu-Hf同位素研究。其中样品09T-2的原岩结晶年龄为2.7Ga,并经历了2.35Ga和1.85Ga的变质作用,其锆石的Hf同位素表明,在2.7Ga时塔里木克拉通北缘有初生地壳的形成,且该期岩浆在侵位过程受到≥3.5Ga的地壳物质的混染。另一块斜长角闪岩样品09T-10,记录到2.21Ga的变质事件,锆石的Hf同位素指示其源区地壳的平均残留年龄为3.6-3.1Ga。
     对石榴云母片岩和斜长角闪岩的温压估算结果为:1)石榴云母片岩的变质温度为590-800℃,压力为10-17Kbar(尽管压力的估算可能偏高),表明兴地塔格群经历了高级的变质作用,使得原岩中碎屑锆石的U-Pb及Lu-Hf同位素体系被重置;2)斜长角闪岩的变质温度为580-790℃,除两个样品的变质压力为2.7和2.9Kbar较低之外,其余样品为5.8-8.4Kbar,表明样品经历了角闪岩相变质,与基性变质岩中角闪石+斜长石矿物组合所指示的角闪岩相变质相吻合。兴地塔格群中的石榴云母片岩与斜长角闪岩是否为同一期变质作用的产物,区域尺度上兴地塔格群属于何种变质相系以及变质作用形成于怎样的大地构造背景(变质作用是碰撞造山所致还是伸展环境下的岩浆底侵作用所致),还需要更进一步的研究。
The Tarim Craton is one of the three old cratons in china. Precambrian basement are well outcropped in the Kuruktag uplift. We carried out zircon U-Pb and Lu-Hf isotope and mineral composition microprobe measurements on garnet-mica schists and amphibolites, as well as geochemical analysis on amphibolites, of the Xingditage Group in order to obtain the maximum depositional age, the metamorphic age and P-T condition of the Xingditage Group, reveal the crustal growth history of the studied area and infer the tectonic setting of the protoliths of amphibolites.
     Zircon U-Pb age results of four garnet-mica schists indicate that they all record the1.85Ga high grade metamorphic event. The detrital zircons in samples09T-7,8,9either were dissolved to form the new metamorphic zircons or experienced the solid state recrystallization. These zircons have the same upper intercept age of1.85Ga and the nearly identical176Hf/177Hf. This metamorphic event of the Tarim Craton was response to the amalgamation of Columbia supercontinent. Sample T1preserved the source information of the detrital zircons with four small age peaks. The youngest age peak of detrital zircon in sample T1is2.0Ga, indicating that the Xingditage Group was deposited between2.0-1.85Ga and is firstly constrained as the Late Paleoproterzoic strata.
     The protoliths of amphibolites can be subdivided to three types according to their geochemical character:alkaline OIB, E-MORB and basic rocks contaminated by the crust materials. Element geochemical modelling indicates that both alkaline OIB and E-MORB samples were generated from the enriched mantle source. Some of basic rocks contaminated by the crust materials could be formed by the AFC process, but the magma source are N-MORB compostion, rather than alkaline OIB or E-MORB compostions. Two amphibolite samples(09T-2,09T-10) were carried on zircon U-Pb and Lu-Hf isotope study. The results show that sample09T-2was crystallied at2.7Ga, and then experienced metamorphism at2.35Ga and1.85Ga, respectively. The Hf isotope data indicate that the Tarim Craton has juvenile crust input at2.7Ga, which was mixed by the≥3.5Ga old crust materials. The other amphibolite sample09T-10records the2.21Ga metamorphic event, the average crust residence time of the source of this sample is3.6-3.1Ga.
     The metamorphic P-T conditions of garnet-mica schists and amphibolites are:1) the metamorphic temperatures of garnet-mica schists are590-800℃and the metamorphic pressures are10-17Kbar (maybe higher than the truth), indicating that the Xingditage Group have experienced high-grade metamorphism and caused the reset of U-Pb and Lu-Hf isotope of detrital zircons;2)The metamorphic temperatures of amphibolites are580-790℃, and metamorphic pressures are5.8-8.4Kbar, except for two samples having lower pressures of2.7Kbar and2.9Kbar. The P-T data indicate the samples have experienced amphibolite facies metamorphism, which is in agreement with the typical amphibolite facies mineral assamblages of amphibole+plagioclase. Did the metamorphism of garnet-mica schists and amphibolites of the Xingditage Group occur at the same episode, which metamorphic face series did the Xingditage Group reach and from which tectonic setting was the metamorphism result (collisional orogen or extentional setting that the magma underplate results in metamorphism) are several major problems needed to be further investigated.
引文
Agrawal S, Guevara M, Verma S.2008. Tectonic discrimination of basic and ultrabasic volcanic rocks through log-transformed ratios of immobile trace elements[J]. International Geology Review,50:1057-1079.
    Albarede F.1992. How deep do common basalts form and differentiate[J]? Journal of Geophysical Research,97:10997-11009.
    Aldanmaz E,2002. Mantle source characteristics of alkali basalts and basanites in an extensional intracontinental plate setting, western Anatolia, Turkey:implication for multi-stage melting[J]. International Geology Review,44:440-457.
    Aldanmaz E, Koprubasi N, Gurer O F, et al.2006. Gourgaud Geochemical constraints on the Cenozoic, OIB-type alkaline volcanic rocks of NW Turkey:implications for mantle sources and melting processes[J]. Lithos,86:50-76
    Allen P A, Bowring S A, Leather J, et al.2002. Chronology of Neoproterozoic glaciations:new insights from Oman[C]. In:Proceedings of the 16th International Sedimentological Congress: Johannesburg, International Association of Sedimentologists,Abstract volume, pp.7-8.
    Andersen T.2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology,192:59-79.
    Arndt N T, Goldstein S L.1987. Use and abuse of crust-formation ages[J]. Geology,15:893-895.
    Barrett T J, MacLean W H.1994. Chemostratigraphy and hydrothermal alteration in exploration for VHMS deposits in greenstone and younger volcanic rocks[Z]. In:Lentz, D.R. (Ed.), Alteration and Alteration Processes Associated with Ore-Forming Systems:Geological Association of Canada, Short Course Notes, vol.11, pp.433-467.
    Bhadra S, Bhattacharya A.2007. The barometer tremolite+tschermakite+2 albite= 2 pargasite+ 8 quartz:Constraints from experimental data at unit silica activity, with application to garnet-free natural assemblages[J]. American Mineralogist,92:491-502.
    Bichert-Toft J, Albarede F.1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters,148:243-258.
    Bingen B, Austrheim H, Whitehouse M J, et al.2004. Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway [J]. Contrib ution to Mineralogy and Petrology,147:671-683.
    Bingen B, Austrheim H, Whitehouse M.2001. Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of W. Norway and implications for zircon geochronology [J]. Journal of Petrology,42:355-375.
    Bowring S A, Grotzinger J P, Condon D J, et al.2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup Sultanate of Oman[J]. American Journal of Scince,307:1097-1145.
    Bowring S, Myrow P, Landing E, et al.2003. Geochronological constraints on terminal Neoproterozoic events and the rise of metazoans[C]. Geophysical Research Abstracts.5, 13219.
    Boynton W V.1984. Cosmochemistry of rare earth elements:Meteorite studies[M]. in:Henderson, P., ed., Rare earth element geochemistry:Amsterdam, Elsevier, p.63-114.
    Cabanis B, Lecolle M.1989. Le diagrammeLa/10-Y/15-Nb/8:un outil pour la discrimination des series volcaniques et la mise enevidence des processus de melange et/ou de contamination crustale[J]. Comptes Rendus de l'Academie des Sciences-Series Ⅱ,309:2023-2029.
    Carroll A R, Graham S A, Hendrix M S, et al.1995. Late Paleozoic tectonic amalgamation of Northwestern China—sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar Basins[J]. Geological Society of America Bulletin,107:571-594.
    Carroll A R, Graham S A, Chang E Z, et al.2001. Sinian through Permian tectono-stratigraphic evolution of the northwestern Tarim basin, China[M]. In:Hendrix, M.S., Davis, G.A. (Eds.), Paleozoic and Mesozoic Tectonic Evolution of Central Asia:From Continental Assembly to Intracontinental Deformation. Geological Society of America Memoir, Boulder, Colorado, pp. 47-69.
    Cavosie A J, Valley J W, Wilde S A, et al.2005. Magmatic δ18O in 4400-3900 detrital zircons:a record of the alteration and recycling of crust in the Early Archaean[J]. Earth and Planetary Science Letters,235:663-681.
    Chen Y, Xu B, Zhan S, et al.2004. First mid-Neoproterozoic paleomagnetic results from the Tarim Basin (NW China) and their geodynamic implications[J]. Precambrian Research,133: 271-281.
    Cherniak D J, Watson E B.2000. Pb diffusion in zircon[J]. Chemical Geology,172:5-24.
    Chu R N, Taylor V, Chavagnac R W, et al.2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry:an evaluation of isobaric interference corrections [J]. Journal of Analytical Atomic Spectrometry,17:1567-1574.
    Condon D, Zhu M, Bowring S A, et al.2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China[J]. Science,308:95-98.
    Degeling H, Eggins S, Ellis D J.2001. Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown [J]. Mineralogical Magazine,65:749-758.
    DePaolo D J.1981. Trace element and isotopic effects on combined wallrock assimilation and fractional crystallization[J]. Earth and Planetary Science Letters,53:189-202.
    Fanning C M, Link P K.2006. Constraints on the timing of the Sturtian glaciation from southern Australia:i.e. for the true Sturtian GSA[C]. Annu. Meeting Abs. Prog.38 (7),115.
    Floyd P A, Winchester J A.1975. Magma type and tectonic setting discrimination using immobile elements[J]. Earth and Planetary Science Letters,27:211-218.
    Franzini M, Leoni L, Saitta M.1972. A simple method to evaluate the matrix effects in X-ray fluorescence analysis[J]. X-ray Spectrometry,1(4):151-154.
    Fraser G, Ellis D, Eggins S.1997. Zirconium abundance in granulitefacies minerals, with implications for zircon geochronology in high-grade rocks[J]. Geology,25:607-610.
    Frey F A, Green D H, Roy S D.1978. Integrated models of basalt petrogenesis:a study of quartz tholeiites to olivine melilitites from SE Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrology,19:463-513.
    Fujimaki H, Tatsumoto M, Aoki K I.1984. Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses[J]. Journal of Geophysical Research,89:662-672.
    Gan X, Zhao F, Li H, et al.1993. Single zircon U-Pb age of the Banxi Group in Hunan Province (in Chinese)[C]. In:Abstracts of the Fifth National Symposium on Isotopic Geochronology and Geochemistry,pp. 10-12.
    Ge R F, Zhu W B, Wu H L, et al.2012. The Paleozoic northern margin of the Tarim Craton: Passive or active[J]? Lithos,142:1-15.
    Gehrels G E.2011. Detrital zircon U-Pb geochronology:Current methods and new opportunities[M]. in:Busby C, Azor A, Draut A E, et al. Recent Advances in Tectonics of Sedimentary Basins. Hoboken, New Jersey, Blackwell Publishing (in press).
    Geisler T, Pidgeon R T, van Bronswijk W, et al.2002. Transport of uranium, thorium and lead in metamict zircon under low-temperature hydrothermal conditions[J]. Chemical Geology,191: 141-154.
    Geisler T, Schaltegger U, Tomaschek F.2007. Re-equilibration of zircon in aqueous fluids and melts[J]. Elements,3:43-50.
    Gerdes A, Zeh A.2009. Zircon formation versus zircon alteration——new insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archaean zircon from the Central Zone of the Limpopo Belt[J]. Chemical Geology,261: 230-243.
    Grant M L, Wilde S A, Wu F Y, et al.2009. The application of zircon cathodoluminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary[J]. Chemical Geology,261:154-170.
    Green T H, Adam J, Site S H.1993. Proton microprobe determined trace element partition coefficients between pargasite, augite and silicate or carbonatitic melts[N]. EOS, Transactions of the American Geophysical Union 74:340.
    Griffin W L, Belousova E A, Shee S R, et al.2004. Archaean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons [J]. Precambrian Research,131:231-282.
    Griffin W L, Pearson N J, Belousova E, et al.2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta,64:133-147.
    Guo Z, Zhang Z, Wang J.1999. Sm-Nd isochron age of ophiolite along northern margin of Altun Tagh Mountain and its tectonic significance[J]. Chinese Science Bulletin,44:456-458.
    Hanchar J M, van Westrenen W.2007. Rare earth element behavior in zircon-melt systems[J]. Elements,3:37-42.
    Harley S L, Kelly N M, Moller A.2007. Zircon behaviour and the thermal histories of mountain chains[J]. Elements,3:25-30.
    Hawkesworth C J, Dhuime B, Pietranik A B, et al.2010. The generation and evolution of the continental crust [J]. Journal of the Geological Society, London,167:229-248.
    Hawthorne F C.1981. Crystal chemistry of the amphiboles[J]. Reviews in Mineralogy and Geochemistry,9A:1-102.
    Hoffman P F, Hawkins D P, Isachsen C E, et al.1996. Precise U-Pb zircon ages for early Damaran magmatism in the Summas Mountains and Welwitschia Inlier, northern Damara belt Namibia[Z]. Communications of the Geological Survey of Namibia 11,47-52.
    Hoffman P F, Kaufman A J, Halverson G P, et al.1998. A Neoproterozoic snowball Earth[J]. Science,281:1342-1346.
    Hoffmann K H, Condon D J, Bowring S A, et al.2006. Lithostratigraphic, carbon (13C) isotope and U-Pb zircon age constraints on early Neoproterozoic (ca.755 Ma) glaciation in the Gariep Belt, southern Namibia[C]. In:Proceedings of the Snowball Earth Conference, July 16-21,2006, Monte Verita, Ticino, Switzerland, p.51.
    Holdaway M J.2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer[J]. American Mineralogist,86:881-893.
    Holland T J B, Blundy J D.1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry[J]. Contributions to Mineralogy and Petrology,166: 433-447.
    Horn I, Foley S F, Jackson S E, et al.1994. Experimentally determined partitioning of high field strength-and selected transition elements between spinel and basaltic melt[J]. Chemical Geology,117:193-218.
    Hoskin P W O, Black L P.2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology,18:423-439.
    Hou K J, Li Y H, Zou T R, et al.2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica,23(10): 2595-2604 (In Chinese with English abstract).
    Hu A Q, Rogers R.1992. Discovery of 3.3 Ga Archaean rocks in North Tarim Block of Xinjiang, Western China[J]. Chinese Science Bulletin,37:1546-1551.
    Jackson S E, Pearson N J, Griffin W L, et al.2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in-situ U-Pb zircon geochronology[J]. Chemical Geology,211:47-69.
    Jahn B M, Zhou X H, Li J L.1990. Formation and tectonic evolution of southeastern China and Taiwan:Isotopic and geochemical constraints[J]. Tectonophysics,183:145-160.
    Keleman P B, Dunn J T.1992. Depletion of Nb relative to other highly incompatible elements by melt/rock reaction in the upper mantle[N]. EOS, Transactions of the American Geophysical Union 73:656-657.
    Kemp A I S, Hawkesworth C J, Paterson B A, et al.2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotope ratios[J]. Nature,439:580-583.
    Kendall B, Creaser R A, Selby D.2006. Re-Os geochronology of postglacial black shales in Australia:constraints on the timing of " Sturtian" glaciation[J]. Geology,34:729-732.
    Kinzler R J.1997. Melting of mantle peridotite at pressures approaching the spinel to garnet transition:application to midocean ridge basalt petrogenesis[J]. Journal of Geophysical Researeh,102:853-874.
    Klein E M, Langmuir C H.1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness[J]. Journal of Geophysical Research,92:8089-8115.
    Langmuir C H, Bender J F, Bence A E, et al.1977. Petrogenesis of basalts from the FAMOUS area: mid-Atlantic ridge[J]. Earth and Planetary Science Letters,36:133-156.
    Langmuir C H, Vocke R D, Hanson G N, et al.1978. A general mixing equation with application to icelandic basalts[J]. Earth and Planetary Science Letters,37:380-392.
    Leake B E.1964. The chemical distinction between ortho-and para-amphibolites[J]. Journal of Petrology,5:238-254.
    Lei R X, Wu C Z, Chi G X, et al.2012. Petrogenesis of the Palaeoproterozoic Xishankou pluton, northern Tarim block, northwest China:implications for assembly of the supercontinent Columbia[J]. International Geology Review. DOI:10.1080/00206814.2012.678045.
    Li Y J, Song W J, Wu G Y, et al.2005. Jinning granodiorite and diorite deeply concealed in the central Tarim Basin[J]. Sciences in China (D-series),48:2061-2068.
    Liou J G, Graham S A, Maruyama S, et al.1996. Characteristics and tectonic significance of the Late Proterozoic Aksu blueschists and diabasic dikes, Northwest Xinjiang, China[J]. International Geological Review,38:228-244.
    Long X P, Sun M, Yuan C, et al.2011b. Zircon REE patterns and geochemical characteristics of Paleoproterozoic anatectic gran-ite in the northern Tarim Craton, NW China:Implications for the reconstruction of the Columbia supercontinent[J]. Precambrian Research, doi:10.1016/j.precamres.2011.09.009.
    Long X P, Yuan C, Sun M, et al.2010. Archean crustal evolution of the northern Tarim craton, NW China:Zircon U-Pb and Hf isotopic constraints[J]. Precambrian Research,180:272-284.
    Long X P, Yuan C, Sun M, et al.2011a. The discovery of the oldest rocks in the Kuluketage area and its geological implications[J]. Scince China Earth Sciences,41:291-298(in Chinese).
    Long X P, Yuan C, Sun M, et al.2011c. Reworking of the Tarim Craton by underplating of mantle plume-derived magmas:evidence from Neoproterozoic granitoids in the Kuluketage area, NWChina[J]. Precambrian Research,187:1-14.
    Lu S N, Li H K, Zhang C L, et al.2008. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J]. Precambrian Research,160:94-107.
    Ludwig K R.2003. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, Berkeley. No.4,70 pp.
    Ma X X, Shu L S, Jahn B M, et al.2011. Precambrian tectonic evolution of Central Tianshan, NW China:Constraints from U-Pb dating and in situ Hf isotopic analysis of detrital zircons[J]. Precambrian Research. doi:10.1016/j.precamres.2011.06.004.
    McFarlane C R M, Connelly J N, Carlson W D.2005. Intracrystalline redistribution of Pb in zircon during high-temperature contact metamorphism[J]. Chemical Geology,217:1-28.
    McKenzie D, Bickle M J.1988. The volume and composition of melt generated by extension of the lithosphere[J]. Journal of Petrology,29:625-679.
    McKenzie D, O'Nions R K.1991. Partial melt distributions from inversion of rare Earth element concentrations[J]. Journal of Petrology,32:1021-1091.
    Meschede M.1986. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology,56: 207-218.
    Mezger K, Krogstad E J.1997. Interpretation of discordant U-Pb zircon ages:an evaluation[J]. Journal of Metamorphic Geology,15:127-140.
    Moller A, O'Brien P J, Kennedy A, et al.2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry:an example from the ultrahigh-temperature granulites of Rogaland (SW Norway) [M]. In:Vance, D., Miiller, W., Villa, I.M. (Eds.), Geochronology:Linking the Isotopic Record with Petrology and Textures. Geological Society, London, Special Publications,220:65-81.
    Morel M L A, Nebel O, Nebel-Jacobsen Y J, et al.2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS[J]. Chemical Geology,255:231-235.
    Nakajima T, Maruyama S, Uchiumi S, et al.1990. Evidence for late Proterozoic subduction from 700-Myr old blueschists in China[J]. Nature,346:263-265.
    Niu Y L, Wilson M, Humphreys E R, et al.2011. The Origin of Intra-plate Ocean Island Basalts (OIB):the Lid Effect and its Geodynamic Implications[J]. Journal of Petrology,52: 1443-1468.
    Pearce J A, Cann J R.1973. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters,19:290-300.
    Pearce J A, Norry M J.1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology,69:33-47.
    Pearce J A.2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos,100:14-48.
    Pearce J A.1996. A user's guide to basalt discrimination diagrams[Z]. In:Wyman, D. A. (ed.) Trace Element Geochemistry of Volcanic Rocks:Applications for Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes 12,79-113.
    Prytulak J, Elliott T.2007. TiO2 enrichment in ocean island basalts[J]. Earth Planetary Science Letters,263:388-403.
    Ribe N M.1985. The generation and composition of partial melts in the Earths mantle[J]. Earth Planetary Science Letters,73:361-376.
    Richter F M.1986. Simple models for trace element fractionation during melt segregation. Earth Planetary Science Letters,77,333-344.
    Rubatto D, Hermann J.2007. Zircon behaviour in deeply subducted rocks[J]. Elements,3:31-35.
    Rudnick R L, Fountain D M.1995. Nature and composition of the continental crust-a lower crustal perspective[J]. Reviews in Geophysics,33:267-309.
    Rudnick R L, Gao S.2004. Composition of the Continental Crust[M]. In:Treatise on Geochemistry. Holland, H.D. and Turekian, K.K. (Editors), Elsevier, Amsterdam.3:1-64.
    Salters V, Stracke A.2004. Composition of the depleted mantle[J]. Geochemistry, Geophysics, Geosystems,5(5):1525-2027.
    Scherer E E, Whitehouse M J, Munker C.2007. Zircon as a monitor of crustal growth[J]. Elements,3:19-24.
    Scherer E, Munker C, Mezger K.2001. Calibration of the lutetium-hafnium clock[J]. Science,293: 683-687.
    Schulz B, Klemd R, Bratz H.2006. Host rock compositional controls on zircon trace-element signatures in metabasites from the Austroalpine basement[J]. Geochimica et Cosmochimica Acta,70:697-610.
    Shaw D M.1970. Trace element fractionation during anatexis[J]. Geochimica et Cosmochimica Acta,34:237-243.
    Shu L S, Deng X L, Zhu W B, et al.2011. Precambrian tectonic evolution of the Tarim block, NW China:New geochronological insights from the Quruqtagh domain[J]. Journal of Asian Earth Sciences,42:774-790.
    Slama J, Kosler J, Condon D J, et al.2008. Plesovice zircon-a new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology,249:1-35.
    Soderlund U, Patchett P J, Vervoort J D.2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters,219:311-324.
    Sun S S, McDonough W F.1989. Chemical and isotopic systematics of oceanic basalt:implication for mantle composition and processes[M]. In:Saunders, A.D., Morry, M.J. (Eds.), Magmatism in the Ocean Basin. Geological Society of London Special Publication,42:528-548.
    Tomaschek F, Kennedy A K, Villa I M, et al.2003. Zircons from Syros, Cyclades, Greece-recrystallization and mobilization of zircon during highpressure metamorphism[J]. Journal of Petrology,44:1977-2002.
    Turner S A.2010. Sedimentary record of late Neoproterozoic rifting in the NW Tarim Basin, China[J]. Precambrian Research,181:85-96.
    Valley J W.2003. Oxygen isotopes in zircon[J]. Reviews in Mineralogy and Geochemistry,53: 343-380.
    Vannucci R, Bottazzi P, Wulffpedersen E, et al.1998. Partitioning of REE, Y, Sr, Zr and Ti between clinopyroxene and silicate melts in the mantle under La Palma (Canary Islands): implications for the nature of the metasomatic agents[J]. Earth and Planetary Science Letters, 158:39-51.
    Vavra G, Schmid R, Gebauer D.1999. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:geochronology of the Ivrea Zone (Southern Alps)[J]. Contributions to Mineralogy and Petrology,134:380-404.
    Walker K B, Joplin G A, Lovering J F, et al.1960. Metamorphic and metasomatic convergence of basic igneous rocks and limemagnesia sediments of the precambian of northwestern Queensland[J]. Geological Society of Australia,6:149-178.
    Walter M J.1998. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere[J]. Journal of Petrology,39:29-60.
    Wasserburg G J, Jacobsen S B, DePaolo D J, et al.1981. Precise determinations of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions[J]. Geochimica et Cosmochimica Acta, 45:2311-2323
    Winchester J A, Floyd P A.1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology,20:325-343.
    Wood D A.1980. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth and Planetary Science Letters,50:11-30.
    Workman R K, Hart S R.2005. Major and trace element composition of the depleted MORB mantle (DMM)[J]. Earth and Planetary Science Letters,231:53-72.
    Wu C M, Zhang J, Ren L D.2004. Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium-to high-grade metapelites[J]. Journal of Petrology,45:1907-1921.
    Wu C M, Zhao G C.2006. Recalibration of the garnet-muscovite (GM) geothermometer and the garnet-muscovite-plagioclase-quartz (GMPQ) geobarometer for metapelitic assemblages[J]. Journal of Petrology,47(12):2357-2368.
    Wu F Y, Yang Y H, Xie L W, et al.2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology,234:105-126.
    XBGMR (Xinjiang Bureau of Geology and Mineral Resources).1993. Regional Geology of Xinjiang Uygur Autonomous Region[M]. Geological Publishing House, Beijing, pp.8-33 (in Chinese).
    XBGMR (Xinjiang Bureau of Geology and Mineral Resources).1999. Stratigraphy of Xinjiang Uygur Autonomous Region[M]. Chinese Geology University Press, Wuhan, pp.1-55 (in Chinese).
    Xiao S, Bao H, Wang H, et al.2004. The Neoproterozoic Quruqtagh Group in eastern Chinese Tianshan:evidence for a post-Marinoan glaciation[J]. Precambrian Research,130:1-26.
    Xu B, Jiang P, Zheng H F, et al.2005. U-Pb zircon geochronology of Neoproterozoic volcanic rocks in the Tarim Block of northwest China:implications for the breakup of Rodinia supercontinent and Neoprotero-zoic glaciations[J]. Precambrian Research,136:107-123.
    Xu B, Xiao S H, Zou H B, et al.2009. SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China[J]. Precambrian Research,168:247-258.
    Yao J, Xiao S, Yin L, et al. 2005. Basal Cambrian microfossils from the Yurtus and Xishanblaq Formations (Tarim, north-west China):systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs from China[J]. Palaeontology,48:687-708.
    Yu J H, O'Reilly S Y, Wang L J, et al.2010. Components and episodic growth of Precambrian crust in the Cathaysia Block, South China:Evidence from U-Pb ages and Hf isotopes of zircons in Neoproterozoic sediments[J]. Precambrian Research,181:97-114.
    Zhan S, Chen Y, Xu B, et al.2007. Late Neoproterozoic paleomagnetic results from the Sugetbrak Formation of the Aksu area, Tarim basin (NW China) and their implications to paleogeographic reconstructions and the snowball Earth hypothesis [J]. Precambrian Research, 154:143-158.
    Zhang C L, Li H K, Santosh M, et al.2012. Precambrian evolution and cratonization of the Tarim block, NW China:Petrology, geochemistry, Nd-isotopes and U-Pb zircon geochronology from Archaean gabbro-TTG-potassic granite suite and Paleoproterozoic metamorphic belt[J]. Journal of Asian Earth Sciences,47:5-20.
    Zhang C L, Li H K, Zou H B, et al.2011b. Multiple phases of Neoproterozoic ultramafic-mafic complex in Kuruqtagh, northern margin of Tarim:interaction between plate subduction and mantle plume[J]? Precambrian Research. doi:10.1016/j.precamres.2011.08.005.
    Zhang C L, Li X H, Li Z X, et al.2007a. Neoproterozoic ultramafic-mafic-carbonatite complex and granitoids in Quruqtagh of northeastern Tarim Block, western China:geochronology, geochemistry and tectonic implications [J]. Precambrian Research,152:149-168.
    Zhang C L, Li Z X, Li X H, et al.2009a. Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China:age, geochemistry, petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences,35:167-179.
    Zhang C L, Li Z X, Li X H, et al.2007c. An early Paleoproterozoic high-K intrusive complex in southwestern Tarim Block, NW China:age, geochemistry, and tectonic implications [J]. Gondwana Research,12:101-112.
    Zhang C L, Yu H F, Ye H M.2007b. Discussions on the Neoproterozoic diorites in central Tarim basin:a comment on Geochronology and geochemistry of deep-drill-core samples from the basement of the central Tarim basin by Guo et al. (Journal of Asia Earth Science,2005,25, 45-56)[J]. Journal of Asian Earth Sciences,29:177-180.
    Zhang C L,Yang D S,Wang H Y, et al.2011a. Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of northeastern Tarim block, NW China:Two phases of mafic igneous with different mantle sources[J]. Gondwana Research,19(1):177-190.
    Zhang Z Y, Zhu W B, Shu L S, et al.2009b. Neoproterozoic ages of the Kuluketage diabase dyke swarm in Tarim, NW China, and its relationship to the breakup of Rodinia[J]. Geological Magazine,146:150-154.
    Zheng B H, Zhu W B, Jahn B M, et al.2010. Subducted precambrian oceanic crust:geochemical and Sr-Nd isotopic evidence from metabasalts of the Aksu blueschist, NW China[J]. Journal of the Geological Society London,167:1161-1170.
    Zheng Y F, Zhao Z F, Wu Y B, et al.2006. Zircon U-Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen[J]. Chemical Geology,231:135-158.
    Zhu W B, Zhang Z Z, Shu L S, et al.2008. SHRIMP U-Pb zircon geochronology of Neoproterozoic Korla mafic dykes in the northern Tarim Block, NW China:implications for the long-lasting breakup process of Rodinia[J]. Journal of the Geological Society, London 165,887-890.
    Zhu W B, Zheng B H, Shu L S, et al.2011b. Geochemistry and SHRIMP U-Pb zircon geochronology of the Korla mafic dykes:Constrains on the Neoproterozoic continental breakup in the Tarim block, northwest China[J]. Journal of Asian Earth Sciences,42(5): 791-804.
    Zhu W B, Zheng B H, Shu L S, et al.2011a. Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane, northwestern Tarim, China:insights from LA-ICP-MS zircon U-Pb ages and geochemical data[J]. Precambrian Research 185:215-230.
    Zou H B.1998. Trace element fractionation during modal and non-modal dynamic melting and open-system melting:a mathematical treatment[J]. Geochimica et Cosmochimica Acta,62: 1937-1945.
    陈曼云,金巍,郑常青.2009.变质岩鉴定手册[M].北京:地质出版社,90-91.
    邓兴梁,舒良树,朱文斌,等.2008.新疆兴地断裂带前寒武纪构造—岩浆—变形作用特征及其年龄[J].岩石学报,24(11):2800-2808.
    董昕,张泽明,唐伟.2011.塔里木克拉通北缘的前寒武纪构造热事件—新疆库尔勒铁门关高级变质岩的锆石U-Pb年代学限定[J].岩石学报,27(1):47-58.
    高剑锋,陆建军,赖鸣远,等.2003.岩石样品中微量元素的高分辨等离子质谱分析[J].南京大学学报(自然科学),39(6):844-850.
    郭召杰,张志诚,刘树文,等.2003.塔里木克拉通早前寒武纪基底层序与组合:颗粒锆石U-Pb年龄新证据[J].岩石学报,19:537-542.
    龙晓平,袁超,孙敏,等.2011a.库鲁克塔格地区最古老岩石的发现及其地质意义[J].中国科学,41(3):291-298.
    陆松年,于海峰,李怀坤,等.2006.中国前寒武纪重大地质问题研究—中国西部前寒武纪重大地质事件群及其全球构造意义[M].北京:地质出版社,1-197.
    牛耀龄.2010.板内洋岛玄武岩(OIB)成因的一些基本概念和存在的问题[J].科学通报,55(2):103-114.
    杨瑞东,罗新荣,张传林,等.2010.新疆库鲁克塔格地区晚古元古代兴地塔格群沉积特征及其碳同位素研究[J].西北地质,43(1):37-43.
    张志诚,刘树文,郭召杰,等.1998.新疆库鲁克塔格斜长角闪岩岩石地球化学特征及其地质意义[J].岩石矿物学杂志,17(2):128-135.
    赵振华.1997.微量元素地球化学原理[M].北京:科学出版社,65-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700