整体构件高效、快捷数控电解加工的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在新型航空、航天发动机及其它机械产品中,整体结构件的应用越来越多,但是因为结构复杂,且多采用难切削材料,加工难度大、效率低,有的甚至现有技术还不能加工。因此,整体构件的高效、快捷加工技术一直是国际上先进制造技术领域研究的热点之一,也是各个工业大国的核心技术之一。
     数控电解加工是一项将数控技术与电解加工技术集成的新工艺技术,在整体构件的加工中发挥了独特的作用,越来越多应用于具有复杂型面、异形型腔的整体构件加工。但是,相对于数控切削加工,数控电解加工的工艺准备过程繁琐、周期较长,制约了其快速响应能力的发挥;而相对于拷贝式电解加工,数控电解加工有多种不同的阴极结构和对应的数控运动方案可供选择,而方案的选择又可能对加工效率产生很大的影响。为提高数控电解加工的加工效率和快速响应能力,基于课题组前期相关研究成果,结合整体构件加工的特点,本文对工具阴极和数控运动设计方法,以及不同数控运动方式对加工效率的影响等问题进行了研究,力求缩短工艺准备时间、提高加工效率,实现整体构件的高效、快捷数控电解加工。
     首先,为缩短工艺准备工作时间,实现快捷加工,针对数控电解加工中阴极设计工作的重点——阴极流场结构设计,研究利用计算流体动力学(Computational Fluid Dynamics,CFD)软件进行加工间隙流场三维仿真分析,实现了计算机辅助阴极流场结构设计。该阴极设计方法应用于某型整体承力环和开式整体叶轮精加工的阴极设计,相对于传统方法,阴极设计和试验修正的总时间缩短约60%。
     为提高数控电解加工的加工效率,研究了平面阴极和斜面阴极的加工间隙变化规律和加工效率及影响因素,以此为基础提出采用离散化方法分析曲面阴极的加工间隙和加工效率问题,从而有助于在工艺设计阶段优化设计工具阴极及其数控运动方式,实现整体构件的高效数控电解加工。
     作为上述研究工作的工程应用之一,在开式整体叶轮高效、快捷数控电解精加工研究中,利用CFD软件辅助进行阴极流场设计;以叶片型面等距面的拟合直纹面为依据设计阴极运动轨迹;运用离散法研究叶片扭角对加工间隙变化规律的影响,建立相应的数学模型,进行数控运动设计,并结合工艺试验对设计进行修正。试验加工表明,这是一种高效、快捷的整体叶轮数控电解精加工工艺设计方法。
     作为上述研究工作的工程应用之二,对结构更复杂、加工难度更大的三元流闭式叶轮数控电解预加工进行了研究。首先,为简化阴极和数控运动设计,缩短工艺准备时间,把叶间流道分为若干区域,使用多个工具阴极分别加工;其次,在用离散法对初始工艺方案加工效率分析的基础上,提出在叶轮毛坯上加工工艺预孔、并进一步改进阴极设计,则相对于不设置工艺孔的加工方案,三元流闭式叶轮数控电解预加工的加工效率可提高约320%,实现了三元流闭式叶轮的高效、快捷数控电解预加工。
In new engine of aircraft and rocket, and some key equipment in other industrial fields, integral components have been widely used. Because of the complex structures and hard to cut material features, how to produce those integral components quickly and inexpensively becomes a key problem in the field of advanced machining technology which worldwide researchers are trying to solve, and those high-tech technology becomes a secret in many countries, the know-how about it can not be published. As a new kind of technology, Numerical Controlled Electrochemical Machining (NC-ECM) has some outstanding advantages in machining integral components, especially used for producing some complex integral components. But compared with traditional Electrochemical Machining (ECM), the machining efficiency of NC-ECM is low; on the other hand, compared with NC milling, the preparing time for NC-ECM is long. Both of them restricted the advantages of NC-ECM in produce integral components. In order to shorten the preparing time and raise the machining efficiency, a new designing method of cathode, a new planning method of cathode movement and machining efficiency of NC-ECM have been studied in this dissertation.
     In order to shorten the designing time for cathode, and reduce the times of trial-and-error, the method of apply Computational Fluid Dynamics (CFD) software to aid designing flow structure of cathode has been studied. The cathode designing method has been successful used for producing integral aircraft shell and opened integral impeller, compared to the existing methods, the time of cathode designing have been reduced by 60%.
     For the purpose of improving efficiency of NC-ECM, the shaping rule of inter-electrode gap and processs efficiency have been researched. Based on these researches, the shape of inter-electrode gap and the machining efficiency could be analyzed after scatter complex work face into some little planes. In this way, the process of NC-ECM could be optimized, and improve the surface quality and machining efficiency of NC-ECM.
     As an applied object of above researches, in order to improve the production efficiency of NC precision electrochemical machining opened integral impeller, the methods of cathode designing and NC movement designing have been researched. These incloud the CFD software aided design cathode, design movement trajectory according to the rule surface of offset surface of vane,and developed a mathematical model to design velocities of NC movement. Finally, a test piece of opened integral impeller were produced, the results show that the time of technological designing have been shortened.
     As another applied object, the high efficiency and rapid respone technologies of NC-ECM in combined electrical machining 3D-flow closed integral impeller have been researched. Because the complex vane surface, narrow and twist channel, 3D-flow closed integral impeller are difficult for machining, we dispart the channel into many parts, than machining those parts with many cathodes, in this way, the designing about profile and movement of cathodes could be simplified. In order to raising the machining efficiency, some craft hole have been drilled in work piece before NC-ECM, and correct the profile of cathode based on analysis of machining efficiency, both of these increased the machining efficiency more than about 320%. In the end, a formal 3D-flow closed integral impeller has been produced, the results show that these technologies could improve the machining efficiency and reduce the prepare time of NC-ECM in combined electrical machining 3D-flow closed integral impeller.
引文
[1]王建业,徐家文.电解加工原理及应用[M].北京:国防工业出版社,2001
    [2]刘晋春,赵家齐,赵万生.特种加工(第3版)[M].北京:机械工业出版社,2000
    [3] E.M.鲁米扬采夫,A.Л.达维多夫著.金属电解加工工艺(刘友轩译)[M].北京:国防工业出版社,1989
    [4]徐家文,云乃彰,王建业等.电化学加工技术—原理、工艺及应用[M].北京:国防工业出版社,2008
    [5]上海科学技术情报研究所.国外电加工(第一辑)[M].上海:上海科学技术情报研究所,1976
    [6]北京市《金属切削理论与实践》编委会.电解加工[M].北京:北京出版社,1981
    [7]《电解加工》编译组编译.电解加工(根据国外资料编译)[M].北京:国防工业出版社,1977
    [8]哈尔滨工业大学机械制造工艺教研室.电解加工技术[M].北京:国防工业出版社,1979
    [9]范植坚,王天诚.电解加工技术及其研究方法[M].北京:国防工业出版社,2004
    [10]余承业等编著.特种加工新技术[M].北京:国防工业出版社,1995
    [11] Chunhua Sun,Di Zhu,Zhiyong Li,et al.Application of FEM to tool design for electrochemical machining freeform surface[J].Finite Elements in Analysis and Design,2006,43:168-172
    [12] Marius Purcar,Andrei Dorochenko,Leslie Bortels,et al.Advanced CAD integrated approach for 3D electrochemical machining simulations[J].Journal of Materials Technology,2008,203:58-71
    [13] Yuming Zhou, Jeffrey J.Derby . THE CATHODE DESIGN PROBLEM IN ELECTROCHEMICAL MACHINING[J].Chemical Engineering Science,1995,50(17):2679-2689
    [14] H.Hardisty , A.R.Mileham , H.Shirvarni , et al . A Finite element simulation of the electrochemical machining processs[C].CIRP Annals-Manufacturing Technology,1993,42(1):201-204
    [15] J Kozak,K P Rajurkar,R F Ross.Computer simulation of Pulse Electrochemical machining(PECM)[J].Journal of Materials Processing Technology,1991,28(1-2):149-157
    [16] J.Kozak,L.Dabrowski,H.Osman,et al.Computer modelling of electrochemical machiningwith rotating electrode[J].Journal of Materials Processing Technology,1991,28(1-2):159-167
    [17] V.K.Jain,K.P.Rajurkar.An integrated approach for tool design in ECM[J].Precision Engineering,1991,13(2):111-124
    [18] K.P.Rajurkar, C.L.Schnacker, R.P.Lindsay. some Aspects of ECM Performance and Contro[C].CIRP Annals-Manufacturing Technology,1988,37(1):183-186
    [19] O.H.Narayanan , S.Hinduja , C.F. Noble . The Prediction of workpiece shape during electrochemical machining by the boundary element method[J].International Journal of Machine Tool Design and Research.1986,26(3):323-338
    [20] Li Zhiyong,Niu Zongwei.Convergence Analysis of the Numerical Solution for Cathode Design of Aero-engine Blades in Electrochemical Machining[J] . Chinese Journal of Aeronautics,2007,20:570-576
    [21] C.S. CHANG,L.W. HOURNG.Two-dimensional two-phase numerical model for tool design in electrochemical machining[J].Journal of Applied Electrochemistry,2001,31:145-154
    [22] L.M.Kotlyar , N.M.Minazetdinov . Anode-shape Determination with Allowance for Electrolyte Properties in Problems of Dimensional Electrochemical Machining of Metals[J].Journal of Applied Mechanics and Technical Physics,2003,44(3):450-454
    [23] S.Bhattacharyya,A.Ghosh,A.K.Mallik.Cathode shape prediction in electrochemical machining using simulated cut-and-try procedure[J] . Journal of Materials Processing Technology,1997,66:146-152
    [24]陈历喜,王红军.磁场对电解加工的影响[J].航空工艺技术,1995,(1):30-41
    [25]范植坚,王天诚,李福援,等.永磁场提高电解加工尺寸精度的试验研究[J].兵工学报,2001,22(4):563-565
    [26]范植坚,马保吉,王天诚.嵌入磁路的电解加工技术[J].机械工程学报,2006,42(2):96-100
    [27]朱荻,曲宁松,Rajurkar.K.P等.电极平动式电解孔加工技术研究[J].机械工程学报,2001,37(5):105-109
    [28] K.P.Rajurkar,D.Zhu.Improvement of Electrochemical Machining Accuracy by Using Orbital Electrode Movement[C].Annals of the CIRP,1999,48:139-142
    [29] M.S.Hewidy,S.J.Ebeid,K.P.Rajurkar,et al.Electrochemical machining under orbital motion conditions[J].Journal of Materials Processing Technology,2001,109:339-346
    [30]徐惠宇,朱荻,曲宁松.辅助阳极电解孔加工技术研究[J].新技术新工艺,2001,(5):15-17
    [31] D.Zhu,H.Y.Xu.Improvement of electrochemical machining accuracy by using dual pole tool[J].Journal of Materials Processing Technology,2002,129:15-18
    [32]鲍怀谦,徐家文.基于超纯水电化学加工的扫描直写技术[J].纳米技术与精密工程,2008,6(4):312-315
    [33]鲍怀谦,徐家文.超纯水电解加工机理及工艺基础[J].化工学报,2006,57(3):626-629
    [34]康敏,赵建社,徐家文.数控展成电解加工技术的研究进展[J].电加工与模具,2004,(3):17-19
    [35] J.Kozak.Mathematical models for computer simulation of electrochemical machining processes[J].Journal of Materials Processing Technology,1998,76:170-175
    [36] Jerzy Kozak.Computer simulation system for electrochemical shaping[J].Journal of Materials Processing Technology,2001,109:354-359
    [37] K.P.Rajurkar,D.Zhu,J.A.McGeough,et al.New Developments in Electro-Chemical Machining[C].Annals of the ClRP,1999,48(2):567-579
    [38] Jerzy Kozak,Antoni F.Budzynski,Piotr Domanowski.Computer simulation electrochemical shaping (ECM-CNC) using a universal tool electrode[J].Journal of Materials Processing Technology,1998,76:161-164
    [39] Piotr Domanowski,Jerzy Kozak.Inverse problems of shaping by electrochemical generating machining[J].Journal of Materials Processing Technology,2001,109:347-353
    [40] Piotr Domanowski,Jerzy Kozak.Direct and inverse problems of shaping by electrochemical generating machining[J].Journal of Materials Processing Technology,2000,107:300-306
    [41] Jerzy Kozak,Lucjan Dabrowski,Konrad Lubkowski,et al.CAE-ECM system for electrochemical technology of parts and tools[J].Journal of Materials Processing Technology,2000,107:293-299
    [42] Jerzy Kozaka,Maria Chuchr,Adam Ruszaj,et al.The computer aided simulation of electrochemical process with universal spherical electrodes when machining sculptured surfaces[J].Journal of Materials Processing Technology,2000,107:283-287
    [43] Adam Ruszaj,Maria Zybura-Skrabalak.The mathematical modelling of electrochemical machining with flat ended universal electrodes[J] . Journal of Materials Processing Technology,2001,109:333-338
    [44]张永俊.数控展成法电解加工扭曲叶片整体叶轮的研究[D].[博士学位论文],南京:南京航空航天大学,1994
    [45]周宇.数控展成电解加工整体叶轮的若干关键问题的研究[D].[博士学位论文],南京:南京航空航天大学,1997
    [46]钱密.提高数控展成电解加工精度的若干基础问题研究[D].[博士学位论文],南京:南京航空航天大学,2000
    [47]朱永伟.数控展成电解加工扭曲叶片整体叶轮的研究与应用[D].[博士学位论文],南京:南京航空航天大学,2000
    [48]康敏.整体叶轮的精密展成电解加工技术研究[D].[博士学位论文],南京:南京航空航天大学,2003
    [49]徐家文,唐亚新.数控展成电解加工的成形规律研究[J].机械工程学报,1994,30(6):28-33
    [50] Xu Jiawen,Yun Naizhang,Tang Yangxin,K.P.Rajurkar.The modelling of NC-electrochemical contour evolution machining using a rotary tool-cathode[J].Journal of Materials Processing Technology,2005,159:272-277
    [51]范植坚,王天诚,冯延军,等.火炮身管大缠角混合膛线计算机数字控制电解加工技术研究[J].兵工学报,2005,26(5):651-655
    [52]任光明.二十一世纪的军用航空动力[J].国防科技,2007,(7):32-35
    [53]梁春华.第三代战斗机发动机的改进改型[J].航空发动机,2004,30(4):53-58
    [54]黄春峰.现代航空发动机整体叶盘及其制造技术[J].航空制造技术,2006,(4):94-100
    [55]丁立铭.21世纪航空制造技术将发生质的飞跃——谈高推重比发动机的关键制造技术(下)[J].国际航空,2002,(2):58-59
    [56]黄春峰.航空发动机整体叶盘结构及发展趋势[J].现代零部件,2005,(4):98-101
    [57]江和甫.燃气涡轮发动机的发展与制造技术[J].航空制造技术,2007,(5):36-39
    [58]刘家富.整体叶盘结构及制造工艺[J].航空科学技术,1998,(6):21-23
    [59]姜旭峰,彭著良,费逸伟.航空发动机减重技术研究[J].航空维修与工程,2005,(1):54-56
    [60]徐家文,云乃彰,严德荣.数控电解加工整体叶盘的研究、应用和发展[J].航空制造技术,2003,(6):31-35
    [61]丁立铭.21世纪航空制造技术将发生质的飞跃——谈高推重比发动机的关键制造技术(上)[J].国际航空,2002,(1):53-55
    [62]方昌德.借鉴国外经验发展我国的航空发动机[J].国际航空,2006,(4):74-77
    [63]王强.国际精密锻造技术的新进展[J].锻压装备与制造技术,2004,(2):15-19
    [64] E.Doege,M.Alasti,R.Schmidt-Jürgensen.Accurate friction and heat transfer laws forenhanced simulation models of precision forging processes[J].Journal of Materials Processing Technology,2004,150:92-99
    [65] P.F.Bariani,S.Bruschi,T.Dal Negro.Integrating physical and numerical simulation techniques to design the hot forging process of stainless steel turbine blades[J].International Journal of Machine Tools & Manufacture,2004,44:945–951
    [66]陈兴福.K423A承力机匣精铸工艺研究[D].[硕士学位论文],大连:大连理工大学,2005
    [67] S.K.Bhaumik,T.A.Bhaskaran,R.Rangaraju,et al.Failure of turbine rotor blisk of an aircraft engine[J].Engineering Failure Analysis.2002,9(3):287-301
    [68]曹腊梅,汤鑫,张勇,等.先进高温合金近净形熔模精密铸造技术进展[J].航空材料学报,2006,26(6):238-243
    [69]汤鑫,曹腊梅,盖其东,等.高温合金双性能整体叶盘铸造技术[J].航空材料学报,2006,26(3):93-98
    [70]汤鑫,曹腊梅,李爱兰,等.高温合金整体叶轮铸造技术的研究进展[J].航空材料学报,2005,25(6):57-62
    [71]肖树龙,陈玉勇,朱洪艳,等.大型复杂薄壁钛合金铸件熔模精密铸造研究现状及发展[J].稀有金属材料与工程,2006,35(5):678-681
    [72] E.Doege,R.Bohnsack.Closed die technologies for hot forging[J].Journal of Materials Processing Technology,2000,98(2):165-170
    [73] Hyoji Yoshimura,Katsuhisa Tanaka.Precision forging of aluminum and steel[J].Journal of Materials Processing Technology.2000,98(2):196-204
    [74] K.Siegert,M.Kammerer,Th.Keppler-Ott,et al.Recent development on high precision forging of aluminum and steel[J].Journal of Materials Processing Technology.1997,71(1);91-99
    [75] R.Kopp.Some current development trends in metal forming technology[J].Journal of Materials Processing Technology.1996,60(1-4);1-9
    [76]王真,单德彬,薛克敏,等.铝合金筒形机匣等温精锻技术研究[J].塑性工程学报,1997,4(3):47-51
    [77]吕炎,徐福昌,薛克敏,等.镁合金上机匣等温精锻工艺的研究[J].哈尔滨工业大学学报,2000,32(4):127-129
    [78] Debin Shan,Fang Liu,Wenchen Xu,et al.Experimental study on process of precision forging of an aluminium-alloy rotor[J].Journal of Materials Processing Technology,2005,170:412–415
    [79] D.B.Shan,W.C.Xu,Y.Lu.Study on precision forging technology for a complex-shaped lightalloy forging[J].Journal of Materials Processing Technology,2004,151:289–293
    [80]刘芳,单德彬,吕炎,等.压气机转子的表面造型及等温精密成形工艺[J].推进技术,2003,24(5):474-477
    [81] K.Shi,D.B.Shan,W.C.Xu,et al.Near net shape forming process of a titanium alloy impeller[J].Journal of Materials Processing Technology,2007,187–188:582–585
    [82]刘芳,林忠钦,单德彬,等.2A70铝合金转子等温闭塞式锻造工艺研究[J].机械工程学报,2005,41(9):161-165
    [83]孟庆通,庞克昌,王晓英.钛合金整体叶盘等温锻造技术[J].上海钢研,2006,(2):16-18
    [84]庞克昌,周建华,孟笑影,等.TC14钛合金大型机匣采用等温锻造生产小余量锻件[J].金属学报,2002,38(S):362-363
    [85]马建宁,杨海,方红文,等.新一代航空发动机先进制造技术[J].航空制造技术,2008,(3):60-63
    [86]陈皓晖,刘华明,孙春华.国内外叶轮数控加工发展现状[J].航天制造技术,2002 ,(2):45-48
    [87] Johanna Senatore,Frederic Monies,Jean-Max Redonnet,et al.Improved positioning for side milling of ruled surfaces: Analysis of the rotation axis’s influence on machining error[J].International Joural of Machine Tools & Manufacture,2007,47:934-945
    [88] Tae-Soon Lim,Chea-Moon Lee,Seok-Won Kim,et al.Evaluation of cutter orientations in 5-axis high speed milling of turbine blade[J].Journal of Materials Processing Technology,2002,130-131:401–406
    [89] Bo Yang,Ming C. Leu,Ji Zhou.Error analysis for four-axis side milling of undevelopable ruled surface[J].Control Engineering Practice,1998,6:481-487
    [90] E.Budak.Improving Productivity and Part Quality in Milling of Titanium Based Impellers by Chatter Suppression and Force Control[C].CIRP Annals - Manufacturing Technology,2000,49(1):31-36
    [91] Shang-Liang Chen,Wen-Tsai Wang.Computer aided manufacturing technologies for centrifugal compressor impellers[J].Journal of Materials Processing Technology,2001,115:284-293
    [92] Koichi Morishige,Yoshimi Takeuchi.5-Axis control rough cutting of an impeller with efficiency and accuracy[C].Proceedings of the 1997 IEEE International conference on Robotics and Automation,1997,2:1241-1246
    [93] F Monies,J-M Redonnet,W Rubio,et al.Improved positioning of a conical mill for machining ruled surface: application to turbine blades[C].Proc Instn Mech Engrs,2000,214(B):625-634
    [94]孙全平,廖文和.叶轮曲面5轴高速铣加工刀轨生成算法[J].东南大学学报(自然科学版),2005,35(3):386-390
    [95]焦建彬,于华.直纹面四坐标侧铣数控加工中的误差分析[J].机械工程学报,2005,41(11):44-47
    [96]任军学,张定华,王增强,等.整体叶盘数控加工技术研究[J].航空学报,2004,25(2):205-208
    [97]刘维伟,张定华,史耀耀.航空发动机薄壁叶片精密数控加工技术[J].机械科学与技术,2004,23(3):329-331
    [98]蔡永林,席光,查建中.任意扭曲直纹面叶轮数控侧铣刀位计算与误差分析[J].西安交通大学学报,2004,38(5):517-520
    [99]于源,赖天琴,员敏,等.基于特征的直纹面5轴侧铣精加工刀位计算方法[J].机械工程学报,2002,38(6):130-133
    [100] Hu Gong, Li-Xin Cao,Jian Liu.Improved positioning of cylindrical cutter for flank milling ruled surfaces[J].Computer-Aided Design,2005,37:1205–1213
    [101]宫虎,曹利新,刘健.数控侧铣加工非可展直纹面的刀位整体优化原理与方法[J].机械工程学报,2005,41(11):134-139
    [102]赵秀芬,庞继有,赵明.陶瓷刀具在发动机中介机匣加工中的应用[J].工具技术,2006,40(5):41-43
    [103]康小明,孙杰,苏财茂,等.飞机整体结构件加工变形的产生和对策[J].中国机械工程,2004,15(13):1140-1143
    [104]王炎.飞机整体结构件数控加工技术应用中的问题与对策[J].航空制造工程,1998,(4):28-30
    [105]孙杰,柯映林.残余应力对航空整体结构件加工变形的影响分析[J].机械工程学报,2005,41(2):117-122
    [106]王增强,孟晓娴,任军学,等.复杂薄壁零件数控加工变形误差控制补偿技术研究[J].机床与液压,2006,(4):61-64
    [107] Wang Zhao-jun,Chen Wu-yi,Zhang Yi-du,et al.Study on the Machining Distortion of Thin-walled Part Caused by Redistribution of Residual Stress[J].Chinese Journal of Aeronautics,2005,18(2):175-179
    [108] Dong Hui-yue,Ke Ying-lin.Study on Machining Deformation of Aircraft Monolithic Component by FEM and Experiment[J].Chinese Journal of Aeronautics,2006,19(3):247-254
    [109]周定伍.中小型航空发动机CAM技术的现状和发展趋势(下)[J].航空科学技术,1997,(5):17-18
    [110]李群,陈五一,单鹏,等.基于UG的复杂曲面叶轮三维造型及五轴数控加工研究[J].航天制造技术,2007(4):40-44
    [111]李海泳.基于NX某机匣零件数控铣加工的实际应用[C].2007中国制造业产品创新数字化国际峰会论文汇编,杭州,2007:112-119
    [112]毛智勇.电子束焊接技术在大飞机中的应用分析[J].航空制造技术,2009,(2):92-94
    [113]康文军,梁养民.电子束焊接在航空发动机制造中的应用[J].航空制造技术,2008,(21):54-56
    [114]张秉刚,吴林,冯吉才.国内外电子束焊接技术研究现状[J].焊接,2004,(2):5-8
    [115]陈光.EJ200发动机高压压气机结构设计改进[J].航空发动机,2004,30(2):1-41
    [116]王刚,赵万生.涡轮制造技术的现状和发展[J].航空工程与维修,2000,(4):41-43
    [117]李刚,王振龙,赵万生,等.带冠整体涡轮盘电火花加工CAD/CAM技术[J].南京航空航天大学学报,2007,39(2):253-257
    [118]赵万生,詹涵菁,王刚,等.带冠涡轮叶盘弯扭通道中复杂电极的进给轨迹[J].国防科技大学学报,2000,22(5):78-82
    [119] Zhan H,Zhao W,Wang G.Manufacturing turbine blisks[J].Aircraft Engineering and Aerospace Technology,2000,72(3):247-251
    [120] Zhan H,Zhao W.EDM turbopump blisks[J].Aircraft Engineering and Aerospace Technology,2002,74(1):19-22
    [121]杨振朝.整体涡轮电火花加工工艺研究[D].[硕士学位论文],西安:西北工业大学,2006
    [122]徐家文,王建业,田继安.21世纪初电解加工的发展和应用[J].电加工与模具,2001,(6):1-5
    [123]徐家文.整体叶轮的特种加工方法[J].航空精密制造技术,1992,(4):19-21
    [124]张永俊,徐家文.数控展成电解加工的流场分析与间隙特性[J].中国机械工程,1996,7(3):56-57
    [125]胡平旺,徐家文,朱永伟.整体叶轮展成电解加工多轴联动分析计算[J].电加工与模具,2001,(5):25-27
    [126]钱密,徐家文.数控展成电解加工直纹曲面的误差分析[J].电加工与模具,2001,(6):28-31
    [127]魏守水,徐家文,赵淳生.四轴数控电解加工整体叶轮阴极轨迹计算及速度处理[J].中国机械工程,2001,11(7):770-772
    [128]胡平旺,徐家文,朱永伟.整体叶轮数控展成电解加工分析[J].中国机械工程,2002 ,13(5):364-366
    [129]钱密,徐家文.数控展成电解加工的阴极结构及流场研究[J].航空精密制造技术,2003,39(2):14-18
    [130]胡平旺,徐家文,云乃彰.带冠整体叶轮叶间通道的数控电解加工方法[J].哈尔滨工业大学学报,2004,(2):154-156
    [131]康敏,徐家文.精密展成电解加工整体叶轮的展成运动轨迹确定[J].中国机械工程,2006,17(4):346-349
    [132]朱永伟,徐家文,赵建社.大扭曲度整体涡轮叶片展成电解加工成形规律及试验研究[J].中国机械工程,2006,17(17):1778-1783
    [133]朱永伟,徐家文,赵建社.大扭曲叶片整体涡轮盘电解加工关键技术[J].哈尔滨工业大学学报,2008,40(5):783-787
    [134]朱永伟,徐家文,胡平旺.数控展成电解加工整体叶轮的研究与应用[J].航空学报,2001,22(4):376-378
    [135]朱永伟,胡平旺,徐家文.整体叶轮数控展成电解加工的数据处理及编程[J].中国机械工程,2002,13(16):1385-1388
    [136]康敏,徐家文.整体叶轮精密展成电解加工技术[J].农业机械学报,2006,37(7):208-210
    [137]康敏,徐家文.精密展成电解加工整体叶轮的数控编程[J].机械科学与技术,2002,21(5):748-750
    [138]康敏,徐家文,严德荣.整体叶轮叶片型面的展成电解精加工阴极设计[J].新技术新工艺,2004,(9):30-31
    [139] C.S.Chang,L.W.Hourng,G.T.Chung.Tool design in electrochemical machining considering the effect of thermal-fluid properties[J].Journal of Applied Electrochemistry,1999,29:321-330
    [140] C.S.Chang,W.Hourng.Two-dimensional two-phase numerical model for tool design in electrochemical machining[J].Journal of Applied Electrochemistry,2001,31:145-154
    [141] Marius Purcar,Leslie Bortels,Bart Van den Bossche,et al.3D electrochemical machining computer simulations[J].Journal of Materials Processing Technology,2004,149:472-478
    [142] A.D.Davydov , V.M.Volgin , V.V.Lyubimov . Electrochemical Machining of Metals:Fundamentals of Electrochemical Shaping[J].Russian Journal of Electrochemistry,2004,40(12):1230-1265
    [143]朱荻.国外电解加工的研究进展[J].电加工与模具,2000,(1):11-16
    [144]王福军编著.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004
    [145]韩占忠,王敬,兰小平编.FLUENT:流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004
    [146]陈科,曹义华,安克文,等.应用混合网格分析复杂积冰翼型气动性能[J].航空学报,2007,28(S):87-91
    [147]王焕德.流体力学和流体机械[M].北京:中国农业机械出版社,1981
    [148]张文绍编著.电解加工的成型规律及阴极设计[M].北京:煤炭工业出版社,1987
    [149]施法中编著.计算机辅助几何设计与非均匀有理B样条[M].北京:高等教育出版社,2001
    [150]王大镇,韩荣第.叶轮数控加工现状及新的加工方法简介[J].机械研究与应用,2003,16(3):36-38
    [151]翟瑞虎,焦金焱,田华,等.提高离心通风机叶轮性能浅述[J].风机技术,2008,(6):57-60
    [152] T.Bouquet,S.Kouidri,F.Bakir,et al.Study of the 3D flows in the forward-curved blades centrifugal fans[J].Progress in Computational Fluid Dynamics,2003,3(1):13-21
    [153]赵建社,徐家文,葛媛媛,等.异形型腔电解加工阴极的数字化设计[J].航空学报,2006,27(5):939-943
    [154]赵建社,徐家文,王福元,等.异形型腔数控电解加工阴极及运动轨迹设计[J].中国机械工程,2006,17(1):17-20
    [155]赵建社,徐家文,云乃彰,等.异形型腔组合电加工数字化制造技术研究[J].航空学报,2006,27(1):157-160
    [156]丁振亭.离心式压缩机叶轮的应用及其改进与发展[J].化工设备设计,1996,33(2):37-45
    [157]刘中原,樊建成.离心式压缩机叶轮裂纹分析及修复措施[J].风机技术,2007,(5):34-39
    [158]汤黎明,孙世文.高速比离心泵叶轮扭曲叶片加工研究[J].水泵技术,2001,(4):35-38
    [159]吴伟.DMU-100T五轴联动加工中心加工闭式叶轮[J].现代制造工程,2006,(9):140-142
    [160]司徒渝,周奎,吴伟,等.闭式叶轮五轴联动数控加工关键技术研究[J].机电工程技术,2008,37(8):101-103
    [161]张春红.沈阳鼓风机集团:创新战略联盟装备“中国心”[N].辽宁日报,2008,1,11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700