点云模型的数控加工刀轨生成关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆向工程中,对点云模型生成数控加工刀轨,通常要先构造曲面或者网格模型,再对曲面或网格生成加工刀轨。但构造曲面或网格模型是一个复杂、费时的过程,直接对点云生成数控加工刀轨,可以省去重构的过程,大幅缩短数控加工刀轨的计算时间,因此该方法已经成为国际上的研究热点之一。
     论文回顾了国内外点云刀轨生成技术的研究成果,并对点云模型直接生成加工刀轨的关键技术进行了深入研究,提出了点云模型的层切法粗加工刀轨生成算法、等残留高度法精加工刀轨生成算法、截面线等误差法精加工刀轨生成算法和点云模型局部修改后的刀轨重新生成算法。论文的主要研究成果与创新点概括如下:
     提出了一种点云模型的层切法粗加工刀轨生成算法。算法采用分层切削法规划刀轨,为了高效地求出点云刀位面,将点云划分到立方体栅格中,利用反置刀具法计算出由栅格组成的刀位面,以此规划平底铣刀在切削层上的等间距行切刀轨。给出了一种根据刀轨之间的投影和距离连接刀轨的方法,该方法无需获取加工区域边界和刀轨之间关系,只需计算刀轨端点切削区域是否相连,在相连处直接连接刀轨端点,形成连续的刀轨,使平底铣刀在抬刀前走过所有可走的刀轨。为了减少平底铣刀切削后的台阶状余料,规划了球头刀行切刀轨并给出了刀轨优化的方法。
     提出了一种点云模型的等残留高度法精加工刀轨生成算法。算法对球头刀生成三坐标加工刀轨,首先对当前行的刀位点建立局部坐标系,计算刀具投影范围内的点云与刀位点切矢平面的交点点集,以点集中每个点为圆心、残留高度值为半径创建圆,等价地表示残留高度面,与切矢平面上的刀具圆求交,具有坐标极值的交点即为要求的残留高度点;再对残留高度点建立局部坐标系,计算出位于残留高度点的刀具圆上无干涉的刀位点,即相邻行刀位点。依此类推,连接刀位点形成刀轨。该算法不需要将点云转化为曲面,也不需要计算点云的等距面,解决了一直以来因离散点云难以生成等距面而无法对其直接生成等残留高度刀轨的问题。
     提出了一种点云模型的截面线等误差法精加工刀轨生成算法。算法对截面线法获得的刀具路径上密集的刀位点逐点建立以弓高误差为半径的圆,以首个刀位点作为首个等误差刀位点,计算到后续刀位点弓高误差圆切线之间区域的交集,直至交集为空,获取最小非空交集区域,在此交集区域内规划的刀轨与遍历过的刀位点弓高误差圆相交或相切,满足了误差要求。以此区域边界与遍历过的刀位点连成的折线求交,距离该等误差刀位点最远的交点即为下一个等误差刀位点。依此类推,可求出所有等误差刀位点。算法解决了现有算法无法对刀位点点集计算等误差刀位点的问题。为了提高刀轨光顺性,给出了圆弧插值算法,可对等误差刀位点生成了G1连续的圆弧刀轨。
     提出了一种点云模型局部修改后的刀轨重新生成算法。算法将点云划分到立方体栅格中,对比修改前后的点云,运用栅格表示修改区域,只识别出修改区域内外受修改影响的刀轨并重新生成,继续沿用未修改区域的刀轨,从而最大限度地重用已有成熟刀轨。算法先识别出受修改影响的粗加工刀轨,运用提出的粗加工刀轨生成算法重新计算,再识别出精加工刀轨,逐行重新计算刀位点的坐标,通过新增刀位点使其满足步长方向上的误差,然后计算新生成的刀位点与邻行刀轨的残留高度,通过新增若干行刀轨使其满足残留高度要求。
     论文研究提出的方法和算法均已在OpenCASCADE几何平台和Visual C++6.0平台下实现,并通过例子进行了验证。
In Reverse Engineering, the method of point clouds NC tool path generation usually fits pointclouds to surface or triangular mesh surface, and generates tool path based surface or triangular meshsurface. However, surface fitting is a complex, time-consuming procedure. Directly generating toolpath based on point clouds avoids surface fitting and greatly shortens the NC tool path computingtime. So it has been one of the popular focuses of international research.
     After reviewing the domestic and foreign research achievement on point clouds tool pathgeneration, this paper conducts in-depth research into the technologies of point clouds tool pathgeneration, and proposes new algorithms about roughing tool path generation based layer cuttingmethod, constant scallop-height finishing tool path generation, equal-error finishing tool pathgeneration with curves of cross sections and tool path regeneration for point clouds designmodification. The main research results and innovation are summarized as follows.
     A new algorithm of directly generating roughing tool path based on stratifying method for pointclouds is proposed. Layered milling is employed to plan roughing tool path. Firstly, the point cloud isdivided into3D cell grids. Inverse tool offset method (ITO) is used to compute CL(Cutter-Location)point enveloping surface formed by cell grids, and flat-end cutter direction-parallel tool path in eachcutting layer is obtained. Based on the projection and the distance between tool paths, a new tool pathlinking algorithm is proposed to reduce the number of tool retraction motions. In the algorithm, themachining region boundary and the relationship between tool paths are not needed. When the cut areaof a tool path’s CL point connects with current tool path, their CL points will be linked directly. Toreduce the remaining step material of flat-end cutter machining, roughing tool path generation usingball-end cutter is proposed and an algorithm of optimize tool path is given.
     A new algorithm of directly generating constant scallop-height finishing tool path for pointclouds is proposed. The algorithm generates three-coordinate NC tool path for ball-end cutter. A localcoordinate system centered at each CL point of the current path is built to calculate the correspondingscallop point. Intersection points of CL point tangent plane and data points located in tool projectionarea are obtained. Circles centered at intersection points are created with tool radius to substitutescallop-height surface. The circles intersect the tool circle centered at CL point, and the intersectionpoint with the maximum coordinate is the wanted scallop point. A similar local coordinate system is built at each scallop point to calculate the wanted CL point of the next tool path. The interference-freeCL point located on the tool circle centered at scallop point is calculated, which is the wanted CLpoint. Point clouds (especially discrete point clouds) are hard to obtain offset point clouds so that it ishard to generate constant scallop-height tool path for point clouds. However, in this algorithm, offsetpoint clouds are not needed and the problem is solved.
     A new algorithm of generating equal-error finishing tool path generation with curves of crosssections is proposed. For dense CL points on tool path, circles centered at CL points are created withmaximum allowed step error value. The first CL point is obtained as the first equal-error CL point.Tangent lines from the equal-error CL point to the circles are obtained to compute the intersection ofthe areas between tangent lines. When the intersection area is empty, the minimum non-emptyintersection area can be calculated. Tool path computed in the non-empty intersection area is tangentto or intersected with the traversed CL points’ step error circles, which meets step error requirement.Of all intersection points of the intersection area's boundaries and lines of CL points, the point farthestaway from the equal-error CL point is the wanted next equal-error CL point. Similarly, all equal-errorCL points can be calculated. To improve tool path fairness, an arc spline tool path interpolationalgorithm is proposed to generate G1arc tool path.
     A new algorithm of tool path regeneration for point cloud design modification is proposed. Thepoint cloud is divided into3D cell grids. The modified region is expressed by cell grids. Tool path outof the modified region is retained. Only CL points in the modified region are identified andrecalculated, which reuses existing mature NC tool paths as many as possible. Firstly, roughing toolpath is identified and recalculated by proposed roughing tool path generation algorithm. Finishing toolpath is identified and line-by-line recalculated, and new CL points are added to meet tolerancerequirement. The scallop height values for the modified region are calculated to judge if it is greaterthan the allowable value. New lines of CL points are added to maintain the required surface finish.
     The methods and algorithms proposed in this paper have been implemented in theOpenCASCADE and Visual C++6.0platforms. And practical examples are given to show thevalidity and effectiveness.
引文
[1]金涛,童水光.逆向工程技术[M].北京:机械工业出版社,2003.
    [2]刘伟军,孙玉文等.逆向工程—原理方法及应用[M].北京:机械工业出版社,2008.
    [3] Ma W, Kruth JP. Parameterization of randomly measured points for least squares fitting ofB-spline curves and surfaces [J]. Computer Aided Design,1995,27(9):663–675.
    [4] Ma He P. B-spline surface local updating with unorganized points [J]. Computer Aided Design,1998,30(11):853–862.
    [5] Limaiem A, ElMaraghy H A. Curve and surface modeling with uncertainties using dual Kriging[J]. ASME Journal of Mechanical Design,1999,121(2):249–255.
    [6]张丽艳.逆向工程中模型重建关键技术研究[博士学位论文].南京,南京航空航天大学,2001.
    [7]李卫国.逆向工程中的曲面重构技术研究及基于Web的应用系统开发[博士学位论文].南京,南京航空航天大学,2001.
    [8] Varady T, Martin RR, Cox J. Reverse engineering of geometric models—an introduetion.Computer Aided Design,1997,29(4):255-268.
    [9]许智欣,孙长库.3D逆向工程技术[M].北京:中国计量出版社,2002.
    [10] Ma WY, Kruth JP. Parameterization of randomly measured points for least squares fitting ofB-spline curves and surfaee [J]. Computer Aided Design,1995,27(9):663-675.
    [11] Lim CG. Universal parametrization in constructing smoothly-connected B-spline surfaces [J].Computer Aided Geometric Design,2002,(19):465~478.
    [12]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000.
    [13] Loney GC, Ozsoy TM. NC machining of free form surfaces [J]. Computer Aided Design,1997,19(2):85-90.
    [14] He W, Lei M, Bin H. Iso-parametric CNC tool path optimization based on adaptivegridgeneration [J]. The International Journal of Advanced Manufacturing Technology,2009,41(5):538-548.
    [15] Sun Y, Guo D, Jia Z, et al. Iso-parametric tool path generation from triangular meshes forfree-form surface machining [J]. The International Journal of Advanced ManufacturingTechnology,2006,28(7):721-726.
    [16]刘壮,廖文和,周儒荣.裁剪曲面的参数线加工算法研究[J].南京航空航天大学学报,1996,28(3):390-395.
    [17] Elber G, Cohen E. Toolpath generation for freeform surface models [J]. Computer Aided Design,1994,26(6):490-496.
    [18]张大伟,张永.自由曲面数控加工刀具路径的自适应算法[J].天津大学学报,1997,30(5):607~612.
    [19]谢叻,周儒荣,阮雪榆.自由曲面参数线加工算法[J].模具技术,2001,(1):62-64.
    [20]吴福忠,柯映林.组合曲面参数线五坐标加工刀具轨迹的计算[J].计算机辅助设计与图形学学报,2003,15(10):1247-1252.
    [21] Kral IH. Numerical Control Programming in APT [M]. New Jersey: Prentice-Hall,1986.
    [22]杨建中.复杂多曲面数控加工刀具轨迹生成方法研究[博士学位论文].武汉:华中科技大学,2007.
    [23]鞠华.逆向工程中自由曲面的数据处理与误差补偿研究[博士学位论文].杭州:浙江大学2003.
    [24]刘胜兰.逆向工程中自由曲面与规则曲面重建关键技术研究[博士学位论文].南京:南京航空航天大学2005.
    [25]刘丽.逆向工程中曲面重建的若干问题研究[博士学位论文].济南:山东大学2007.
    [26] Lin CY, Hwang YY, Lai JY. Interference-free cutting-path generation based on scanning data [J].The International Journal of Advanced Manufacturing Technology,1997,13(8):535-547.
    [27] Lai JY, Chen HS, Lai WB. NC Cutting-Path Generation from Laser-Scan Measurement Data [J].Journal of Chinese Soeiety of Meehanieal Engineers,1995,16(3):245-255.
    [28] Cripps RJ. Algorithms to support point-based cadcam [J]. International Journal of Machine Toolsand Manufacture,2003,43(4):425-432.
    [29] OuYang D, VanNest BA, Feng HY. Determining gouge-free ball-end mills for3D surfacemachining from point cloud data [J]. Robotics and Computer-Integrated Manufacturing,2005,21(4-5):338-345.
    [30] Chui KL, Chiu WK, Yu KM. Direct5-axis tool-path generation from point cloud input using3Dbiarc fitting [J]. Robotics and Computer-Integrated Manufacturing,2008,24(2):270-286.
    [31] Tsukasa K, Takeshi K, Katsumas S. Machining system based on inverse offset method [J].Journal of Precision Engineering,1988,54(5):971-976.
    [32] Lin AC, Liu HT. Automatic generation of NC cutter path from massive data points [J]. ComputerAided Design,1998,30(1):77-90.
    [33] Park SC, Chung YC. Tool-path generation from measured data [J]. Computer Aided Design,2003,35(5):467-475.
    [34] Park SC. Tool path generation for z-constant contour machining [J]. Computer Aided Design,2003,35(1):27-36.
    [35] Yau HT, Hsu CY. Generating NC tool paths from random scanned data using point-basedmodels [J]. The International Journal of Advanced Manufacturing Technology,2009,41(9-10):897-907.
    [36]张立波,周济.基于高密度激光扫描点的刀具路径生成[J].华中理工大学学报,1998,26:15-17.
    [37]李学艺,姜虹,王小椿等.雕塑曲面数控粗加工刀位规划[J].西安交通大学学报,2003,37(11):1175-1178.
    [38]李学艺,王小椿,陈松等.离散数据复杂曲面的粗加工[J].计算机辅助设计与图形学学报,2003,15(3):338-342.
    [39]阳道善,陈吉红,朱志红等.3维仿型数据云处理及数控轨迹生成的研究[J].中国机械工程,2002,13(16):1375-1378.
    [40]谢叻,魏安顺,周印.基于激光测量点云数据的五坐标加工刀轨生成[J].上海交通大学学报,2004,38(8):1378-1379.
    [41]刘司伟,张丽艳.基于散乱测量数据点的三轴数控粗加工刀位轨迹生成算法[J].机械设计与研究,2004,(3):6-10.
    [42]吴世雄,王文,陈子辰.测点数据生成刀具路径研究[J].计算机辅助设计与图形学学报,2005,17(8):1704-1709.
    [43]曹利新,祁少华.基于散乱数据点的数控加工刀位直接生成[J].中国机械工程,2006,17(11):1101-1104.
    [44] Feng HY, Teng Z. Iso-planar piecewise linear NC tool path generation from discrete measureddata points [J]. Computer Aided Design,2005,37(1):55-64.
    [45] Teng Z, Feng HY, Azeem. Generating efficient tool paths from point cloud data via machiningarea segmentation [J]. The International Journal of Advanced Manufacturing Technology,2005,30(3-4):254-60.
    [46]盛沛颐,陈钢,张新访.基于单调链的平面型腔行切加工轨迹生成算法[J].华中科技大学学报,2002,30(4):10-12.
    [47]贺显良,谢明红.基于单调链的行切刀具路径生成算法[J].计算机辅助工程,2008,17(1):52-55.
    [48] Choi BK, Kim BH. Die-cavity pocketing via cutting simulation [J]. Computer Aided Design,1997,29(12):837-846.
    [49] Choi BK, Kim DH, Jerard RB. C-space approach to tool-path generation for die and mouldmachining [J]. Computer Aided Design,1997,29(9):657-669.
    [50]王玉国,周来水,安鲁陵等.二维轮廓二维轮廓嵌套加工刀轨生成算法[J].中国机械工程,2008,19(3):313-316.
    [51] Choi BK., Lee CS, Hwang JS, et al. Compound surface modelling and machining [J]. ComputerAided Design,1988,20(3):127-136.
    [52] You CF, Chu CH. An automatic path generation method of NC rough cut machining from solidmodels [J]. Computers in Industry,1995,26(2):161-173.
    [53]王玉国.数控雕刻加工关键技术研究[博士学位论文].南京:南京航空航天大学,2008.
    [54] Suresh K, Yang DCH. Constant scallop-height machining of free-form surfaces [J]. ASMEJournal of Engineering for Industry,1994,116(2):253-259.
    [55] Lin RS, Koren Y. Efficient tool-path planning for machining free-form surfaces [J]. ASMEJournal of Engineering for Industry,1996,118(1):20-28.
    [56] Sarma R, Dutta D. The geometry and generation of NC tool paths [J]. ASME Journal ofMechanical Design,1997,119(2):253-258.
    [57] Tournier C, Duc E. A surface based approach for constant scallop height tool-path generation [J].The International Journal of Advanced Manufacturing Technology,2002,19(5):318-324.
    [58] Lee KE. Contour offset approach to spiral tool path generation with constant scallop height [J].Computer Aided Design,2003,35(6):511-518.
    [59] Feng HY, Li H. Constant scallop-height tool path generation for three-axis sculptured surfacemachining [J]. Computer Aided Design,2002,34(9):647-654.
    [60] Yoon JH. Fast tool path generation by the iso-scallop height method for ball-end milling ofsculptured surfaces [J]. The International Journal of Production Research,2005,43(23):4989-4998.
    [61] Chen ZC, Song D. A practical approach to generating accurate iso-cusped tool paths forthree-axis CNC milling of sculptured surface parts [J]. Journal of Manufacturing Processes,2006,8(1):29-38.
    [62] Lee SG, Kim HC, Yang MY. Mesh-based tool path generation for constant scallop-heightmachining [J]. The International Journal of Advanced Manufacturing Technology,2008,37(1-2):15-22.
    [63] Zhu H, Liu ZJ, Fu JH. Spiral tool-path generation with constant scallop height for sheet metalCNC incremental forming [J]. The International Journal of Advanced Manufacturing Technology,2011,54(9-12):911-919.
    [64] Li SX, Jerard RB.5-axis machining of sculptured surfaces with a flat-end cutter [J]. ComputerAided Design,1994,26(3):165–178.
    [65] Lee YS. Admissible tool orientation control of gouging avoidance for5-axis complex surfacemachining [J]. Computer Aided Design,1997,29(7):507–521.
    [66] Lo CC. Efficient cutter-path planning for five-axis surface machining with a flat-end cutter [J].Computer Aided Design,1999,31(8):557–566.
    [67] Lee Y. Non-isoparametric tool path planning by machining strip evaluation for5-axis sculpturedsurface machining [J]. Computer Aided Design,1998,30(7):559-570.17
    [68] Li H, Feng HY. Efficient five-axis machining of free-form surfaces with constant scallop heighttool paths [J]. The International Journal of Production Research;2004,42(12):2403-2417.
    [69] Lee SG, Yang SH. CNC tool-path planning for high-speed high-resolution machining using anew tool-path calculation algorithm [J]. The International Journal of Advanced ManufacturingTechnology,2002,20(5):326-333.
    [70] Elber G. Freeform surface region optimization for3-axis and5-axis milling. Computer AidedDesign,1995,27(6):465-470.
    [71] Tournie C, Lartigue C.5-axis iso-scallop tool paths along parallel planes [J]. Computer AidedDesign and Applications,2008,5(1-4):278-286.
    [72] Christophe T, Emmanuel D. Iso-scallop tool path generation in5-axis milling [J]. TheInternational Journal of Advanced Manufacturing Technology,2005,25(9-10):867-875.
    [73] Choi BK, Park JW, Jun CS. Cutter location data optimisation in5-axis surface machining [J].Computer Aided Design,1993,25(6):377-386.
    [74] Anotaipaiboon W, Makhanov SS. Tool path generation for five-axis NC machining usingadaptive space-filling curves.[J]. The International Journal of Production Research,2005,43(8):1643-1665.
    [75] Can A,ünüvar A. A novel iso-scallop tool-path generation for efficient five-axis machining offree-form surfaces [J]. The International Journal of Advanced Manufacturing Technology,2010,51(9-12):1083-1098.
    [76]杨勇生,王珉.复杂曲面数控加工中刀具轨迹生成的非均匀偏置法[J].上海海运学院学报,1999,20(01):11-15.
    [77]石宝光,雷毅,闫光荣.曲面映射法生成等残留环切加工刀具轨迹[J].工程图学学报,2005,(3):12-17.
    [78]陈晓兵,廖文和,吴海兵等.三角网格表面等残留高度刀轨生成算法[J].计算机辅助设计与图形学学报,2009,21(12):1800-1804.
    [79]原恩桃,廖文和,刘浩.细分曲面等残留高度刀轨规划[J].机械科学与技术,2009,28(9):1143-1146.
    [80]徐金亭,刘伟军,卞宏友等.基于网格曲面模型的等残留刀位轨迹生成方法[J].机械工程学报,2010,46(11):193-198.
    [81]吴福忠.基于包络面构建的等残留高度刀具路径规划[J].农业机械学报,2009,40(1):217-221.
    [82]郝小忠, Ahmed A A Duroobi,陈文亮等.环形刀等残留高度多轴加工步距计算[J].南京航空航天大学学报,2012,44(4):538-542.
    [83]叶佩青,陈涛,汪劲松.复杂曲面五坐标数控加工刀具轨迹的规划算法[J].机械科学与技术,2004,23(08):883-886.
    [84]蔡永林,席光,樊宏周等.任意曲面叶轮五坐标数控加工刀具轨迹生成[J].西安交通大学学报,2003,37(01):77-80.
    [85]吴宝海,王尚锦.任意曲面叶片四坐标数控加工刀位轨迹的生成方法[J].西安交通大学学报,2004,38(01):64-67.
    [86]杨长祺,秦大同,石万凯.自由曲面五轴等残余高度高精度加工的路径规划[J].计算机辅助设计与图形学学报,2003,15(5):621-625.
    [87]吴福忠.点云曲面等残留高度刀具路径规划[J].计算机集成制造系统,2012,18(5):965-972.
    [88]吴福忠.测量点数据等残留高度刀具路径规划[J].计算机辅助设计与图形学学报,2007,19(12):1618-1623.
    [89] Wu YF, Wong YS, Loh HT, et al. Modeling cloud data using an adaptive slicing approach [J].Computer Aided Design,2004,36(6):231-240.
    [90]柯映林,王青.反求工程中的点云切片算法研究[J].计算机辅助设计与图形学学报,2005,17(8):1798-1802.
    [91] Lee IK. Curve reconstruction from unorganized points [J]. Computer Aided Geometrical Design,2000,17(2):161-177.
    [92] Choi B, Jun C. Ball-end cutter interference avoidance in NC machining of sculptured surface [J].Computer Aided Design,1989,6(21):371-378.
    [93] Hwang J. Interference-free tool-path generation in the NC machining of parametric compoundsurfaces [J]. Computer Aided Design,1992,24(12):667-676.
    [94] Hwang JS, Chang TC. Three-axis machining of compound surfaces using flat and filletedendmills [J].Computer Aided Design,1998,30(8):641-647.
    [95] Bobrow JE. NC machine tool path generation from CSG part representations [J]. ComputerAided Design,1985,17(2):69-76.
    [96] Ding S, Mannan MA, Poo AN, et al. Adaptive iso-planar tool path generation for machining offree-form surfaces [J]. Computer Aided Design,2003,35(2):141-153.
    [97] Huang Y, Oliver JH. Non-constant parameter NC tool path generation on sculptured surfaces [J].The International Journal of Advanced Manufacturing Technology,1994,9(5):281-290.
    [98] Lai JY, W ang D J. A strategy for finish cutting path generation of compound surfaces [J].Computers in Industry,1994,25(2):189-209.
    [99] Hwang JS, Chang TC. A strategy for finish cutting path generation of compound surfaces [J].Computer Aided Design,1998,30(8):641-647.
    [100] Tam HY, Xu HY, Zhou ZD. Iso-planar interpolation for the machining of implicit surfaces [J].Computer Aided Design,2002,34(2):125-136.
    [101] Chen T, Ye P. A tool path generation strategy for sculptured surfaces machining [J]. Journal ofMaterials Processing Technology,2002,127(3):369-373.
    [102]周艳红.自由曲面三坐标加工走刀步长的确定[J].华中理工大学学报,1998,26(8):7-9.
    [103]李旗号,张丽.自由曲面数控加工中非线性误差分析与走刀步长的确定[J].合肥工业大学学报,2000,23(3):385-388.
    [104]叶伯生,杨叔子. CNC系统中三次B-样条曲线的高速插补方法研究[J].中国机械工程,1998,9(3):42-43.
    [105] Yau H, Kuo M. NURBS machining and feed rate adjustment for high-speed cutting of complexsculptured surfaces [J]. The International Journal of Production Research,2001,39(1):21-41.
    [106] Yong JH, Hu SM, Sun JG. Bisection algorithms for approximating quadratic Bezier curves byG1arc splines [J]. Computer Aided Design,2000,32(4):253-260.
    [107]赵世田,赵东标,付莹莹.自由曲面加工刀具路径生成高精度变步长算法研究[J].机械科学与技术,2010,29(1):32-35.
    [108] PARK H. Error-bounded biarc approximation of planar curves [J]. Computer Aided Design,2004,36(12):1241-1251.
    [109] Held M, Eibl J. Biarc approximation of polygons within asymmetric tolerance bands [J].Computer Aided Design,2005,37(4):357-371.
    [110] Lee AM, Lee EK, Yang MY. Precise bi-arc curve fitting algorithm for machining an asphericsurface [J]. The International Journal of Advanced Manufacturing Technology,2007,31(11-12):1191-1197.
    [111] Drysdale RLS, Rote G, Sturm A. Approximation of an open polygonal curve with a minimumnumber of circular arcs and biarcs [J]. Computational Geometry,2008,41(1-2):31-47.
    [112] Yang XJ, Chen ZC. A practicable approach to G1biarc approximations for making accurate,smooth and non-gouged profile features in CNC contouring [J]. Computer Aided Design,2005,38(11):1205-1213.
    [113]乐英,韩庆瑶,王璋奇.数控加工中非圆曲线的最小二乘圆弧逼近[J].华北电力大学学报,2006,33(6):102-104.
    [114]陈晓兵,廖文和.三角网格表面数控加工圆弧样条刀轨研究[J].中国机械工程2009,20(14):1642-1646.
    [115]陈晓兵,廖文和.一种用于多面体加工的圆弧刀轨生成算法[J].计算机集成制造系统2010,16(2):380-384.
    [116] Zhang LP, Fuh JYH, Nee AYC. Tool path regeneration for mold design modification [J].Computer Aided Design,2003,35(9):813–823.
    [117] Zhang LP, Nee AYC, Fuh JYH. An e cient cutter contact curve tool path regenerationalgorithm for sculptured surface machining [J]. Proceedings of the Institution of MechanicalEngineers, Part B: Journal of Engineering Manufacture,2004,218(4):389-402.
    [118] Zhang LP. Computer aided mould design modification and tool path regeneration [D].Singapore: National University of Singapore,2004.
    [119] Peng YH, Yin ZW. Direct tool path regeneration for physical object modification fromdigitized points in reverse engineering [J]. The International Journal of Advanced ManufacturingTechnology,2007,33(11-12):1204–1211.
    [120]张得礼,周来水.数控加工运动的平滑处理[J].航空学报,2006,27(1):125-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700