髋臼后柱部位骨折基础与临床相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来髋臼骨折的发生率呈逐渐增多的趋势,移位的髋臼骨折多由高能量损伤所致,常伴有其它组织器官损伤。髋臼骨折的治疗对于多数骨科医生均具有挑战性。对于存在髋关节不稳定和头臼匹配不良的髋臼骨折治疗而言,内固定手术为治疗的金标准。通过手术治疗达到骨折的解剖复位和坚强内固定,重建关节的稳定性,从而有利于肢体功能的恢复,减少伤残率的发生。内固定手术操作过程中螺钉进入关节的情况虽较为罕见,但该并发症可严重损害髋关节功能。
     髋臼后柱部位的骨折,尤其是累及髋臼危险区的骨折最为常见,该部位的内固定操作应引起创伤骨科医生的高度关注,术中采用正确的置钉角度操作,可避免螺钉进入关节情况的发生。许多学者对髋臼解剖结构进行了研究,但多集中于髋臼的解剖特点或与人工关节置换操作相关的解剖研究,涉及髋臼骨折术中螺钉内固定安全操作的相关解剖研究较少。髋臼危险区的概念首先由Tile提出,该区域位于髋臼后壁和后柱的中部,坐骨棘之上的范围,该区域骨质非常薄弱,在此区域垂直于后柱表面行螺钉固定时,螺钉有进入关节的危险,Tile认为应尽量避免在危险区进行螺钉固定。Ebraheim等学者将髋臼危险区的概念加以补充完善,将其定义为髋臼在后柱部位表面的投影区域。并通过对平行切割的髋臼标本进行测量,提出髋臼危险区螺钉固定安全角度的概念及相关螺钉固定角度的数据。
     目前尚未见关于采用螺旋CT的多平面重建技术研究髋臼危险区相关解剖的报道,本研究拟通过相关实验及临床研究探讨以下内容:1.采用多层螺旋CT ( multislice spiral CT,MSCT )的三维表面遮盖显示(surface shadow display,SSD )和多平面重建( multiplanar reconstruction,MPR )技术对成人髋臼危险区各点位的螺钉固定安全角度和厚度进行研究;2.建立髋臼后柱骨折模型,比较髋臼后柱骨折接骨板内固定和拉力螺钉内固定的稳定性;3.设计W型髋臼安全角度接骨板,将W型髋臼安全角度接骨板与重建接骨板内固定稳定性进行比较研究;4.通过前瞻性临床随机对照研究,评估采用W型髋臼安全角度接骨板内固定治疗髋臼后壁骨折的疗效;5.评估早期康复治疗对髋臼后壁粉碎骨折患者术后肢体功能的影响。
     第一部分成人髋臼危险区螺钉固定安全角度和厚度解剖学研究
     目的:研究成人髋臼危险区的螺钉固定安全角度和厚度,为髋臼骨折的解剖重建提供相关依据。
     方法:采用多层螺旋CT三维重建和多平面重建测量32个男、女成年国人新鲜半骨盆标本和30个男、女健康成年志愿者髋臼危险区的螺钉固定安全角度和厚度。
     结果:男性标本距髋臼外缘0.5,1.0,1.5,2.0,2.5,3.0 cm点位螺钉固定安全角度为(49.23±11.54)°,(42.48±8.97)°,(29.53±7.86)°,(23.68±6.20)°,(18.42±5.41)°,(15.91±4.37)°;女性标本距髋臼外缘0.5,1.0,1.5,2.0,2.5 cm点位螺钉固定安全角度为(45.02±8.82)°,(35.98±7.60)°,(23.77±6.29)°,(19.96±4.36)°,(14.68±3.48)°。男性标本距髋臼外缘0.5,1.0,1.5,2.0,2.5,3.0 cm点位髋臼危险区的厚度为(0.64±0.13)cm,( 0.97±0.25)cm,( 1.46±0.40)cm,(2.14±0.46)cm,(2.61±0.47)cm,(2.96±0.42 )cm;女性距髋臼外缘0.5,1.0,1.5,2.0,2.5 cm点位髋臼危险区的厚度为(0.51±0.08)cm,(0.93±0.22)cm,(1.45±0.31)cm,(2.02±0.39)cm,( 2.50±0.50 ) cm。以上数据在相同性别的标本与志愿者之间差异无统计学意义( P > 0.05 ),在异性之间差异有统计学意义( P < 0.05 )。
     结论:本研究数据对于髋臼骨折术中螺钉固定操作有指导意义。在髋臼危险区行内固定操作时,男性距髋臼外缘0.5,1.0,1.5,2.0,2.5,3.0 cm点位进钉角度不小于75°,65°,50°,45°,35°,30°;女性距髋臼外缘0.5,1.0,1.5,2.0,2.5 cm点位进钉角度不小于65°,55°,45°,40°,25°,可防止螺钉进入关节。
     在髋臼危险区行内固定操作时,男性距髋臼外缘0.5,1.0,1.5,2.0,2.5,3.0 cm点位垂直进钉,深度应不大于进钉点到髋臼外缘距离的1/2,1/3,1/3,1/2,1/2,1/2;女性距髋臼外缘0.5,1.0,1.5,2.0,2.5 cm点位垂直进钉,深度均应不大于进钉点到髋臼外缘距离的1/2。
     第二部分髋臼后柱骨折模型建立及髋臼后柱骨折接骨板内固定和拉力螺钉内固定稳定性比较研究
     目的:建立髋臼后柱骨折模型,比较髋臼后柱骨折接骨板内固定和拉力螺钉内固定的稳定性。
     方法:取成年防腐半骨盆标本20个,建立髋臼后柱骨折模型。根据随机数字法将骨折模型标本分为接骨板内固定组和拉力螺钉内固定组,进行轴向压缩实验,比较两种固定方式骨折断端的水平位移和剪切刚度。
     结果:接骨板内固定组和拉力螺钉内固定组骨折断端的水平位移分别为( 1.64±0.17 ) mm和( 1.70±0.20 ) mm;剪切刚度分别为( 392.40±41.22 ) N/mm和( 386.33±50.07 ) N/mm。两组间水平位移以及剪切刚度相比,差异均无统计学意义( P > 0.05 )。
     结论:髋臼后柱骨折模型适用于髋臼后柱骨折内固定稳定性的评估研究,髋臼后柱骨折采用拉力螺钉内固定与接骨板内固定的稳定性无统计学差异。
     第三部分W型髋臼安全角度接骨板固定髋臼后柱骨折的稳定性研究
     目的:比较采用W型髋臼安全角度接骨板与重建接骨板固定髋臼后柱骨折的稳定性研究。
     方法:取半骨盆标本20个,建立髋臼后柱骨折模型。根据随机数字法依内固定方式的不同将骨折模型分为A,B,C,D 4组:A组采用W型髋臼安全角度接骨板固定;B,C,D组采用重建接骨板固定,其中B组为骨折线两侧各固定4枚螺钉;C组同样为骨折线两侧各固定4枚螺钉,但接骨板两侧紧邻骨折线的螺孔首次置钉时固定螺钉进入关节,经矫正后螺钉重新置入;D组为接骨板两端各固定2枚螺钉,行轴向压缩实验,观察骨折断端水平位移和剪切刚度。
     结果:A,B,C,D组断端水平位移为(1.58±0.17)mm,(1.62±0.14)mm,(2.66±0.26)mm,(4.68±0.35)mm;剪切刚度为(414.71±34.29)N/mm,(394.75±32.52)N/mm,(219.93±22.04)N/mm,(129.42±9.60)N/mm。水平位移及剪切刚度比较,A,B两组差异无统计学意义;A,B两组与C或D组差异均有统计学意义;C,D两组差异有统计学意义。
     结论:W型髋臼安全角度接骨板可强化髋臼后柱骨折内固定的稳定性,为该技术的临床应用奠定了基础。
     第四部分W型髋臼安全角度接骨板治疗髋臼后壁骨折的临床研究
     目的:探讨采用W型髋臼安全角度接骨板治疗髋臼后壁骨折的疗效。
     方法:2009年7月~2010年2月,收治22例髋臼后壁骨折患者。男20例,女2例;年龄18~61岁,平均35.7岁。采用随机数字法分为实验组(n=10)和对照组(n=12),分别采用W型髋臼安全角度接骨板和骨盆重建接骨板内固定治疗。评估两组术中X线监测螺钉位置情况,骨折复位质量,手术时间及出血量,骨折复位质量按Matta标准进行评估。
     结果:术中X线监测显示实验组中螺钉均未进入关节,对照组中螺钉未进入关节6例,螺钉进入关节2例,可疑螺钉进入关节4例,两组之间差异有统计学意义( P < 0.05 )。骨折复位质量两组之间差异无统计学意义( P > 0.05 )。手术时间及出血量两组之间差异均有统计学意义( P < 0.05 )。
     结论:采用W型髋臼安全角度接骨板治疗髋臼后壁骨折,可有效杜绝螺钉误入关节情况的发生,减少手术时间和出血量。
     第五部分早期康复对髋臼后壁粉碎骨折术后功能影响
     目的:观察早期康复治疗对髋臼后壁粉碎骨折患者术后肢体功能的影响。
     方法:选取河北医科大学第三医院骨科收治的髋臼后壁粉碎性骨折患者40例,男36例,女4例;年龄23 ~ 61岁,平均35.3岁;采用随机数字法分为康复组和对照组,每组20例。行重建钢板内固定后,康复组早期进行规范康复治疗,对照组自行遵医嘱进行功能锻炼。患者均于术后3,6,12个月进行随访,采用改良Merle d’Aubigne和Postel评分系统对患者髋关节功能进行评估。
     结果:术后3个月,6个月和12个月康复组改良Merle d’Aubigne和Postel评分为(13.10±2.05),(14.50±1.32)和(15.80±1.36);对照组为(11.20±2.80),(13.00±2.10)和(14.25±1.74),两组之间差异有统计学意义( P < 0.05 ),两组骨折复位质量之间差异无统计学意义( P > 0.05 )。
     结论:早期进行规范康复治疗有助于髋臼后壁粉碎骨折患者肢体功能恢复。
Acetabular fractures are rapidly increasing recently. Displaced acetabular fractures frequently result from high-energy traumatic events?and may have significant primary organ system associated injuries. Rapid increase in the incidence of acetabular fractures and high expectations of the patients has compelled the orthopaedic surgeons across the world to do more research and study acetabular fractures. Surgery is the gold standard to treat unstable and incongruous acetabular fractures. Joint stability and early mobilization are the main goals of the surgery for acetabular fracture which can be achieved by anatomic reduction and rigid internal fixation. Screw penetration into the hip joint during operation is an unusual but potentially serious complication.
     Acetabular fractures in the posterior column, particularly involving the danger zone, are the most common form of acetabular fracture. They remain technically challenging to the orthopedic surgeons. Proper screw placement can avoid the complication. Some basic researches are indicated to evaluate the acetabulum characters. The majority of these studies focus on the orientation and morphology of the acetabulum, the transacetabular screw fixation and related vital structures for total hip arthroplasty. There are only a few anatomic studies regarding plate-screw fixation for acetabular fractures. The danger zone of the acetabulum, which was defined by Tile as that part of the posterior wall and column at the mid-acetabulum lying above the ischial spine, is frequently used in the fixation of posterior wall and posterior column. Screws directed perpendicular to posterior column in the danger zone would violate the hip joint. Ebraheim et al determined the exact configuration of the danger zone of the acetabulum, and proposed the safe pathway for screw placement in this zone based upon their study on the parallel cross-sections of cadaveric hemiplevises.
     After an extensive review of the existed literature, the comprehensive studies on the danger zone of the acetabulum by CT images have been barely reported so far. Therefore,our studies aim was to designed to measure and record the safe angles for screw placement and the thickness of posterior wall for different points in the danger zone of the acetabulum first, using the images of surface shadow display and multiplanar reconstruction of multislice spiral CT scan. Then the model of posterior column fracture of acetabulum was established, and the stability of internal fixation with the plate and lag screw for the posterior column fracture of acetabulum was evaluated. After that the W-shaped acetabular angular plate was designed, and the stability of internal fixation with the W-shaped acetabular angular plate and reconstruction plate for the simulated posterior column fracture of acetabulum was evaluated. Further investigation on the results of reconstruction of posterior wall fractures of the acetabulum by using the W-shaped acetabular angular plate. Finally the effect of early rehabilitation on the hip joint function for patients of the comminuted posterior wall fractures of the acetabulum after internal fixation was investigated.
     Part 1 Anatomic study of the safe angle for screw placement and the thickness of posterior wall in the danger zone of the adult acetabulum
     Objective: To evaluate the safe angle for screw placement and the thickness of posterior wall of the danger zone in adult acetabulum, and provide the data for the reconstruction of acetabular fracture.
     Methods: Thirty-two cadaveric adult bony semipelvic specimens and thirty adult volunteers were obtained to investigate the safe angle for screw placement and the thickness of posterior wall at the different points in the danger zone of acetabulum through analysis of the images of surface shadow display and multiplanar reconstruction of multislice spiral CT scan.
     Results: In specimens, the safe angles for 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0cm entry points medial to the lateral acetabular brim were( 49.23±11.54 )°, ( 42.48±8.97 )°, ( 29.53±7.86 )°, ( 23.68±6.20 )°,(18.42± 5.41)°, and (15.91±4.37)°respectively in males and those for 0.5, 1.0, 1.5, 2.0, and 2.5cm entry points were (45.02±8.82)°, (35.98±7.60)°, (23.77±6.29)°, (19.96±4.36)°, and (14.68±3.48)°respectively in females. The differences of the safe angle measured between the specimens and the volunteers were not statistically in the same gender ( P > 0.05 ). The safe angles for screw placement were statistically different between males and females for both specimens and volunteers ( P < 0.05 ).
     In specimens, the thickness of posterior wall for 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0cm entry points medial to the lateral acetabular brim were ( 0.64±0.13)cm, ( 0.97±0.25)cm, (1.46±0.40)cm,(2.14±0.46)cm,(2.61±0.47)cm, and (2.96±0.42)cm respectively in males and those for 0.5, 1.0, 1.5, 2.0, and 2.5cm entry points were (0.51±0.08)cm,(0.93±0.22)cm,(1.45±0.31)cm,(2.02±0.39)cm, and(2.50±0.50)cm respectively in females. The differences of the thickness measured between the specimens and the volunteers were not statistically in the same gender ( P > 0.05 ). The thickness were statistically different between males and females for both specimens and volunteers ( P < 0.05 ).
     Conclusion: The data derived from the study will be valuable for screw placement during internal fixation of posterior column and posterior wall fractures.
     Screw insertion at the points of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0cm medial to the lateral acetabular brim and angled medially no less than 75°, 65°, 50°, 45°, 35°, and 30°in males, and those at the points of 0.5, 1.0, 1.5, 2.0, and 2.5cm angled medially no less than 65°, 55°, 45°, 40°, and 25°in females respectively, could avoid screw penetration of the hip joint.
     The length of screw at the points of 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0cm medial to the lateral acetabular brim would be less than that of 1/2,1/3,1/3,1/2,1/2 , and 1/2 from entry point to lateral acetabular brim in males , and those for 0.5, 1.0, 1.5, 2.0, and 2.5cm points would be all less than that of 1/2 in females when screw insertion perpendicular to the surface of posterior column.
     Part 2 Establishing the model of posterior column fracture of acetabulum and biomechanical evaluation of the stability between plate and lag screw internal fixation
     Objective: To establish the model of posterior column fracture of acetabulum, and evaluate the stability of internal fixation with the plate and lag screw for the posterior column fracture of acetabulum.
     Methods: A total of 20 preserved cadaveric semipelvic specimens were randomly divided into two groups. Models of isolated posterior column fracture of acetabulum were established. The models were fixed with plate or lag screw. Under vertical compression load of 3 times body weight, the horizontal displacements of the fracture site were measured and the shear rigidity of two fixation conditions was compared.
     Results: The horizontal displacements of the fracture site fixed with plate and lag screw were (1.64±0.17) mm and (1.70±0.20) mm. The shear rigidity fixed with plate and lag screw were (392.40±41.22) N/mm and (386.33±50.07) N/mm. The differences of both horizontal displacements and shear rigidity between the two groups were not significant (P > 0.05).
     Conclusions: The fracture model provides an ideal tool for biomechanical evaluation of the stability of internal fixation for the posterior column fracture of acetabulum. There was no significant difference in the stability of internal fixation with the plate and lag screw for the posterior column fracture of acetabulum.
     Part 3 Biomechanical evaluation on the W-shaped acetabular angular plate internal fixation of the fractures of acetabular posterior column
     Objective: To evaluate the stability of internal fixation with the W-shaped acetabular angular plate and reconstruction plate for the simulated posterior column fracture of acetabulum.
     Methods: Twenty preserved cadaveric semipelvic specimens were divided into four groups randomly. Models of isolated posterior column fractures of acetabulum were established. Group A was fixed with the W-shaped acetabular angular plate. Group B, C, and D were fixed with one of the three methods of reconstruction plate:four screws on each side of the fracture (group B); four screws on each side of the fracture , but the screw closest to the fractrue on each side malplaced into the acetabulum primarily and correct placement finally(group C); two screws at the each end of plate(group D). Under vertical compression load of 3 times body weight, the horizontal displacements of the fracture site were measured and the shear rigidity of different internal fixation methods were compared.
     Results: The horizontal displacements of the fracture site in Group A, B, C, and D were (1.58±0.17) mm, (1.62±0.14) mm, (2.66±0.26) mm, and (4.68±0.35) mm respectively. The shear rigidity of internal fixation methods in Group A, B, C, and D were (414.71±34.29) N/mm, (394.75±32.52) N/mm, (219.93±22.04) N/mm, and (129.42±9.60) N/mm respectively. The differences of both horizontal displacements and shear rigidity between Group A and B were not statistically different ( P > 0.05 ). The horizontal displacements and shear rigidity in both Group A and B were statistically different from those of the?Group C or D ( P < 0.05 ). The differences of both horizontal displacements and shear rigidity between Group C and D were statistically different ( P < 0.05 ).
     Conclusion: The W-shaped acetabular angular plate can improve the internal fixation stability of posterior column fracture of acetabulum.
     Part 4 Application of the W-shaped acetabular angular plate in treatment of posterior wall fracture of acetabulum
     Objective: To assess the results of reconstruction of posterior wall fractures of the acetabulum by using the W-shaped acetabular angular plate.
     Methods: Twenty-two patients ( 20 men, 2 women, mean age 35.7 years, range 18–61 years ) with posterior wall fracture of the acetabulum underwent reconstruction of the posterior wall were randomly divided into study group ( 10 cases ) and control group ( 12 cases ) during the period of July 2009 to February 2010. The patients of study group was fixed by using the W-shaped acetabular angular plate and control group by pelvic reconstruction plate. The results of the intraoperative fluoroscopic images,radiographic evaluation of the quality of reduction,the duration of operation, and the loss of blood were compared. Radiographic evaluation of the quality of reduction was according to criteria developed by Matta.
     Results: The intraoperative fluoroscopic images confirmed extra-articular screw placement in all cases in study group. In the control group, no intra-articular screw was noted in 6 patients, intra-articular screw placement was seen in 2 patients, and definitive location of periarticular hardware could not be determined in 4 patients. The differences between the two groups were statistically significant ( P < 0.05 ). Radiographic evaluations of the quality of reduction were not significantly different between the two groups. There were significant differences in both the duration of operation and the loss of blood between the two groups ( P < 0.05 ).
     Conclusion: Reconstruction of posterior wall fractures of the acetabulum via the W-shaped acetabular angular plate could avoid screw penetration of the hip joint , reduce the duration of operation and the loss of blood during surgery.
     Part 5 Effect of early rehabilitation on the hip joint function in patients of comminuted posterior wall fractures of the acetabulum after internal fixation
     Objective: To investigate the effect of early rehabilitation on the hip joint function for patients of the comminuted posterior wall fractures of the acetabulum after internal fixation.
     Methods: Forty patients of comminuted posterior wall fractures of the acetabulum were divided into rehabilitation group ( n = 20 ) and control group ( n = 20 ) randomly.All the patients were fixed with reconstruction plate, the patients in rehabilitation group received early standard rehabilitation exercises intervention and those in control group received usual care. The clinical result was evaluated with the score of Merle d’Aubigne and Postel.The fracture reductions were judged according to the criteria of Matta.
     Results: The scores of Merle d’Aubigne and Postel for 3, 6 , and 12 month after operation were ( 13.10±2.05 ), ( 14.50±1.32 ), and ( 15.80±1.36 ) respectively in rehabilitation group and those were ( 11.20±2.80 ), ( 13.00±2.10 ) , and ( 14.25±1.74 ) respectively in control group. The differences of the scores between the two groups were significant ( P < 0.05 ). In regard of fracture reductions, there was insignificant statistical difference between the two groups ( P > 0.05 ).
     Conclusion: The early rehabilitation exercises may improve the hip joint function for patients of the comminuted posterior wall fractures of the acetabulum after surgery.
引文
1 Boraiah S, Ragsdale M, Achor T, et al. Open reduction fixation and primary total hip arthroplasty of selected acetabular fractures. J Orthop Trauma, 2009,23(4): 243~248.
    2 Chuckpaiwong B, Suwanwong P, Harnroongroj T. Roof-arc angle and weight-bearing area of the acetabulum. Injury, 2009,40: 1064~1066.
    3 Ebraheim NA, Waldrop J, Yeasting RA, et al. Danger zone of the acetabulum. J Orthop Trauma, 1992, 6(2):146~151.
    4 Ko’Shea JF, Waheed K, Brady OH. The usefulness of computed tomography following open reduction and internal fixation of acetabular fractures. J Orthop Surg, 2006, 14(2):127~132.
    5 McMaster J, Powell J. Acetabular fractures. Curr Orthop, 2005, 19:140~154.
    6 Ebraheim NA, Patil V, Liu J, et al. Reconstruction of comminuted posterior wall fractures using the buttress technique: a review of 32 fractures. Int Orthop, 2007, 31:671~675.
    7周东生主编.骨盆创伤学.第1版.济南:山东科学技术出版社, 2003: 607~614.
    8 Stockle U, Schaser K, Konig B. Image guidance in pelvic and acetabular surgery-Expectations, success and limitations. Injury, 2007,38:450~462.
    9 Kendoff D, Gardner MJ, Citak M, et al. Value of 3D fluoroscopic imaging of acetabular fractures comparison to 2D fluoroscopy and CT imaging. Arch Orthop Trauma Surg, 2008, 128:599~605.
    10张继宗.法医人类学基础.第1版.北京:科学出版社, 2007: 380~388.
    11 Ari I. Morphometry of the greater sciatic notch on remains of male Byzantine skeletons from Nicea. Eur J Anat, 2005, 9(3): 161~165.
    12 Carmack DB, Moed BR, McCarroll K, et al. Accuracy of detecting screw penetration of the acetabulum with intraoperative fluoroscopy and computed tomography. J Bone Joint Surg Am, 2001, 83 (9) :1370~1375.
    13 Russell Jr GV, Nork SE, Chip Routt Jr ML. Perioperative complications associated with operative treatment of acetabular fractures. J Trauma, 2001, 51(6):1098~1103.
    14 Vandenbussche E, Saffarini M, Taillieu F, et al. The asymmetric profile of the acetabulum. Clin Orthop Relat Res, 2008, (466): 417~423.
    15 Murtha PE, Hafez MA, Jaramaz B, et al. Variations in acetabular anatomy with reference to total hip replacement. J Bone Joint Surg Br.2008;90(3):308~313.
    16 Wasielewski RC, Galat DD, Sheridan KC, et al. Acetabular anatomy and transacetabular screw fixation at the high hip center. Clin Orthop Relat Res, 2005, (438):171~176.
    17 Kyung HS, Kim PT, Rho HK, et al. Analysis of danger zone of the posterior column of acetabulum and morphological data of the ischial tuberosity. J Korean Orthop Assoc,1998,33(3):877~884.
    18牛云飞,许硕贵,张春才.髋臼后壁厚度的解剖学测量及其意义.中国临床解剖学杂志, 2007, 25(4): 400~402.
    19张本,苏佳灿,王瑞官,等.髋臼后柱解剖学测量及其临床意义.国际骨科学杂志,2006,27(3):186~188.
    20 Ohashi K, El-Khoury GY, Bennett DL, et al. Orthopedic hardware complications diagnosed with multi-detector row CT. Radiology,2005, 237(2): 570~577.
    21宋朝晖,张英泽,潘进社,等.髋臼后柱螺钉固定安全性的解剖学研究.中国临床解剖学杂志, 2004, 22(2):136~138.
    22王先泉,张进禄,周东生.髋臼后柱支持钢板的临床解剖学研究.中国骨与关节损伤杂志, 2005, 20(1):9~11.
    1 Hadjicostas PT, Thielemann FW. The use of trochanteric slide osteotomy in the treatment of displaced acetabular fractures. Injury, 2008,39(8):907~913.
    2 Tibbs BM, Kopar P, Dente CJ, et al. Acetabular and isolated pelvic ring fractures: a comparison of initial assessment and outcome. Am Surg, 2008,74(6):538~541.
    3 Pascarella R, Maresca A, Reggiani LM, et al. Intra-articular fragments in acetabular fracture-dislocation. Orthopedics, 2009,32(6):402~405.
    4 Boraiah S, Ragsdale M, Achor T, et al. Open reduction internal fixationand primary total hip arthroplasty of selected acetabular fractures. J Orthop Trauma, 2009,23(4):243~248.
    5 Chuckpaiwong B, Suwanwong P, Harnroongroj T. Roof-arc angle and weight-bearing area of the acetabulum. Injury, 2009,40(10): 1064~1066.
    6 Porter SE,Russell GV,Dews RC, et al. Complications of Acetabular Fracture Surgery in Morbidly Obese Patients. J Orthop Trauma, 2008,22(9):589~594.
    7 Tannast M,Siebenrock KA. Operative treatment of T-type fractures of the acetabulum via surgical hip dislocation or Stoppa approach. Oper Orthop Traumatol, 2009,21(3):251~269.
    8 Giordano V,do Amaral NP,Pallottino A, et al. Operative treatment of transverse acetabular fractures: is it really necessary to fix both columns? Int J Med Sci, 2009,6(4):192~199.
    9 ?vre S, Madsen JE, R?ise O. Acetabular fracture displacement, roof arc angles and 2 years outcome.Injury,2009,39(8):922~931.
    10 Porter SE, Schroeder AC, Dzugan SS, et al. Acetabular fracture patterns and their associated injuries. J Orthop Trauma, 2008,22(3):165~170.
    11 Harris AM, Althausen P, Kellam JF, et al. Simultaneous anterior and posterior approaches for complex acetabular fractures. J Orthop Trauma, 2008,22(7):494~497.
    12 Moed BR, Ajibade DA, Israel H. Computed tomography as a predictor of hip stability status in posterior wall fractures of the acetabulum. J Orthop Trauma, 2009,23(1):7~15.
    13许硕贵,张春才,吴亚乐,等.自体髂骨解剖性重建髋臼后壁缺损的生物力学与临床研究.中华创伤杂志,2009,25(1):9~14.
    14严军,郑祖根,董启榕,等.分叉钢板置入治疗髋臼后壁骨折的生物力学分析.中国组织工程研究与临床康复,2008,12(17):3229~3232.
    15汪光晔,张春才,许硕贵,等.髋臼三维记忆内固定系统治疗髋臼后壁骨折的有限元分析.中国组织工程研究与临床康复,2007,11(13):2462~2465.
    16 Mehin R, Jones B, Zhu Q, et al. A biomechanical study of conventionalacetabular internal fracture fixation versus locking plate fixation, Can J Surg. 2009,52(3):221~228.
    17 Schopfer A, DiAngelo D, Hearn T, et al. Biomechanical comparison of methods of fixation of isolated osteotomies of the posterior acetabular column. Int Orthop, 1994,18(2):96~101.
    18 Vrahas MS, Widding KK, Thomas KA. The effects of simulated transverse, anterior column, and posterior column fractures of the acetabulum on the stability of the hip joint. J Bone Joint Surg Am, 1999,81(7):966~974.
    19 Olson SA, Kadrmas MW, Hernandez JD, et al. Augmentation of posterior wall acetabular fracture fixation using calcium-phosphate cement: a biomechanical analysis. J Orthop Trauma, 2007,21(9):608~616.
    20 Knight RA, Smith H. Central fractures of the acetabulum. J Bone Joint Surg Am, 1958,40(1):1~16.
    21 Ebraheim NA, Waldrop J, Yeasting RA, et al. Danger zone of the acetabulum, J Orthop Trauma. 1992,6(2):146~151.
    22张继宗.法医人类学基础.北京:科学出版社,2007:380~388.
    23李思汉.我国北方地区成人各类体型不同身高的体重正常值的探讨.营养学报,1986,8(2):98~108.
    24荣国威,王承武.骨折.北京:人民卫生出版社,2004:844~847.
    25毛宾尧.人工全髋关节翻修外科的生物力学.中国矫形外科杂志,2003,11(10):700~702.
    26 Shazar N, Brumback RJ, Novak VP, et al. Biomechanical evaluation of transverse acetabular fracture fixation. Clin Orthop Relat Res, 1998,(352):215~222.
    27王庆贤,张英泽,潘进社,等.髋臼横断骨折不同内固定方法臼顶负重区的应力分布.中华创伤杂志,2004,20(12):743~746.
    28 Judet R, Judet J, Letournel E. Fractures of the acetabulum: classification and surgical approaches for open reduction. Preliminary report. J Bone Joint Surg Am,1964,46(8):1615~1646.
    29 Kaku N, Tsumura H, Taira H, et al. Biomechanical study of load transfer of the pubic ramus due to pelvic inclination after hip joint surgery using athree-dimensional finite element model. J Orthop Sci, 2004,9(3):264~269.
    30 Dalstra M, Huiskes R. Load transfer across the pelvic bone. J Biomech, 1995,28(6):715~724.
    31 Chang JK, Gill SS, Zura RD, et al. Comparative strength of three methods of fixation of transverse acetabular fractures. Clin Orthop Relat Res, 2001,(392):433~441.
    32 Thomas KA, Vrahas MS, Noble JW Jr, et al. Evaluation of hip stability after simulated transverse acetabular fractures. Clin Orthop Relat Res, 1997,(340):244~256.
    1 Harris AM, Althausen P, Kellam JF, et al. Simultaneous anterior and posterior approaches for complex acetabular fractures. J Orthop Trauma, 2008, 22: 494~497.
    2 Tibbs BM. Acetabular and isolated pelvic ring fractures: a comparison of initial assessment and outcome. Am Surg, 2008, 74: 538~541.
    3 Ebraheim NA, Waldrop J, Yeasting RA, et al. Danger zone of the acetabulum. J Orthop Trauma, 1992, 6:146~151.
    4 Olson SA, Kadrmas MW, Hernandez JD, et al. Augmentation of posteriorwall acetabular fracture fixation using calcium-phosphate cement: a biomechanical analysis. J Orthop Trauma, 2007,21:608~616.
    5张继宗.法医人类学基础.第1版.北京:科学出版社, 2007, 380~388.
    6李思汉.我国北方地区成人各类体型不同身高的体重正常值的探讨.营养学报, 1986,8: 98~108.
    7 Schopfer A, DiAngelo D, Hearn, T, et al. Biomechanical comparison of methods of fixation of isolated osteotomies of the posterior acetabular column. Int Orthop, 1994,18(2): 96~101.
    8 Vrahas MS, Widding KK, Thomas KA. The effects of simulated transverse, anterior column, and posterior column fractures of the acetabulum on the stability of the hip joint. J Bone Joint Surg Am, 1999,81(7):966~974.
    9 Chegini S,Beck M,Ferguson SJ. The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: A finite element analysis. J Orthop Res, 2009,27(2):195~201 .
    10 Davis ET, Olsen M, Zdero R, et al. A biomechanical and finite element analysis of femoral neck notching during hip resurfacing. J Biomech Eng, 2009,131(4): 4~12.
    11 Ebraheim NA, Patil V, Liu J, et al. Reconstruction of comminuted posterior wall fractures using the buttress technique: a review of 32 fractures. Int Orthop, 2007, 31:671~675.
    12周东生主编.骨盆创伤学.济南:山东科学技术出版社, 2003, 607~614.
    13 Kendoff D, Gardner MJ, Citak M, et al. Value of 3D fluoroscopic imaging of acetabular fractures comparison to 2D fluoroscopy and CT imaging. Arch Orthop Trauma Surg, 2008, 128:599~605.
    14 Stockle U, Schaser K, Konig B. Image guidance in pelvic and acetabular surgery-Expectations, success and limitations. Injury, 2007, 38:450~462.
    15吴新宝,王满宜.髋臼骨折.见:荣国威,王承武,主编.骨折.第1版.北京:人民卫生出版社, 2004. 844~847.
    16 Shazar N, Brumback RJ, Novak VP, et al. Biomechanical evaluation of transverse acetabular fracture fixation. Clin Orthop Relat Res, 1998, (352):215~222.
    1王满宜.我国骨盆与髋臼骨折的治疗现状与发展方向.中华创伤骨科杂志, 2009, 11(7): 601~602.
    2 Matta JM. Fractures of the acetabulum: accuracy of reduction and clinical results in patients managed operatively within three weeks after the injury. J Bone Joint Surg Am ,1996,78(11):1632~1645.
    3 Porter SE, Schroeder AC, Dzugan SS, et al. Acetabular fracture patterns and their associated injuries. J Orthop Trauma, 2008, 22(3):165~170.
    4 Moed BR,Carr SE,Gruson KI, et al. Computed tomographic assessment of fractures of the posterior wall of the acetabulum after operative treatment. J Bone Joint Surg Am, 2003,85(3):512~522.
    5 Moed BR,WillsonCarr SE,Watson JT. Results of operative treatment of fractures of the posterior wall of the acetabulum. J Bone Joint Surg Am, 2002,84(5):752~758.
    6 Saterbak AM,Marsh JL,Nepola JV, et al. Clinical failure after posterior wall acetabular fractures: the influence of initial fracture patterns. J Orthop Trauma, 2000,14(4):230~237.
    7 McMaster J, Powell J. Acetabular fractures. Current Orthopaedics, 2005, 19(2):140~154.
    8 Stockle U, Schaser K, Konig B. Image guidance in pelvic and acetabular surgery-Expectations, success and limitations. Injury, 2007, 38(4):450~462.
    9 Kendoff D, Gardner MJ, Citak M, et al. Value of 3D fluoroscopic imaging of acetabular fractures comparison to 2D fluoroscopy and CT imaging. Arch Orthop Trauma Surg, 2008, 128(6):599~605.
    10 Ebraheim NA, Waldrop J, Yeasting RA, et al. Danger zone of the acetabulum. J Orthop Trauma, 1992, 6(2):146~151.
    11 Brooker AF, Bowerman JW, Robinson RA, et al. Ectopic ossification following total hip replacement: incidence and method of classification. J Bone Joint Surg Am, 1973, 55(8):1629~1632.
    12 Saterbak AM, Marsh JL, Nepola JV, et al. Clinical failure after posterior wall acetabular fractures: the influence of initial fracture patterns. J Orthop Trauma, 2000,14(4):230~237.
    13 Ruesch PD, Holdener H, Ciaramitaro M, et al. A prospective study ofsurgically treated acetabular fractures. Clin Orthop Relat Res, 1994, (305): 38~46.
    14 Oransky M, Sanguinetti C. Surgical treatment of displaced acetabular fractures: results of 50 consecutive cases. J Orthop Trauma, 1993, 7: 28~32.
    15 Guillemot F.Recent advances in the design of titanium alloys for orthopedic applications.Expert Review of Medical Devices, 2005,2(6):741~748.
    16 Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials,2005,26(17):3557~3563.
    17 Yeung KW, Poon RW, Chu PK, et al. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. J Biomed Mater Res A, 2007,82(2):403~414.
    18 Im GI,Shin YW,Song YJ. Fractures to the Posterior Wall of the Acetabulum Managed With Screws Alone. J Trauma, 2005,58(2):300~303.
    19周东生主编.骨盆创伤学.济南:山东科学技术出版社, 2003: 445~614.
    20 Anglen JO, Dipasquale T.The reliability of detecting screw penetration of the acetabulum by intraoperative auscultation. J Orthop Trauma, 1994, 8(5):404~408.
    21 Ebraheim NA, Savolaine ER, Hoeflinger MJ, et al. Radiological diagnosis of screw penetration of the hip joint in acetabular fracture reconstruction. J Orthop Trauma,1989,3(3):196~201.
    22 Norris BL, Hahn DH, Bosse MJ, et al. Intraoperative fluoroscopy to evaluate fracture reduction and hardware placement during acetabular surgery. J Orthop Trauma,1999,13(6):414~417.
    23 Carmack DB, Moed BR, McCarroll K, et al. Accuracy of detecting screw penetration of the acetabulum with intraoperative fluoroscopy and computed tomography. J Bone Joint Surg Am, 2001, 83 (9):1370~1375.
    24 Gansslen A, Steinke B, Krettek C. Internal fixation of acetabular posterior wall fractures. Oper Orthop Traumatol, 2009, 21(3):283~295.
    25 Olson SA, Kadrmas MW, Hernandez JD, et al. Augmentation of posterior wall acetabular fracture fixation using calcium-phosphate cement: a biomechanical analysis. J Orthop Trauma, 2007, 21(9):608~616.
    26 Ebraheim NA, Patil V, Liu J, et al. Reconstruction of comminuted posterior wall fractures using the buttress technique: a review of 32 fractures. Int Orthop, 2007,31(5):671~675.
    27 Goulet JA, Rouleau JP, Mason DJ, et al. Comminuted fractures of the posterior wall of the acetabulum. A biomechanical evaluation of fixation methods. J Bone Joint Surg Am, 1994,76(10):1457~1463.
    1 Prevezas N. Evolution of pelvic and acetabular surgery from ancient to modern times. Injury, 2007,38(4):397~409.
    2 Tibbs BM, Kopar P, Dente CJ, et al. Acetabular and isolated pelvic ringfractures: a comparison of initial assessment and outcome. Am Surg, 2008,74(6):538~541.
    3 G?nsslen A, Steinke B, Krettek C. Internal fixation of acetabular posterior wall fractures. Oper Orthop Traumatol,2009,21(3): 283~295.
    4 Porter SE, Schroeder AC, Dzugan SS, et al. Acetabular fracture patterns and their associated injuries. J Orthop Trauma, 2008, 22(3):165~170.
    5 Harvie P, Chesser TJ, Ward AJ. The Bristol regional pelvic and acetabular fracture service: workload implications of managing the polytraumatised patient. Injury, 2008,39(8):839~843.
    6 Petsatodis G, Antonarakos P, Chalidis B, et al. Surgically treated acetabular fractures via a single posterior approach with a follow-up of 2-10 years. Injury, 2007,38(3):334~343.
    7 Giannoudis PV, Nikolaou VS. Surgical techniques-How do I do it? Open reduction and internal fixation of posterior wall fractures of the acetabulum. Injury, 2008,39(10):1113~1118.
    8 Giannoudis PV, Tzioupis C, Moed BR. Two-level reconstruction of comminuted posterior-wall fractures of the acetabulum. J Bone Joint Surg Br, 2007,89(4):503~509.
    9 Triantaphillopoulos PG, Panagiotopoulos EC, Mousafiris C, et al. Long-term results in surgically treated acetabular fractures through the posterior approaches. J Trauma, 2007, 62(2):378~382.
    10田玉香,廉萍.髋臼骨折患者围手术期康复训练的效果.中国康复, 2006,21(5):339~339.
    11 Ebraheim NA, Waldrop J, Yeasting RA, et al. Danger zone of the acetabulum. J Orthop Trauma, 1992,6(2):146~151.
    12 Matta JM. Fractures of the acetabulun: accuracy of reduction and clinical results in patients managed operatively within three weeks after the injury. J Bone Joint Surg Am, 1996,78(11):1632~1645.
    13 Chuckpaiwong B, Suwanwong P, Harnroongroj T. Roof-arc angle and weight-bearing area of the acetabulum. Injury, 2009,40(10):1064~1066.
    14 Pascarella R, Maresca A, Reggiani LM, et al. Intra-articular fragments inacetabular fracture-dislocation. Orthopedics, 2009, 32(6):402~405.
    15 Boraiah S, Ragsdale M, Achor T, et al. Open reduction internal fixation and primary total hip arthroplasty of selected acetabular fractures. J Orthop Trauma, 2009,23(4):243~248.
    16 Giordano V, do Amaral NP, Pallottino A, et al. Operative treatment of transverse acetabular fractures: is it really necessary to fix both columns? Int J Med Sci, 2009,6(4):192~199.
    17黄杰苗,戴章生.髋臼骨折术后功能重建与并发症防治及康复训练的相关性.中国临床康复,2003,7(29):4021~4021.
    18 Borrelli J Jr, Goldfarb C, Ricci W, et al. Functional outcome after isolated acetabular fractures. J Orthop Trauma, 2002,16(2):73~81.
    19 Kristan A, Mavcic B, Cimerman M, et al. Acetabular loading in active abduction. IEEE Trans Neural Syst Rehabil Eng,2007,15(2): 252~257.
    20周东生.骨盆创伤学.济南:山东科学技术出版社,2003:615~626.
    21汤文杰,王满宜,朱仕文.髋臼骨折Kocher-Langenbeck入路术后等速肌力测试:36例患肢髋关节周围力量分析.中国组织工程研究与临床康复,2008,12(44):8666~8668.
    22 Engsberg JR, Steger-May K, Anglen JO, et al. An analysis of gait changes and functional outcome in patients surgically treated for displaced acetabular fractures. J Orthop Trauma, 2009,23(5): 346~353.
    23杜浩,郭锐,吴涛,等.两种评分系统对髋臼后壁骨折的预后评价.中国矫形外科杂志,2008,16(20):1538~1540.
    24 Ovre S, Sandvik L, Madsen JE, et al. Modification of the Harris Hip Score in acetabular fracture treatment. Injury, 2007,38(3):344~349.
    25 Ebraheim NA, Patil V, Liu J, et al. Reconstruction of comminuted posterior wall fractures using the buttress technique: a review of 32 fractures. Int Orthop, 2007,31(5):671~675.
    26 d'AubignéRM, Postel M. Functional results of hip arthroplasty with acrylic prosthesis. J Bone Joint Surg Am, 1954,36(3):451~475.
    27 Moed BR, McMichael JC. Outcomes of Posterior Wall Fractures of the Acetabulum. J Bone Joint Surg Am, 2007,89(6):1170~1176.
    28 Swiontkowski MF, Engelberg R, Martin DP, et al. Short musculoskeletal function assessment questionnaire: validity, reliability, and responsiveness. J Bone Joint Surg Am, 1999, 81(9): 1245~1260.
    29 Kirschner S, Walther M, Bohm D, et al. German short musculoskeletal function assessment questionnaire (SMFA-D): comparison with the SF-36 and WOMAC in a prospective evaluation in patients with primary osteoarthritis undergoing total knee arthroplasty.Rheumatol Int, 2003,23(1):15~20.
    1 Prevezas N. Evolution of pelvic and acetabular surgery from ancient to modern times. Injury, 2007,38(4):397~409.
    2 Geoghegan J M, Longdon EJ, Hassan K, et al. Acetabular fractures in theUK. What are the numbers? Injury, 2007,38(3):329~333.
    3 Ghalambor N, Matta JM, Bernstein L. Operative treatment of acetabular fractures through the ilioinguinal approach A 10-year perspective. Clin Orthop Relat Res,1994,(305):10~19.
    4白波,董伟强.中国华南地区髋关节的测量参数及临床意义.中国临床解剖学杂志,2004,22(6):592~595.
    5 Varodompun N, Thinley T, Visutipol B, et al. Correlation between the acetabular diameter and thickness in Thais. J Orthop Surg, 2002, 10(1):41~44.
    6 Wasielewski RC, Galat DD, Sheridan KC, et al. Acetabular anatomy and transacetabular screw fixation at the high hip center. Clin Orthop, 2005,(438):171~176.
    7 Benedetti JA, Ebraheim NA, Xu R, et al. Anatomic considerations of plate-screw fixation of the anterior column of the acetabulum. J Orthop Trauma,1996,10(4):264~272.
    8 Ihn JC, Kim PT, Park BC, et al. Anatomic consideration of safe zone in plate-screw fixation of the anterior column of the acetabulum. J Korean Orthop Assoc,1999,34(4):755~761.
    9宋朝晖,张英泽,彭阿钦,等.髋臼在前柱投影的解剖学研究.中国骨伤,2004,17(11):647~649.
    10高巍,彭阿钦,陈百成,等.髋臼螺钉固定安全性的解剖学研究.中国矫形外科杂志,2005,13(11):840~842.
    11王先泉,张伟,孙水,等.髋臼前柱钢板内固定的解剖学研究.中华外科杂志,2006,44(24):1700~1703.
    12王先泉,张进禄,周东生.沿骨盆界线放置内固定物的临床解剖学研究.中国临床解剖学杂志,2005,23(2):153~156.
    13周东生主编.骨盆创伤学.济南:山东科学技术出版社, 2003:437~614.
    14牛云飞,王家林,张春才.髋臼前壁厚度的解剖学测量及其意义.中国骨与关节损伤杂志,2007: 22(6):459~461.
    15 Tile M. Fractures of the pelvis and acetabulum. 2nd ed. Baltimore: Williams&Wilkins , 1995.387~391.
    16 Ebraheim NA, Waldrop J, Yeasting RA, et al. Danger zone of the acetabulum. J Orthop Trauma,1992,6(2):146~151.
    17 Shazar N, Brumback RJ,Novak VP, et al. Biomechanical evaluation of transverse acetabular fracture fixation. Clin Orthop Relat Res, 1998, (352) : 215~222.
    18 Routth. Operative treatment of complex acetabular fractures. Combined anterior and posterior exposures during the same procedure. J Bone Joint Surg Am,1990,72(6):897~904.
    19 Heeg M, Klasen HJ, Visser JD. Operative treatment for acetabular fractures. J Bone Joint Surg Br,1990,72(3):383~386.
    20 Kyung HS, Kim PT, Rho HK, et al. Analysis of danger zone of the posterior column of acetabulum and morphological data of the ischial tuberosity. J Korean Orthop Assoc,1998,33(3):877~884.
    21宋朝晖,张英泽,潘进社,等.髋臼后柱螺钉固定安全性的解剖学研究.中国临床解剖学杂志,2004,22(2):136~138.
    22王先泉,张进禄,周东生.髋臼后柱支持钢板的临床解剖学研究.中国骨与关节损伤杂志,2005, 20(1):9~11.
    23张本,苏佳灿,王瑞官,等.髋臼后柱解剖学测量及其临床意义.国际骨科学杂志, 2006,27(3):186~188.
    24牛云飞,许硕贵,张春才.髋臼后壁厚度的解剖学测量及其意义.中国临床解剖学杂志, 2007:25(4)400~402.
    25 Guillemot F. Recent advances in the design of titanium alloys for orthopedic applications. Expert Rev Med Devices, 2005, 2(6):741~748.
    26 Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26 (17) :3557~3563.
    27 Yeung KW, Poon RW, Chu PK, et al. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials. J Biomed Mater Res A, 2007, 82(2):403~414.
    28 Im GI, Shin YW, Song YJ. Fractures to the Posterior Wall of theAcetabulum Managed With Screws Alone. J Trauma, 2005, 58 (2): 300~303.
    29禹宝庆,吴岳嵩,邱广义.不同固定方法对家兔骨软骨骨折愈合的影响.中华创伤杂志,1997,13:99~101.
    30 Sternlicht AL, Ehrlich MG, Armstrong AL, et al. Role of pin protrusion in the etiology of chondrolysis: a surgical model with radiographic, histologic, and biochemical analysis. J Pediatr Orthop, 1992,12(4):428~433.
    31 Aprin H, Goodman S, Kahn LB. Cartilage necrosis due to pin penetration: experimental studies in rabbits. J Pediatr Orthop, 1991, 11(5):623~630.
    32 Riley PM. Hazards of internal fixation in the treatment of slipped capital femoral epiphysis. J Bone Joint Surg Am , 1990, 72 (10) : 1500~1509.
    33 Hernigou P, Besnard P. Articular penetration is more likely in garden-I fractures of the hip. J Bone Joint Surg Br , 1997,79(2):285~288.
    34 Heeg M, Klasen HJ, Visser JD. Operative treatment for acetabular fractures. J Bone Joint Surg Br, 1990,72(3): 383~386.
    35 Mayo KA. Open reduction and internal fixation of fractures of the acetabulum Results in 163 Fractures. Clin Orthop Relat Res, 1994,(305): 31~37.
    36 Oransky M, Sanguinetti C. Surgical treatment of displaced acetabular fractures: results of 50 consecutive cases. J Orthop Trauma,1993, 7(1): 28~32.
    37 Ruesch PD, Holdener H, Ciaramitaro M, et al. A prospective study of surgically treated acetabular fractures. Clin Orthop Relat Res,1994, (305): 38~46.
    38 Russell Jr GV, Nork SE, Chip Routt Jr ML. Perioperative complications associated with operative treatment of acetabular fractures. J Trauma, 2001,51(6):1098~1103.
    39姜保国,等主译.骨盆与髋臼骨折.北京:北京大学医学出版社,2005:241~245.
    40 McMaster J, Powell J. Acetabular fractures. Current Orthopaedics,2005,19(2):140~154.
    41钱齐荣,苟三怀.开放复位内固定治疗髋臼骨折.中国矫形外科杂志,2001,8(8):777~779.
    42 Anglen JO, Dipasquale T. The reliability of detecting screw penetration of the acetabulum by intraoperative auscultation. J Orthop trauma, 1994,8(5):404~408.
    43 Ebraheim NA, Savolaine ER, Hoeflinger MJ, et al. Radiological diagnosis of screw penetration of the hip joint in acetabular fracture reconstruction. J Orthop Trauma,1989,3(3):196~201.
    44 Norris BL, Hahn DH, Bosse MJ, et al. Intraoperative fluoroscopy to evaluate fracture reduction and hardware placement during acetabular surgery. J Orthop Trauma,1999,13(6):414~417.
    45 Carmack DB, Moed BR, McCarroll K, et al. Accuracy of detecting screw penetration of the acetabulum with intraoperative fluoroscopy and computed tomography. J Bone Joint Surg Am, 2001, 83 (9): 1370~1375.
    46 Brown GA, Willis MC, Firoozbakhsh K, et al. Computed tomography image guided surgery in complex acetabular fractures. Clin Orthop Relat Res,2000,(370):219~226.
    47 Liebergall M, Mosheiff R, Segal D. Navigation in orthopaedic trauma. Oper Tech Orthop,2003,13(2):64~72.
    48 Stockle U, Schaser K, Konig B. Image guidance in pelvic and acetabular surgery-Expectations, success and limitations. Injury,2007,38:450~462.
    49 Brown GA, Willis MC, Firoozbakhsh K, et al. Computed tomography image-guided surgery in complex acetabular fractures. Clin Orthop Relat Res,2000;(370):219~226.
    50 Matthews F, Hoigne DJ, Weiser M, et al. Navigating the fluoroscope's C-arm back into position: an accurate and practicable solution to cut radiation and optimize intraoperative workflow. J Orthop Trauma, 2007, 21(10):687~692.
    51 Atesok K, Finkelstein J, Khoury A, et al. The use of intraoperative three-dimensional imaging (ISO-C-3D) in fixation of intraarticularfractures. Injury,2007,38(10):1163~1169.
    52 Atesok K, Finkelstein J, Khoury A, et al. CT (ISO-C-3D) image based computer assisted navigation in trauma surgery: A preliminary report. Injury Extra,2008,39(2):39~43.
    53 Glick JM. Hip arthroscopy by the lateral approach. Instr Course Lect. 2006;55:317~323.
    54 Glick JM. Hip arthroscopy using the lateral approach. Instr Course Lect, 1988, 37:223~231.
    55 McCarthy JC, Busconi B. The role of hip arthroscopy in the diagnosis and treatment of hip disease. Can J Surg,1995,38(1): 13~17.
    56 Lu KH. Arthroscopically assisted replacement of dynamic hip screw for unrecognized joint penetration of lag screw through a new portal. Arthroscopy, 2004,20(2):201~205.
    57 Kellam JF, Tile M. Surgical techniques. In: Tile M, editor. Fractures of the pelvis and acetabulum. 2nd ed. Baltimore: Williams and Wilkins; 1995: 355~396.
    58 Helfet DL, Bartlett CS, Malkani AL. Acetabular fractures: extended iliofemoral approach. In: Wiss DA, editor. Master techniques in orthopaedic surgery: fractures. Philadelphia: Lippincott - Raven; 1998: 675~696.
    59 Mears DC, MacLeod MD. Acetabular fractures: triradiate and modified triradiate approaches. In: Wiss DA, editor. Master techniques in orthopaedic surgery: fractures. Philadelphia: Lippincott-Raven; 1998: 697~724.
    60 Dirschl DR. Postoperative management and complications of acetabular fractures. In: Kellam JF, Fischer TJ, Tornetta P 3rd, Bosse MJ, Harris MB, editors. Orthopaedic knowledge update: trauma 2. Rosemont, IL: American Academy of Orthopaedic Surgeons; 2000:305~310.
    61 Cimerman M, Kristan A. Preoperative planning in pelvic and acetabular surgery: The value of advanced computerised planning modules. Injury, 2007,38(4):442~449.
    62 Geijer M, El-Khoury GY. Imaging of the acetabulum in the era of multidetector computed tomography. Emerg Radiol, 2007,14(5):271~287.
    63 Hurson C, Tansey A, O’Donnchadha B, et al. Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures.Injury,2007,38(10):1158~1162.
    1 Judet R, Judet J, Letournel E. Fractures of the acetabulum: classification and surgical approaches for open reduction. J Bone Joint Surg Am ,1964,46(8):1615~1675.
    2 Letournel E, Judet R. Fractures of the acetabulum. 2 nd ed. New York: Springer-Verlag, 1993:412~565.
    3 Tibbs BM, Kopar P, Dente CJ, et al. Acetabular and isolated pelvic ring fractures: a comparison of initial assessment and outcome. Am Surg,2008,74(6):538~541.
    4 G?nsslen A, Steinke B, Krettek C. Internal fixation of acetabular posterior wall fractures. Oper Orthop Traumatol,2009,21(3): 283~295.
    5 Matta JM. Fractures of the acetabulum: accuracy of reduction and clinical results in patients managed operatively within three weeks after the injury. J Bone Joint Surg Am,1996,78(11):1632~1645.
    6 Giannoudis PV, Tzioupis C, Moed BR. Two-level reconstruction of comminuted posterior-wall fractures of the acetabulum. J Bone Joint Surg Br, 2007,89(4):503~509.
    7 Triantaphillopoulos PG, Panagiotopoulos EC, Mousafiris C, et al. Long-term results in surgically treated acetabular fractures through the posterior approaches. J Trauma, 2007, 62(2):378~382.
    8 Hirvensalo E,Lindahl J,Kiljunen V. Modified and new approaches for pelvic and acetabular surgery. Injury,2007,38(4):431~441.
    9 Matta JM, Mehne DK, Roffi R. Fractures of the acetabulum: Early results of a prospective study. Clin Orthop Relat Res,1986,(205):241~250.
    10 Kendoff D;Gardner MJ;Citak M, et al. Value of 3D fluoroscopic imaging of acetabular fractures comparison to 2D fluoroscopy and CT imaging. Arch Orthop Trauma Surg,2008,128(6):599~605.
    11 Letournel E. Fractures of the acetabulum. A study of a series of 75 cases. Clin Orthop Relat Res,1994,(305):5~9.
    12毛宾尧主编.髋臼骨折.北京:人民军医出版社,2004:47~153.
    13周东生主编.骨盆创伤学.济南:山东科学技术出版社,2003:380~614.
    14 Rommens PM. The Kocher-Langenbeck approach for the treatment of acetabular fractures.Eur J Trauma,2004,16(4):59~74.
    15 Rath EM,Russell GV Jr,Washington WJ. Gluteus minimus necrotic muscle debridement diminishes heterotopic ossification after acetabular fracture fixation. Injury, 2002,33(9):751~756.
    16 Karunakar MA,Le TT,Bosse MJ. The modified ilioinguinal approach. The modified ilioinguinal approach. J Orthop Trauma, 2004,18(6):379~383.
    17 Kloen P,Siebenrock KA,Ganz R. Modification of the ilioinguinal approach.J Orthop Trauma,2002,16(8):586~593.
    18 Griffin DB,Beaule PE,Matta JM. Safety and efficacy of the extended iliofemoral approach in the treatment of complex fractures of the acetabulum. J Bone Joint Surg Br,2005,87(10):1391~1396.
    19 Stockle U,Hoffmann R,Sudkamp NP, et al. Treatment of complex acetabular fractures through a modified extended iliofemoral approach. J Orthop Trauma,2002,16(4):220~230.
    20 Deo SD,Tavares SP,Pandey RK.Operative management of acetabular fractures in Oxford. Injury,2001,32(7):581~586.
    21王满宜,吴新宝,荣国威.髋臼骨折.中华创伤骨科杂志,2001,3(2):85~90.
    22 Helfet DL,Ali A. Periprosthetic fractures of the acetabulum. Instr Course Lect,2004,53:93~98.
    23 Kinik H,Armangil M. Extensile triradiate approach in the management of combined acetabular fractures. Arch Orthop Trauma Surg, 2004,124 (7) :476~482.
    24吴新宝,王满宜,朱仕文,等. 112例髋臼骨折手术治疗结果分析.中华创伤杂志,18(2):80~84.
    25 Ebraheim NA,Waldrop J, Yeasting RA, et al. Danger zone of the acetabulum. J Orthop Trauma,1992,6(2):146~151.
    26 Benedetti JA, Ebraheim NA, Xu R, et al.Anatomic considerations of plate-screw fixation of the anterior column of the acetabulum. J Orthop Trauma,1996,10(4):264~272.
    27 Helfet DL,Borrelli J,Dipasquale T, et al. Stabilization of acetabular fractures in elderly patients. J Bone Joint Surg Am, 1992,74(5):753~765.
    28 Giannoudis PV,Grotz MR,Papakostidis C, et al. Operative treatment of displaced fractures of the acetabulum. A meta-analysis. J Bone Joint Surg Br,2005,87(1):2~9.
    29 Jame LG. Acetabular fractures. In:Canale ST,ed. Campbell’s operative orthopaedics. 9th ed.ST. Louis: Mosby, 1998:2234~2252.
    30 Helfet DL , Schmeling GJ. Management of Complex Acetabular Fractures Through Single Nonextensile Exposures. Clin Orthop Relat Res,1994,(305):58~68.
    31 Stannard JP, Alonso J E. Controversies in acetabular fractures. Clin Orthop Relat Res, 1998,(353):74~80.
    32 Middlebrooks ES, Sims SH, Kellam JF, et al. Incidence of sciatic nerve injury in operatively treated acetabular fractures without somatosensory evoked potential monitoring. J Orthop Trauma, 1997,11(5):327~329.
    33 Gruson KI, Moed BR. Injury of the Femoral Nerve Associated with Acetabular Fracture. J Bone Joint Surg Am,2003,85:428~431.
    34 Frank JL, Reimer BL, Raves JJ. Traumatic iliofemoral arterial injury:An association with high anterior acetabular fractures. J Vasc Surg, 1989,10:198~201.
    35 Probe R, Reeve R, Lindsey RW. Femoral artery thrombosis after open reduction of an acetabular fracture. Clin Orthop Relat Res, 1992,(283):258~260.
    36 de-Valois JC, van-Schaik CC, Verzojlbergen F, et al. Contrast venography: from gold standard to‘golden backup’in clinically suspected deep vein thrombosis. Eur J Radiol,1990,11(2):131~2137.
    37 Olson SA, Matta JM. Surgical treatment of the acetabulum fractures. In: Skeletal Trauma.2nd ed. Singaple: Harcourt Publishers,1998:1217~1220.
    38 Steele N, Dodenhoff RM, Ward AJ, et al. Thromboprophylaxis in pelvic and acetabular trauma surgery: the role of early treatment with low-molecular-weight heparin. J Bone Joint Surg Br, 2005,87(2): 209~212.
    39姜保国,等主译.骨盆与髋臼骨折.北京:北京大学医学出版社,2005:242~243.
    40 Aho AJ, Isberg UK, Katevuo VK. Acetabular posterior wall fracture:38 cases followed for 5 years. Acta Orthop Scand, 1986,57(2):101~105.
    41 Pantazopoulos T, Nicolopoulos CS, BabisGC, et al. Surgical treatment of acetabular posterior wall fractures.Injury,1993,24(5):319~323.
    42 Moed BR, Willsoncarr SE, Watson JT. Results of operative treatment of fractures of the posterior wall of acetabulum. J Bone Joint SurgAm,2002,84(5):752~758.
    43 Helfet DL, Beck M, Gautier E, et al. Surgical techniques for acetabular fractures. In: Tile M, Helfet DL, Kellam JF. Fractures of pelvis and acetabulum.3rd ed. Lippincott :Williams&Wilkins, 2003:533~603.
    44 Kregor PJ, Templeman D. Associated injuries complicating the management of acetabular fractures: review and case studies. Orthop Clin North Am.2002,33(1):73~95.
    45 Deo SD, Tavares SP, Pandey RK, et al. Operative management of acetabular fractures in Oxford. Injury, 2001,32(7):581~586.
    46 Murphy MM, Zuakowski D, Vrahas MS. The death of articular chondrocytes after intra-articular fractures in humans. J Trauma ,2004,56:128~131.
    47 Ragnarsson B, Mjoberg B. Arthrosis after surgically treated acetabular fractures. Acta Orthop Scand, 1992,63:511~514.
    48 Brooker AF, Bowerman JW, Robinson RA , et al. Ectopic ossification following total hip replacement: Incidence and a method of classification. J Bone Joint Surg Am , 1973,55:1629~1631.
    49 DeLee J, Ferrari A, Chamley J. Ectopic bone formation following low friction arthroplasty of the hip . Clin Orthop Relat Res ,1976, (121):53~59.
    50 Alonso JE, Davila R, Bradley E. Extended iliofemoral verses triradiate approaches in management of associate acetabular fracture. Clin Orthop Relat Res ,1994,(305):81~87.
    51 Burd TA, Jowry KJ, Anglen JO, Indomethacin compared with localized irradiation for the prevention of heterotopic ossification following surgical treatment of acetabular fractures. J Bone Joint Surg Am,2001, 83 (1):1783~1788.
    52 Moore KD, Goss K, Anglen JO. Indomethecin versus radiation therapy for prophylaxis against heterotopic ossification. J Bone Joint Surg Br, 1998,80-B:259~263.
    53 Johnson EE, Kay MM, Bernstein L. Heterotopic ossification prophylaxisfollowing operative treatment of acetabular fractures. Clin Orthop Relat Res, 1994,(305):31~37.
    54 Child HA, Cole T, Fralkenberg E, Smith JE et al. A prospective evaluation of the timing of postoperative radiotherapy for preventing heterotopic ossification following traumatic acetabular fractures. Int. J radia boil Phys, 2000,47:1347~1352.
    55 Dettori JR,Norvell DC. Long-bone fractures:Does post-fracture NSAID use increase the risk of nonunion?中华创伤骨科杂志, 2008,10(2):184~185.
    56 Mohanty K, Taha W, Powell JN. Non-union of acetabular fractures. Injury. 2004,35(8):787~790.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700