粘性泥沙悬浮体系絮凝特性的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国水利工程建设的发展,水库、港口淤积,河口治理和高含沙水流等问题日益突出,对高浓度粘性沙悬浮体系的研究具有十分重要的意义。
    本文在总结国内外关于浑液面沉速公式的基础上,由极限絮团的概念出发,从力学角度推导出了极限絮团的大小,进而用极限絮团的群体沉速确定了浑液面的沉速。初步的计算结果表明,理论计算结果和试验结果吻合较好。
    粘性泥沙悬浮体系在初始泥沙浓度达到一定程度的条件下,将形成絮网沉降。作者仍从极限絮团概念出发,并通过对絮网形成机理的研究,假设当絮团体积浓度为1时为絮网形成的标志,从而确定了形成絮网的临界浓度条件。计算结果发现形成絮网的临界体积浓度为0.042左右,与其他研究者的试验结果相吻合。
    粘性泥沙的絮网沉降(或称整体沉降)过程分为等速沉降和压缩密实沉降两个阶段。对等速沉降阶段,作者从动量方程出发,给出了其沉降曲线的力学方程;对于压缩密实阶段,作者借用了土力学中的次固结理论。初步的模拟结果表明,该模型和试验结果吻合较好,但具体的应用有待于进一步研究。
    粘性泥沙絮网沉降(或称整体沉降)受到多方面因素的影响,如容器尺度、泥沙粒径和泥沙浓度的影响。作者采用两种不同粒径的泥沙,研究了容器口径、容器高度、泥沙浓度和泥沙粒径对絮凝沉降过程的影响。初步的研究结果表面,容器口径小于65mm时,整体沉降沉速随着容器口径的增大而减小,容器口径大于65mm后,整体沉降沉速随容器口径的增大变化不大,将趋向于一个恒定值;容器高度越大,则整体沉降沉速越小;泥沙浓度越大,整体沉降沉速越小;泥沙中值粒径越大,整体沉降沉速越大。
Colloidal aggregation phenomena are often encountered in cohesivesediment suspensions in which aggregation results from interactions betweenfine particles. This paper presented the preliminary research results on gel-likenetwork formed in hyperconcentrated cohesive sediment suspensions.
    Firstly, a brief review was given on the recent research of batchsedimentation speed. On this foundation, a new concept---limited floc sizewas brought out. And the mechanical analysis of this limited floc was givenand then, using a iteration method, the speed of batch sedimentation wasfinally achieved. Primary result shows that the academic values are accordantwith the experiment results.
    Secondly, based on the concept of limited floc size, the thesis putforward a hypothesis, that is, when the gel was formed, the volume fraction ofthe flocs was equal to 1. On this thesis, since we can easily ascertain thelimited floc size, we can easily then get the critical volume fraction was 0.042.This result was quite accordant with the prevenient result.
    As was known to all, the sedimentation-consolidation curve of cohesivesediment can be split to two phases. The one is equally speed-sedimentation,and the other is compress or consolidation phase. To the former phase, thethesis drew out a equation on the basis of momentum equation. And to theother, the theory and equations used in soil mechanics was used in inference.The result calculated using this model was quite accordant with theexperiment result
    Finally, the effects of the container caliber, the container height, thevolume fraction and the sediment properties were researched withexperiments. The experiment result shows that, the batch sediment speeddecreases with the height increases, and decreases with the volume fraction.And, when the mean diameter of the sediment increases, the batch sediment
    speed will increase along. The effects of the container caliber were not tooobvious. When the diameter of the container was small than 65mm, the thebatch sediment speed descends with the container caliber increases. But whenthe container caliber was big than 65mm, the batch sediment speed will keep aconstant.
引文
[1] 钱宁主编. 高含沙水流运动.清华大学出版社,1989.
    [2] 夏震寰,宋根培. 离散颗粒和絮凝体相结合的沉降特性. 第二次河流泥沙国际学术讨论会论文集,1983,253-264.
    [3] 杨美卿,钱宁. 紊动对细泥沙浆液絮凝结构的影响. 水利学报,1986(8):21-30.
    [4] 杨美卿. 细泥沙絮凝的微观结构. 泥沙研究,1986,(3):73-78.
    [5] 王兆印,宋振琪. 粘土悬浮液明渠流的减阻现象. 力学学报,1996,28(5):522-531.
    [6] 王兆印等. 粘土泥浆的结构特征及其对明渠流的影响. 水利学报,1990,(2):44-50.
    [7] 韩其为. 淤积物干容重的分布及其应用. 泥沙研究,1997,(2):10-16.
    [8] 匡尚富,徐永年,李文武. 高含沙水流的揭河底现象及机理研究. 第二届全国泥沙基本理论研究学术讨论会论文集,1995,408-419.
    [9] 王兆印,王旭昭,胡世雄. 利用粘土絮凝网处理钼矿尾液技术探索. 泥沙研究,2002,(2):36-39.
    [10] 黄岁梁, 万兆惠. 河流泥沙吸附-解吸重金属污染物试验研究现状(一). 水利水电科技进展,1995,15(1):25-30.
    [11] 黄岁梁, 万兆惠. 河流泥沙吸附-解吸重金属污染物试验研究现状(二). 水利水电科技进展, 1995,15(2):27-31.
    [12] 钱宁,万兆惠. 泥沙运动力学. 科学出版社,1983.
    [13] 张瑞瑾,谢鉴衡,王明甫,黄金堂. 河流泥沙动力学. 水利电力出版社,1989.
    [14] Wan, Z.H. & Wang, Z.Y. Hyperconcentrated flow. IAHR & AIRH Series, A.A.Balkema, 1994.
    [15] Olphen H. Clay colloid chemistry. New York: John Wiley, 1977.
    [16] 王果庭. 胶体稳定性. 科学出版社,1990.
    [17] 张志忠,阮文杰,蒋国俊. 絮凝泥沙若干特性研究. 第二届全国泥沙基本理论研究学术讨论会论文集,1995, 172-177.
    [18] Coussot, P. , Phys. Rev. Lett. 74,1995, 3971.
    [19] 夏震寰,电化学理论,清华大学水利系泥沙研究室研究报告,1980.
    [20] Mantz,P.A. (1983) Review of Laboratory Sediment Transport Research Using Fine Sediment, Proc. of the 2nd Inter. Symp. on River Sedimentation, Vol.2, 532-557.
    [21] Partheniades, E.(1986) The present state of knowledge and needs for future research on cohesive sediment dynamics, Proc. of the 3rd Inter. Symp. on River Sedimentation,,(2):1-25.
    [22] 张志忠,长江口细颗粒泥沙基本特性研究,泥沙研究,1996,(2):67-73,.
    [23] 林以安,李炎,唐仁友(1997) 长江口絮凝聚沉特征与克力表面理化因素作用――I 悬浮颗粒絮凝沉降特征,泥沙研究,1997,(1):42-83.
    [24] 钟德钰,王光谦,王士强(1998)非均匀颗粒形成浆体屈服应力的计算模型,泥沙研究,1998,(3):29-33.
    [25] 张济忠,分形,清华大学出版社,1995.
    [26] 胡纪华,杨兆禧,郑忠编著,胶体与界面化学,华南理工大学出版社,1997,33-36.
    [27] Mandelbrot, B.B. Fractals: form. chance and dimension, W. H. Freeman Company, San Francisco. 1997.
    [28] Yasuhisa Adachi, Jutaro Karube. Application of a scaling law to the analysis of allophane aggregates. Colloids and Surfaces A: Physicochemical and Engineering Aspects 151,1999, 43–47.
    [29] Mandelbrot, B.B. The fractal geometry of nature. W. H. Freeman Company, New York., 1983. (中译本:陈守吉,凌复华. 大自然的分形几何学,上海远东出版社,1998.).
    [30] Falconer,K.J. The geometry of fractal Sets. Cambridge Univ.Press, 1985..
    [31] 黄畇. 分形发展三十年. 物理, 1998,27(2):90-92..
    [32] Wihen, T.A. and Sander, L.M.. Diffusion Limited aggregation a kinetic critical phenomenon. Physical Review Letters, 1981,(47): 1400-1403.
    [33] Meakin, P. Cluster-particle aggregation with fractal (Levy flight) particle trajectories. Phys.Rev. 1984, B29:3722-3726.
    [34] Meakin, P.. Format ion of Fractal Clusters and Networks by Irreversible Diffusion-Limited Aggregation. Phys.Rev.Lett. 1983, (51): 1119-1125.
    [35] P. Tang, J.A. Raper. Modelling the settling behaviour of fractal aggregates–a review. Powder Technology.2002, (123):114–125.
    [36] Kazumi Miyahara, Yasuhisa Adachi, Katsuya Nakaishi,Masami Ohtsubo. Short communication: Settling velocity of a sodium montmorillonite floc under high ionic strength. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2002,(196):87–91.
    [37] 杨铁笙,张正红,泥沙淤积物颗粒排列结构的分形模式研究,应用基础与工程科学学报,1999,2(3):152-156.
    [38] Pierre, A.C. and Ma, K. S. DLVO theory and clay aggregate architectures formed with AlCl3. J. of the European Ceramic Society, 1999, 19, 1615-1622.
    [39] Kunsong Ma*, Allain C. Pierre. Microstructure of kaolinite sediments made with unaged FeCl3. Colloids and Surfaces A,1998, (45),175-184.
    [40] Ma, K. S. and Pierre, A.C. Colloidal behavior of montmorillonite in the presence of Fe3+ ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155, 359-372.
    [41] Winterwerp, H. On the dynamics of high-concentrated mud suspensions, Series “Communications on Hydraulic and Geotechnical Engineering” of Delft University of Technology, Report No. 99-3, 37-41.
    [42] J.C.Winterwerp.On the flocculation and settling velocity of estuarine mud, Continental Shelf Research. 2002,(22):1339-1360.
    [43] 费祥俊.泥沙的群体沉降——两种典型情况下非均匀沙沉速计算.泥沙研究,1992,(3):11-19.
    [44] 钱宁. 高含沙水流运动.北京:清华大学出版社,1989:30-84.
    [45] Ives, K.J. and Bhole, A.G. Theory of Flocculation for Continuous Flow System. J.Env.Eng.Div, 1973, (99), 17-34.
    [46] 严镜海.群体泥沙静水沉降的阻力分析,泥沙研究,1982,(3):52-58.
    [47] Joseph A. Yanez et. Viscoelastic Properties of Particle Gels, Journal of Colloid and Interface Science, 1999, (209):162-172.
    [48] C.Allain, M.Cloitre, and F.Parisse. Settling by Cluster Depostion in Aggregating Colloidal Suspensions, Journal of Colloid and Interface Science, 1996, (178):411-416.
    [49] Pierce, T.J. and Williams, P.J. Experiments on Certain Aspects of Sedimentation of Estuary Muds, Proc.Ice, 1966, (34):391-342.
    [50] 黄建维.粘性泥沙在静水中沉降特性的试验研究[J].泥沙研究,1981,(2):31-40.
    [51] J.C.Winterwerp.On the flocculation and settling velocity of estuarine mud. Continental Shelf Research, 2002,(22):1339-1360.
    [52] 陈保平,金同轨.黄河高浊度水自然沉淀某些规律的新探索[J].泥沙研究,1991,(3):62-67.
    [53] 钱意颖.泥沙群体沉降的特性[A].黄委会水科所,1979.
    [54] 王兴奎,邵学军,李丹勋.河流动力学基础[M].北京:中国水利水电出版社,2002,70-72.
    [55] 武道吉.高浊度水自然沉降浑液面沉速的计算及试验验证[J].山东建筑工程学院学报,1996,(4):53-57.
    [56] 褚君达.高浓度浑水的基本特性[A].第二次河流泥沙国际学术讨论会论文集[C].北京:水利电力出版社,1983,165-273.
    [57] 费祥俊.高浓度浑水的粘滞系数[J].水利学报,1982,(3):57-63.
    [58] 杨铁笙等.粘性泥沙悬浮液中颗粒表面滑动层厚度的计算[J].水利学报,2002,(5):20-25.
    [59] C. Allain, M. Cloitre, and M. Wafra. Aggregation and Sedimentation in Colloidal Suspensions. Physical Review Letters, 1995, (74):1478-1481.
    [60] D.Senis, L. Gorre-Talini, and C. Allain. Systematic study of the settling kinetics in an aggregating colloidal suspension. Eur.Phys.J.E4,2001,(4):59-68.
    [61] F.A.L. Dullien. Porous media: fluid transport and pore structure. London: Academic Press, 1979, 254-258.
    [62] 黄文熙.土的工程性质[M].北京:水利电力出版社,1983,76-78.
    [63] 蔡树棠.泥沙的群体沉降速度[J].应用数学和力学,1983,(3):341-346.
    [64] 李亦工.静水中细颗粒泥沙群体沉降规律的探讨[J].海洋工程,1990,(1):60-68.
    [65] 黄文熙.土的工程性质[M].北京:水利电力出版社,1983,72-76.
    [66] 许保玖,安鼎年. 给水处理理论与设计[M].北京:中国建筑工业出版社,1992,349-362.
    [67] 武道吉.高浊度水浑液面沉速与光密度间关系初探[J].中国给水排水,1996,(6):14-16.
    [68] 张慧,张政权,吴广志.基于人工神经网络的浑液面沉速预测[J].水利水电快报,2004,(3):31-33.
    [69] 刘毅. 温度对粘性泥沙的沉速及淤积的影响. 水利水电快报,1994,(3):21-24.
    [70] 钱宁. 高含沙水流运动. 清华大学出版社,1989.
    [71] Feder, J. Fractals. Plenum, New York, 1988, 31-38.
    [72] 吴华林,张小峰等.非絮凝均匀沙群体沉速研究[J].武汉水利电力大学学报,1996,(1):85-89.
    [73] 张小峰,陈志轩.关于悬移质含沙量沿垂线分布的几个问题[J].水利学报,1990,(10):41-48.
    [74] Kazumi Miyahara, Yasuhisa Adachi, Katsuya Nakaishi,Masami Ohtsubo. Short communication: Settling velocity of a sodium montmorillonite floc under high ionic strength. Colloids and Surfaces A: Physicochemical and Engineering Aspects 196 (2002) 87–91.
    [75] 陆谢娟,等.絮凝过程中絮体分形及其分形维数的测定.华中科技大学学报,2003,20(3):46-49.
    [76] 贾亚军,金同轨.黄河泥沙的自然沉淀特性及机理研究,西安建筑科技大学硕士论文,50-58.
    [77] 杨铁笙, 赵明, 梁朝皇, 李富根, 洪国军, 杨美卿, 詹秀玲. 粘性悬浮体类凝胶态网络微细结构研究结题报告. 国家自然科学基金资助课题, 批准号:50179016, 2002-2004
    [78] Du G.L. et al. Modeling coagulation kinetics incorporating fractal theories: comparison with observed data. Water Research, Vol. 36, 1056-1066, 2002.
    [79] Kranenburg, C. The fractal structures of cohesive sediment aggregates. Estuarine, Coastal and Shelf Science, 1994, 39, 451-460.
    [80] Liang, C.H., Yang, T.S., et al. Study on gel-like network in cohesive sediment suspension. Ninth international symposium on river sedimentation(9th ISRS), vol. III, pp. 1332-1337, Yichang, China, 2004.
    [81] 张瑞瑾, 谢鉴衡,王明甫,黄金堂. 河流泥沙动力学, 233-236, 水利电力出版社, 1989.
    [82] 张志忠. 长江口细颗粒泥沙基本特性研究. 泥沙研究, 1996, (1), 67-73.
    [83] 时钟. 长江口细颗粒泥沙过程. 泥沙研究, 2000, (6), 72-80.
    [84] 杨铁笙, 熊祥忠, 詹秀玲, 杨美卿. 粘性细颗粒泥沙絮凝研究概述. 水利水运工程学报, 2003, (2), 65-77.
    [85] 陈洪松, 邵明安, 李占斌. NaCl 对细颗粒泥沙静水絮凝沉降影响初探. 土壤学报, 2001, (1), 131-134.
    [86] 黄建维. 粘性泥沙在静水中沉降特性的试验研究. 泥沙研究, 1981, (2), 30-39.
    [87] Winterwerp, J.C. On the flocculation and settling velocity of estuarine mud. Continental shelf research, 2002, 22, pp. 1339-1360.
    [88] 费祥俊. 浆体与粒状物料输送水力学. 北京:清华大学出版社, 1994105-110.
    [89] Allain, C., Cloitre, M., &Wafra, M. Aggregation and sedimentation in colloidal suspensions. Physical review letters, vol.74, no.8, 1995, 1478-1481.
    [90] Allain, C., Cloitre, M., & Parisse, F. Settling by cluster deposition in aggregating colloidal suspensions. Journal of Colloid and Interface Science, 178, 1996, 411-416.
    [91] Ma, K.S. and Pierre, A. C. Clay sediment-structure formation in aqueous kaolinite suspensions. Clays and clay minerals, Vol.47, No.4, 1999, 522-526.
    [92] Ma, K. S. and Pierre, A.C. Colloidal behavior of montmorillonite in the presence of Fe3+ ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155, 359-372.
    [93] Pierre, A. C., Introduction to sol-gel processing, Kluwer Publisher,1998.
    [94] 沈钟,王果庭,胶体与表面化学,化学工业出版社,北京.
    [95] 钱宁.高含沙水流运动[M].北京:清华大学出版社,1989,30-84.
    [96] 宋根培.混合沙沉降特性的试验研究,泥沙研究,1985,(2):40-49.
    [97] 费祥俊.泥沙的群体沉降——两种典型情况下非均匀沙沉速计算.泥沙研究,1992,(3):11-19.
    [98] 费祥俊.黄河中下游含沙水流粘度的计算模型.泥沙研究,1991,(2):30-35.
    [99] W.C.K.Poon, M.D.Haw. Mesoscopic structure formation in colloidal aggregation and gelation, Advances in colloid and interface science,1997, 73:71-126.
    [100] J.C.Winterwerp.On the flocculation and settling velocity of estuarine mud. Continental Shelf Research, 2002,(22):14-16.
    [101] 钱宁.高含沙水流运动.北京:清华大学出版社,1989:83-90.
    [102] 宋根培.混合沙沉降特性的试验研究,泥沙研究,1985,(2):40-49.
    [103] C. Allain, M. Cloitre, and M. Wafra. Aggregation and Sedimentation in Colloidal Suspensions. PHYSICAL REVIEW LETTERS, 1995, VOLUME 74, NUMBER 8: 1478~1481.
    [104] S.C.A. Fran?a et al. Study on batch sedimentation simulation——establishmentof constitutive equations. Powder technology, 1999, (101):157-164.
    [105] 黄岁梁,陈稚聪,府仁寿. 粘性类土的起动模式研究. 水动力学研究与进展,1997A 辑,12(1):1-7.
    [106] 陈仲颐,周景星,王洪谨.土力学.北京:清华大学出版社,1994,137-138.
    [107] 杨铁笙等.《粘性泥沙悬浮体类凝胶网络微细结构研究结题报告》,2005 年 1月。
    [108] D. Senis & C. Allain. Scaling analysis of sediment equilibrium in aggregated colloidal suspensions. PHYSICAL REVIEW E, 1997, Vol.55, No. 8: pp7797-7800.
    [109] Ma, K.S. and Pierre, A. C. Clay sediment-structure formation in aqueous kaolinite suspensions. Clays and clay minerals,Vol.47,No.4,1999,522~526 宋根培.混合沙沉降特性的试验研究,泥沙研究,1985,(2):40-49.
    [110] C. Allain, M. Cloitre, and M. Wafra. Aggregation and Sedimentation in Colloidal Suspensions. PHYSICAL REVIEW LETTERS, 1995, VOLUME 74, NUMBER 8: 1478-1481
    [111] C. Allain, M. Cloitre, and M. Wafra. Aggregation and Sedimentation in Colloidal Suspensions. PHYSICAL REVIEW LETTERS, 1995, VOLUME 74, NUMBER 8: 1478-1481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700