粒计算分类知识发现算法及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类正在步入一个以知识生产、应用为最重要因素的知识经济时代。以知识发现为核心的智能信息处理技术在知识的生产过程中具有越来越重要的作用。分类具备一般知识发现的数据预处理、数据挖掘、模型评估和知识表示的基本流程,是一项重要的知识发现任务。由于分类的广泛应用及其在化学化工领域的重要意义,对分类方法展开研究不仅可以促进数据挖掘技术的发展,还能极大地开拓化学化工领域中知识发现的应用前景。
     目前,分类知识发现的研究和技术已有长足进步,各种挖掘方法层出不穷,但一些有待研究的问题也日趋突出。尤其在化学化工领域,由于采集和积累的数据往往具有多因子、非线性、高噪音和非均匀分布等特点,常规的分析和处理方法不仅耗时,而且难以有效地挖掘和发现其中所隐含的知识,相关的分类知识发现方法和技术有待改进和发展,对之展开深入的研究,对促进化学化工学科的发展具有重要的意义,也会产生巨大的经济价值。
     粒计算是信息处理的一种新的概念和计算范式,覆盖了所有与粒度相关的理论、方法、技术和工具。粒计算的基本思想是模拟人类智能的特点,在求解复杂问题时,通过选择合适的粒度,降低问题求解的难度,有助于找到一种较好的解决方案。粒计算原理为知识发现的研究提供了新途径。但是,目前有关粒计算的研究大多还以理论研究为主,粒计算的应用研究较少,尤其在化学化工领域,更鲜见文献报道。本文归纳提出了粒计算用于知识发现的四项基本原理,利用此原理,对当前分类知识发现方面的若干挑战问题进行了研究,提出了相应的策略和方法,以用于化学化工领域中的相关问题。
     本文的主要研究工作和成果可归纳如下:
     1.粒化和聚类是一种对知识进行总结概括的方法,聚类生成的类刻画了数据所蕴涵的类知识。聚类分析,是软科学研究的重要的基础性方法,也是一种有效的手段。自适应共振(Adaptive Resonance Theory, ART)网络ART2用于聚类,具有许多优点。同时也存在对输入的渐变模式不敏感,抗噪音性能有限的缺点。为此,本文提出了改进的自适应共振网络(ART2 with Enhanced Triplex Matching mechanism, ETM-ART2),加强了内部检测机制,以提高ART2网络的性能,对橄榄油样本进行聚类分析试验,其聚类性能优良,尤适用于海量数据的聚类问题。ETM-ART2还可为分类问题构建信息粒,有助于知识发现,并提高分类性能。
     2.粒的构建是应用粒计算的基本步骤之一。本文根据粒度求解近似原理,提出了采用ART网络构建信息粒,可为分析对象方便、快速地建立合适的信息粒;又由GrC(Granularcomputing, GrC)问题简化原理,提出了基于信息粒的分类知识发现的求解方案。开发了两个算法:其一,基于信息粒的模糊分类知识发现算法(Information Granulation based Fuzzy Classification Knowledge Discovery Method, IG-FCKDM);其二,基于粒的关键特征分析(Key Feature Analysis based on Granulation, KFAG)、由C4.5实施分类规则挖掘的算法KFAG-C4.5。IG-FCKDM侧重于求解非均衡两分类问题和分类误差敏感问题,即分类判定错误可能带来巨大损失。它采用Fuzzy ART构建信息粒,继而通过模糊处理,提取分类规则。对疾病诊断的试验表明,IG-FCKDM处理此类问题效果较好,且其预测正确性和可信度对用户有更重要的意义。KFAG-C4.5可用于一般分类问题和多类非均衡分类问题。它采用ETM-ART2构建信息粒,再进行本文提出的基于粒的关键特征分析,并将各属性合理地划分为具有较强的类别区分能力的若干子属性,子属性数不致过多。使信息粒由子属性描述,并以离散值0或1表示。便于最后采用C4.5实施分类规则挖掘。对玻璃两分类和多类非均衡问题的试验表明,KFAG-C4.5具有较好的分类识别能力。IG-FCKDM和KFAG-C4.5这两个算法挖掘所得知识虽然表现形式有所不同,但都很简洁,可理解性好,易于各类专业人员分析,且较好地解决了非均衡数据的分类问题。
     3.集成学习常可提高单个分类器的性能,随着研究的深入,选择性集成学习逐渐成为研究热点。当前,基于随机优化算法的选择性集成算法,大多以泛化误差为目标,基本忽略了个体分类器本身的特性,尤其是差异性度量。这些方法也取得了一些成果,但计算复杂度较高,效率偏低。为解决个体分类器差异性度量的难题,本文基于GrC问题的等价原理,将选择性集成问题转换到较简单的关联空间,研究了一种简单而高效的选择机制,开发了基于知识粒、兼顾正确率和差异性的选择集成(Correctness and Diversity based Selective Ensemble, CDSE)算法。将其用于毒性作用机制的分类试验,其性能优于集成算法Bagging、AdaBoost.M1,以及单个C4.5分类器。CDSE从优选个体分类器的角度出发,为提高集成分类的泛化性能和效率提供了有效的解决方案。
     4.在集成分类器的构建生成和预测判定这两个层面上,提出了自适应的新思路,将CDSE拓展为自适应集成(Correctness and Diversity based Adaptive Selective Ensemble, CDASE)学习算法,进一步提高了集成分类的泛化性能。CDASE针对每一类别,自适应地生成特定适用的集成分类器,组合为集成分类器组AE-Group,其中各个集成分类器间存在包容性,故其占用的计算资源甚少,有效地减少了存储空间和计算时间。AE-Group又以自适应方式,即从集成分类器组中选用最适合的集成分类器对检测数据实施分类判定。用于多种模式分类问题的试验表明,CDASE算法以较少的个体分类器,即能实现较好的集成学习效果。与其它多种算法相比,CDASE具有良好的泛化性能,更为高效,且稳定性好。CDASE算法突破常规单一集成学习机适用性较窄的局限性,为进一步提高集成学习的泛化能力提供了新的思路。
With our world enter in a knowledge economy era, knowledge production and application becomes one of the most important factors. Knowledge discovery, as the core of intelligent information processing technology, plays more and more important role in the knowledge production. The classification is one of the most important tasks in knowledge discovery, involved with data preprocessing, data mining, model evaluation and knowledge representation. In the field of chemistry and chemical engineering, the classification is wildly used and is also very important, so the study of the classification method can not only promote the development of data mining techniques, but also greatly expand the knowledge discovery application.
     At present, the researches and technologies of classification knowledge discovery have made significant progress, and at the same time a variety of data mining methods are used, but many prominent problems are still remain to be studied. Especially, in the field of chemistry and chemical engineering, because the collected data usually have characteristics of multi-factor, non-linear, high-noise and imbalance, the conventional data analysis and processing methods are not only time-consuming but also difficult to effectively mine the confidential message. If the relevant methods of classification knowledge discovery will be improved and developed, it can promote the development of chemistry and chemical engineering. And it is also significantly valuable in economy.
     Granular computing is a new concept and computing paradigm of information processing, covering all of the granularity related theories, methods, techniques and tools. In the course of solving a complex problem, the basic idea of granular computing is to simulate the human intelligence characteristics, select the appropriate granularity and reduce the complexity of solving problem, which is helpful to find a better solution, so granular computing provides a new way for knowledge discovery research. However, the current research on granular computing is mainly focused on theoretical research, and the application of granular computing is rarely concerned and reported especially in the field of chemistry and chemical engineering. In this paper, four basic principles of using granular computing into knowledge discovery are summarized, and then the research on adapting the principles to solve some challenges in classification knowledge discovery is provided, and at last the solution strategies and methods are proposed for the related problems in the field of chemistry and chemical engineering. The major works and achievements in this paper can be summarized as follows:
     1. Granulation and clustering is a kind of method of summarizing the classification knowledge, and the clustered class can present the confidential knowledge of data. Clustering analysis, as one of the important basic methods in soft science research, is an effective means. Adaptive Resonance Theory 2 (ART2) network has many advantages on clustering, but it also has some disadvantages, such as insensitivity to gradually changing of the input patterns and limited anti-noise performance. Therefore, an improved ART2 with Enhanced Triplex Matching mechanism (ETM-ART2) is proposed to improve clustering capability of ART2 networks. Experiments on cluttering the olive oil data sets show that the ETM-ART2 has a better clustering performance, and is particularly fit to be applied into the massive data clustering problems. The ETM-ART2 can also be used to construct the information granules in classification, which is helpful for knowledge discovery and improvement of classification performance.
     2. Constructing information granules is one of the basic steps in granular computing. Based on the principle of granularity knowledge discovery and granularity approximate solution summarized in this paper, a method of constructing information granules by ART network is proposed to analyze the research data conveniently and rapidly, and then a classification knowledge discovery solution based on information granules is also proposed according to the principle of problem be simplified by Granular Computing (GrC). Two algorithms are developed:one is the Information Granulation based Fuzzy Classification Knowledge Discovery Method (IG-FCKDM), and another one is the key feature analysis based on granulation (KFAG) for classification rules mining by C4.5, names as KFAG-C4.5. IG-FCKDM focuses on the imbalanced two-class problems and error-sensitive issue. The IG-FCKDM constructs the information granules by Fuzzy ART, and extracts the classification rule by fuzzy processing. Experiments by IG-FCKDM on a disease diagnosis problem show its better performance for this kind of problem and more important significance of prediction accuracy and credibility by IG-FCKDM. KFAG-C4.5, which can be used for general and multi-class imbalanced classification problems, uses ETM-ART2 to construct good information granules, and then analyzes the key feature based on granulation, and at last divide data's attributes into some distinguishable sub-attributes reasonably, so the number of sub-attributes will not be large. The information granules can be presented by sub-attributes with discrete values of 0 or 1, in order to mine the classification rules by C4.5. Experiments on two-class problem of glass and imbalanced multi-class problem show the good classification capabilities of KFAG-C4.5. The messages mined by IG-FCKDM and KFAG-C4.5 are different in manifestations, but they are very concise, comprehensible, easy to analyze for various users, and effective to solve the imbalanced data classification problem.
     3. Ensemble learning usually can improve the performance of a single classifier, and the selective ensemble learning is focused on with deeper study, But at the present, the selective ensemble algorithms based on stochastic optimization algorithms mainly set the generalization error as the goal, and almost ignore the diversity of individual classifiers, especially the diversity measuring. Though some good results can be achieved, there exists the more complex computing and low efficiency. In order to solve the problem of measuring the diversity of the individual classifier, the selective ensemble learning problem is transformed into a simple correlation space based on GrC problem equivalent principle, and a simple, efficient selective ensemble mechanism is proposed. The Correctness and Diversity based Selective Ensemble (CDSE) algorithm is proposed, which integrates the accuracy with the diversity of individual classifiers, based on knowledge granules. Experiments on toxicity classification show that CDSE has better classification performance than other ensemble algorithms such as Bagging, AdaBoost.M1, and single classifier C4.5. In the view of selecting appropriate individual classifiers, CDSE provides an efficient solution to improve the generalization performance and efficiency of ensemble classifier.
     4. Based on the aspects of construction of ensemble classifiers and prediction determining, a new Correctness and Diversity based Adaptive Selective Ensemble (CDASE) learning algorithm is put forward, extending CDSE into an adaptive ensemble learning algorithm, in which the generalization performance of ensemble classifiers is improved. An appropriate ensemble classifier is adaptively generated for each category, so they form a group of ensemble classifiers called as AE-Group. Each one of them shares the same storage space, so AE-Group occupies fewer computation resources and less storage space. Then classification for test data is also adaptively decided by selecting appropriate ensemble classifier from AE-Group. Experiments on a multiple-class problem show CDASE has the better ensemble learning results with less individual classifier. Compared with other algorithms, CDASE has a good generalization performance, so it is more efficient and stable. CDASE overcomes the limitations on narrow application of single-ensemble learning algorithm, and provides a novel method to further improve the generalization capability of ensemble learning.
引文
[1]中化国际咨询公司.21世纪世界化学工业发展趋势及对策(上册)[M].1999年.
    [2]FAYAD U, PIATETSKY-SHAPIRO G and SMYTH P. From data mining to knowledge discovery:An overview [M]//FAYYAD U M, PIATETSKY-SHAPIRO G, SMYTH P, et al. Advances in knowledge discovery and data mining. Cambridge:AAAI/MIT.1996:1-34.
    [3]马尚才,李爱军,石洪波.决策支持与知识发现[M].中国科学技术出版社,2005.
    [4]史忠植.知识发现[M].北京:清华大学出版社,2002.
    [5]GEHRKE J, GANTI V, RAMAKRISHNAN R, et al. BOAT—optimistic decision tree construction [C]// Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania, United States. ACM,1999:169-180.
    [6]KAMBER M, WINSTONE L, GONG W, et al. Generalization and decision tree induction:efficient classification in data mining [C]//Proceedings of the 7th International Workshop on Research Issues in Data Engineering (RIDE'97) High Performance Database Management for Large-Scale Applications. IEEE Computer Society,1997:111-120.
    [7]HUANG Z. Extensions to the. K-means algorithm for clustering large data sets with categorical values [J]. Data Mining and Knowledge Discovery,1998,2(3):283-304.
    [8]AGRAWAL R and SRIKANT R. Fast algorithms for mining association rules [C]//Proceedings of the 20th Internationa) Conference on Very Large Databases, San Francisco. Morgan Kaufmann Publishers, 1994:487-499.
    [9]HAN J, PEI J and YIN Y. Mining frequent patterns without candidate generation [J]. SIGMOD Record., 2000,29(2):1-12.
    [10]PARK S, CHUW W, YOON J, et al. Efficient searches for similar subsequences of different lengths in sequence databases [C]//2000 International Conference Data Engineering San Diego,CA IEEE Computer Society,2000:23-32.
    [11]李东晖,杜树新,吴铁军.基于壳向量的线性支持向量机快速增量学习算法[J].浙江大学学报(工学版),2006,(02):202-206+215.
    [12]毛建洋,黄道.一种新的支持向量机增量算法[J].华东理工大学学报(自然科学版),2006,(08):989-991.
    [13]张学明,施法中.分布式并行数据挖掘系统的研究与实现[J].计算机工程与应用,2002,(04):198-200.
    [14]佘春东,范植华,孙世新等.一种提高并行数据挖掘效率的方法[J].计算机科学,2004,(02):132-134+166.
    [15]刘华元,袁琴琴,王保保.并行数据挖掘算法综述[J].电子科技,2006,(01):65-68+73.
    [16]赵冬泉,党安荣,陈吉宁.监督分类方法在图片资料专题信息提取中的应用研究[J].测绘通报,2006,(11):32-34.
    [17]饶雄,高振宇.多分类器联合监督分类方法研究[J].四川测绘,2006,(01):15-16+14.
    [18]季文赞,周傲英,张亮等.一种基于遗传算法的优化分类器的方法[J].软件学报,2002,(02):245-249.
    [19]闫河,唐德东,黄扬帆等.一种基于遗传算法的多类分类器设计方法[J].仪器仪表学报,2004,(S2):414-416+420.
    [20]JF ELDER I V and PREGIBON D. A statistical perspective on knowledge discovery in databases [M]//FAYYAD U M, PIATETSKY-SHAPIRO G, SMYTH P, et al. Advances in knowledge discovery and data mining.1996:American Association for Artificial Intelligence.1996:83-113.
    [21]CHEESEMAN P and STUTZ J. Bayesian classification (AutoClass):theory and results [M]. Advances in Knowledge Discovery and Data Mining. American Association for Artificial Intelligence.1996:153-180.
    [22]FREUND Y. Boosting a weak learning algorithm by majority [J]. Information and Computation,1995, 121(2):256-285.
    [23]FREUND Y and SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting [J]. Journal of Computer and System Sciences,1997,55(1):119-139.
    [24]ZHU X and YANG Y. A lazy bagging approach to classification [J]. Pattern Recognition,2008,41(10): 2980-2992.
    [25]MARTINEZ-MUNOZ G and SUAREZ A. Using boosting to prune bagging ensembles [J]. Pattern Recognition Letters,2007,28(1):156-165.
    [26]BAUER E and KOHAVI R. An Empirical Comparison of Voting Classification Algorithms:Bagging, Boosting, and Variants [J]. Machine Learning,1999,36(1-2):105-139.
    [27]SILBERSCHATZ A and TUZHILIN A. What makes patterns interesting in knowledge discovery systems [J]. IEEE Transactions on Knowledge and Data Engineering,1996,8(6):970-974.
    [28]周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8.
    [29]傅强,胡上序,赵胜颖.基于PSO算法的神经网络集成构造方法[J].浙江大学学报(工学版),2004,(12):63-67.
    [30]LIN T Y. Granular computing [C]//Announcement of the BISC Special Interest Group on Granular Computing,1997.
    [31]LIN T Y. What is granular computing [EB/OL] http://vww.cs.sjsu.edu/ tylin/publications/paperLisd2005/bl.ps.
    [32]ZADEH L A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic [J]. Fuzzy Sets System,1997,90(2):111-127.
    [33]PAWLAK Z. Rough sets [J]. International Journal of Computer and Science,1982,11:341-356.
    [34]张铃,张钹.模糊商空间理论(模糊粒度计算方法)[J].软件学报,2003,14(4):770-776.
    [35]YAO Y Y. Perspectives of granular computing [C]//2005 IEEE International Conference on Granular Computing,2005:85-90.
    [36]YAO Y Y. Granular Computing:basic issues and possible solutions [C]//Proceedings of the Fifth Joint Conference on Information Sciences, Vols 1 and 2, Atlantic City, New Jersey, USA,2000:186-189.
    [37]YAO Y Y. Granular computing using neighborhood systems [M]//ROY R, FURUHASH T and CHAWDHRY P K. Advances in soft computing:engineering design and manufacturing. Springer-Verlag, London.1999:539-553.
    [38]YAO Y Y. On Modeling Data Mining with Granular Computing [C]//25th Annual International Computer Software and Applications Conference (COMPSAC'O1), Chicago,Illinois,2001.
    [39]YAO Y Y and ZHONG N. Potential applications of granular computing in knowledge discovery and data mining [C]//Proceedings of World Multiconference on Systemics, Cybernetics and Informatics, Volume 5:Computer Science and Engineering, Orlando, Florida,1999:573-580.
    [40]张燕平,张铃,吴涛.不同粒度世界的描述法——商空间法[J].计算机学报,2004,27(3):328-333.
    [41]苗夺谦,王国胤,刘清等.粒计算:过去、现在与展望[M].科学出版社,2007.8.
    [42]李道国,苗夺谦,张东星.粒度计算研究综述[J].计算机科学,2005,32(9):1-12.
    [43]张悦,刘旸.基于决策树数据挖掘的分析与应用[J].辽宁石油化工大学学报,2007,(01):78-80.
    [44]边海燕,许南山,赵彦滨.决策树在化工系统压缩机故障诊断方面的应用[J].化工自动化及仪表,2004,(01):39-40+47.
    [45]QUINLAN J R. Discovering rules from large collections of examples:a case study. [M]//MICHIE D. Expert systems in the micro-electronic age. Edinburgh:Edinburgh University Press.1979:168-201.
    [46]QUINLAN J R. C4.5 Programs for Machine Learning [M]. San Mateo, CA:Morgan Kaufmann Publishers, 1993.
    [47]冯少荣.决策树算法的研究与改进[J].厦门大学学报(自然科学版),2007,(04):496-500.
    [48]唐谦,张大方,黄昆.基于信息增益率的决策树对入侵检测的改进[J].计算机工程,2006,(07):146-148.
    [49]徐怡,李龙澍,李学俊.改进的决策树生成算法及其在RoboCop中的应用[J].计算机工程与应用,2007,(02):57-59.
    [50]蒙祖强,蔡自兴.一种新的基于遗传算法的数据分类方法[J].小型微型计算机系统,2004,25(4):690-693.
    [51]WEBB G I and PAZZAN] M J. Adjusted Probability Naive Bayesian Induction [C]//Selected papers from the 11th Australian Joint Conference on Artificial Intelligence on Advanced Topics in Artificial Intelligence. Springer-Verlag,1998.
    [52]王慧燕,徐珊.基于贝叶斯分类器的脉象自动识别方法[J].中国生物医学工程学报,2009,(05):735-742.
    [53]王梦松,陈德钊,陈亚秋.径向基-偏最小二乘-贝叶斯方法及其在化学模式分类中的应用[J].分析化学,2003,(02):189-193.
    [54]刘凤玉,李千目,衷宜.基于贝叶斯分类的分布式网络故障诊断模型[J].南京理工大学学报(自然科学版),2003,(05):546-550.
    [55]张绍武,潘泉,张洪才等.基于支持向量机和贝叶斯方法的蛋白质四级结构分类研究[J].生物物理学报,2003,(02):171-175.
    [56]金大年,杨丰,陈武凡.基于贝叶斯分类的水平集MR图像分割方法[J].中国医学物理学杂志,2005,(04):568-571.
    [57]李静梅,孙丽华,张巧荣等.一种文本处理中的朴素贝叶斯分类器[J].哈尔滨工程大学学报,2003,(01):7l-74.
    [58]薛静锋,曹元大.贝叶斯分类在入侵检测中的应用研究[J].计算机科学,2005,(08):60-63.
    [59]陆汝铃.知识科学与计算科学[M].北京:清华大学出版社,2003.
    [60]刘雪松,施朝晟,程翼宇.基于自组织映射神经网络的中药注射剂质量快速鉴别方法[J].分析化学,2007,35(10):1483-1486.
    [61]汤守鹏,姚鑫锋,姚霞等.基于主成分分析和小波神经网络的近红外多组分建模研究[J].分析化学,2009,37(10):1445-1450.
    [62]汪洋,余定华,孙鹏等.基于BP神经网络的乳酸脱水制丙烯酸仿真模拟[J].分析化学,2009,60(1):83-88.
    [63]N. V V. The Nature of Statistical Learning Theory [M]. New York; Springer-Verlag.1995.
    [64]陈光英,张千里,李星.基于SVM分类机的入侵检测系统[J].通信学报,2002,(05):51-56.
    [65]代六玲,黄河燕,陈肇雄.一种文本分类的在线SVM学习算法[J].中文信息学报,2005,(05):11-15+23.
    [66]贾洞,梁久祯.基于支持向量机的中文网页自动分类[J].计算机工程,2005,(10):145-147.
    [67]马乐,翁智生,罗军.一种基于SVM的网页层次分类算法[J].北京师范大学学报(自然科学版),2009,(03):247-249.
    [68]马新明,韩占忠,刘平.基于支持向量机的输电线路故障诊断分类[J].电气开关,2009,(05):61-63+79.
    [69]韦抒.应用支持向量机实现转子故障的模式分类[J].制造业自动化,2009,(07):82-85.
    [70]李剑,陈德钊,成忠等.构建支持向量机-偏最小二乘法为药物构效关系建模[J].分析化学,2006,(02):263-266.
    [71]谢微,李光明,陆敏春等.基于支持向量机的羰基化合物红外光谱研究[J].分析化学,2006,(S1):113-117.
    [72]郑启富,陈德钊,刘化章.基于PersonⅦ核函数的支持向量机及其在化学模式分类中的应用[J].分析化学,2007,(08):1142-1146.
    [73]戴波,赵晶,周炎.基于支持向量机的管道腐蚀超声波内检测[J].化工学报,2008,(07):1812-1817.
    [74]许光,俞欢军,陶少辉等.与机理杂交的支持向量机为发酵过程建模[J].化工学报,2005,(04):659-664.
    [75]周云龙,陈飞,孙斌.基于灰度共生矩阵和支持向量机的气液两相流流型识别[J].化工学报,2007,(09):2232-2237.
    [76]刘涵,刘丁,郑岗等.基于最小二乘支持向量机的天然气负荷预测[J].化工学报,2004,(05):828-832.
    [77]SONG H, ZHONG L and HAN B. Structural damage detection by integrating independent component analysis and support vector machine [J]. International Journal of Systems Science,2006,37(13):961-967.
    [78]KUBAT M, HOLTE R C and MATWIN S. Machine learning for the detection of oil spills in satellite radar images [J]. Machine Learning,1998,30(2-3):195-215.
    [79]CHAN P K and STOLFO S J. Toward scalable learning with non-uniform class and cost distributions:a case study in credit card fraud detection [C]//Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, New York. AAA I Press,1998:164-168.
    [80]DIETTERICH T G. Machine learning research:four current direction [J]. AI-Magazine,1997,18(4): 97-136.
    [81]ROBLES V, LARRANAGA P, PEN A J M, et al. Bayesian network multi-classifiers for protein secondary structure prediction [J]. Artificial Intelligence in Medicine,2004,31:117-136.
    [82]LONG P M and VEGA V B. Boosting and microarray data [J]. Machine Learning,2003,52:31-44.
    [83]牛大鹏,王福利,何大阔等.基于Elman神经网络集成的诺西肽发酵过程建模[J].东北大学学报(自然科学版),2009,(06):761-764.
    [84]宋彩利.集成神经网络诊断技术及其应用[J].西安科技大学学报,2008,(03):569-572.
    [85]GIACINTO G and ROLI F. Design of effective neural network ensembles for image classification process [J]. Image Vision and Computing Journal,2001,19(9-10):699-707.
    [86]HUANG F J, ZHOU Z H, ZHANG H J, et al. Pose invariant face recognition [C]//Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition. NY:IEEE,2000: 245-250.
    [87]ZITOUNI I, KUO H K J and LEE C H. Boosting and combination of classifiers for natural language call routing systems [J]. Speech Comunication,2003,41:647-661.
    [88]ALTMCAY H and DEMIREKLER M. Speaker identification by combining multiple classifiers using Dempster-Shafer theory of evidence [J]. Speech Communication 2003,41:531-547.
    [89]周华杰,李宁.基于神经网络集成的乳腺肿瘤诊断系统[J].广西师范大学学报(自然科学版),2006,(04):199-202.
    [90]KIM E, KIM W and LEE Y. Combination of multiple classifiers for the customer's purchase behavior prediction [J]. Decision Support Systems,2000,34:167-175.
    [91]SHIN H W and SOHN S Y. Combining both ensemble and dynamic classifier selection schemes for prediction of mobile Internet subscribers [J]. Expert Systems with Application,2003,25:63-68.
    [92]HE C, GIROLAMI M and ROSS G. Employing optimized combinations of one-class classifiers for automated currency validation [J]. Pattern Recognition,2004,37:1085-1096.
    [93]SCHENKER A, BUNKE H, LAST M, et al. Building graph-based classifier ensembles by random node selection [M]//F. ROLI J, KITTLER AND T. WINDEATT. MCS 2004, LNCS 3077.2004:214-222.
    [94]汪灵枝,黄敢基,申锦标.一种新的神经网络集成方法在证券分析预测中的应用[J].统计与决策,2008,(06):155-157.
    [95]常卫东,王正华,鄢喜爱.基于集成神经网络入侵检测系统的研究与实现[J].计算机仿真,2007,(03):134-137.
    [96]SOLLICH P and KROGH A. Learning with ensembles:How over-fitting can be useful [J]. Advances in Neural Information Processing Systems 8,1996,8:190-196.
    [97]SCHAPIRE R E. The strength of weak learnability [J]. Machine Learning,1990,5(2):197-227.
    [98]KEARNS M, VALIANT, L G., Learning Boolean formulae or finite automata is as hard as factoring,Technical Report TR-1488 [R]. Cambridge,MA:Havard University Aiken Computation Laboratory,1988.
    [99]BREIMAN L. Bagging predictors [J]. Machine Learning,1996,24(2):123-140.
    [100]QUINLAN J R. Bagging, Boosting, and C4.5 [C]//Proceedings of the Thirteenth National Conference on Artificial Intelligence,1996:725-730.
    [101]FREUND Y. An adaptive version of the boost by majority algorithm [J]. Machine Learning,2001,43(3): 293-318.
    [102]FRIEDMAN J, HASTIE T and TIBSHIRANI R. Additive logistic regression:a statistical view of boosting [J]. Annals of Statistics,2000,28(2):337-374.
    [103]PANG-NING T and STEINBACH M.数据挖掘导论(范明,范宏建译)[M].北京:人民邮电出版社,2006.
    [104]ZHOU Z H, WU J X and TANG W. Ensembling neural networks:many could be better than all [J]. Artificial Intelligence,2002,137(1-2):239-263.
    [105]LAZAREVIC A and OBRADORIC Z. Effective pruning of neural network classifier ensembles [C]// Proceeding of International Joint Conference on Neural Networks, Washington DC. IEEE,2001:796-801.
    [106]李国正,杨杰,孔安生等.基于聚类算法的选择性神经网络集成[J].复旦大学学报(自然科学版),2004,43(5):689-691.
    [107]赵胜颖,高广春.基于蚁群算法的选择性神经网络集成方法[J].浙江大学学报(工学版),2009,43(9):1568-1573.
    [108]ZADEH L A. Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems [J]. Soft Computing-A Fusion of Foundations, Methodologies and Applications,1998,2(1):23-25.
    [109]SIMON H A. The sciences of the artificial (3rd ed.) [M]. MIT Press,1996.
    [110]AHL V and ALLEN T F H. Hierarchy theory, a vision, vocabulary and epistemomology [M]. Columbia University Press,1996.
    [111]CAPRA F. The web of life:a new scientific understanding of living systems [M]. New Yorks:Anchor Books,1997.
    [112]ZHANG B and ZHANG L. Theory and applications of problem solving [M]. New York, NY, USA: Elsevier Science Inc.,1992.
    [113]张铃,张钹.问题求解理论及应用——商空间粒度计算理论及应用(第2版)[M].北京:清华大学出版社,2007.
    [114]BARGIEL A and ANDRZE J. Granular computing:an introduction [M]. Boston:Kluwer Academic Publishers,2002.
    [115]BARGIELA A and PEDRYCZ W. The roots of granular computing [C]//Proceedings of 2006 IEEE International Conference on Granular Computing. Kluwer Academic Publishers,2006:806-809.
    [116]YAO Y Y. A partition model of granular computing [J]. LNCS Transactions on Rough Set s 2004, (1): 232-253.
    [117]LIN T Y. Neighborhood systems and relational databases [C]//Proceedings of the 1988 ACM sixteenth annual conference on Computer science, Atlanta, Georgia, United States. ACM,1988.
    [118]LIN T Y. Data mining:granular computing approach [C]//Proceedings of the Third Pacific-Asia Conference on Methodologies for Knowledge Discovery and Data Mining. Springer-Verlag,1999.
    [119]LIN T Y T Y. Data mining and machine oriented modeling:a granular computing approach [J]. Applied Intelligence,2000,13(2):113-124.
    [120]L IN T Y. Granular computing:a problem solving paradigm [C]//The Proceedings of 2005 IEEE International Conference on Fuzzy Systems,2005.
    [121]THIELE H. On semantic models for investigating 'computing with words'[C]//Proceedings of the Second International Conference on Knowledge Based Intelligent Electronic Systems (KES '98) USA Institution of Electrical and Electronic Engineers Inc,1998:32-98.
    [122]张文修,吴伟志,梁吉业等.粗糙集理论与方法[M].北京:科学出版社,2001.
    [123]PAWLAK Z. Rough sets:theoretical aspects of resoning about data [M]. Dordrecht:Kluwer Academic Publishers,1991.
    [124]刘仁金,黄贤武.图像分割的商空间粒度原理[J].计算机学报,2005,28(10):1680-1685.
    [125]张持健,李畅,张铃..商空间理论(粒度计算方法)实现高精度模糊控制[J].计算机工程与应用,2004,40(11):37-39.
    [126]刘岩,李友一,陈占军等.基于商空间理论的模糊控制在航空相机中的应用[J].南京航空航天大学学报,2006,38(7):88-90.
    [127]PAL S K, SHANKAR B U and MITRA P. Granular computing, rough entropy and object extraction [J]. Pattern Recogn Letter,2005,26(16):2509-2517.
    [128]JENSEN R and SHEN Q. Semantics-preserving dimensionality reduction:rough and fuzzy-rough-based approaches [J]. IEEE Transactions on Knowledge and Data Engineering,2004,16(12):1457-1471.
    [129]ZHANG Y Q, AKKALADEVI S, VACHTSEVANOS G, et al. Granular neural web agents for stock prediction [J]. Soft Computing-A Fusion of Foundations, Methodologies and Applications,2002,6(5): 406-413.
    [130]YAO Y Y. Stratified rough sets and granular computing [C]//Proceedings of the 18th International Conference of the North American Fuzzy Information Processing Society, New York, USA. IEEE Press, 1999:800-804.
    [131]YAO Y Y. Rough sets,neighborhood systems, and granular computing [C]//Proceedings of the 1999 IEEE Canadian Conference on Electrical and Computer Engineering, Edmonton, Canada. IEEE Press, 1999:1553-1558.
    [132]YAO Y Y and LIAU C J. A generalized decision logic language for granular computing [C]// FUZZ-IEEE'02 in The 2002 IEEE World Congress on Computational Intelligence,2002:1092-1097.
    [133]YAO Y Y and YAO J T. Granular computing as a basis for consistent classification problems [C]// Proceedings of PAKDD'02 Workshop on Toward the Foundation of Data Mining,2002:101-106.
    [134]YAO J T and YAO Y Y. Introduction of classification rules by granular computing [C]//Lecture Notes in Artifical Intelligence 2475. Berlin:Springer,2002:331-338.
    [135]ZHAO Y. Coarsening classification rules on basis of granular computing [C]//Lecture Notes in Artificial Intelligence 3060. Berlin:Springer,2004:578-579.
    [136]CENDROWSKA J. PRISM:An algorithm for inducing modular rules [J]. International Journal of Man-Machine Studies,1987,27(4):349-370.
    [137]BATISTA G, PRATI R C and MONARD M C.A study of the behavior of several methods for balancing machine learning training data [J]. SIGKDD Explorations,2004,6(1):20-29.
    [138]CHAWLA N V, BOWYER K, HALL L, et al. SMOTE:Synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research,2002,16:231-357.
    [139]ESTABROOKS A, TAEHO J and JAPKOWICZ N. A multiple resampling method for learning from imbalaneed data sets [J]. Computational Intelligence,2004,20(1):18-36.
    [140]CHAWLA N V, JAPKOWICZ N and KOLCZ A. Editorial:Special issue on learning from imbalanced data sets [J]. SIGKDD Explorations,2004,6(1):16.
    [141]LEWIS D and W G. Training text classifiers by uncertainty sanmpling [C]//Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Duhlin:Ireland,1994:3-12.
    [142]CHOE W, ERSOY O K and BINA M. Neural network schemes for detecting rare events in human genomic DNA [J]. Bioinformatics,2000,16(12):1062-1072.
    [143]PLANT C, BOHM C, BERNHARD T, et al. Enhancing instance-based classification with local density:a new algorithm for classifying unbalanced biomedical data [J]. Bioinformatica,2006,22(8):981-988.
    [144]束志恒,方士等.基于正则化网络一遗传算法的属性筛选及其在化学模式识别中的应用[J].分析化学,2003,31(10):1169-1172.
    [145]ANDERNERG M R. Cluster analysis for applications [M]. New York:Academic Press,1973.
    [146]CARPENTER G A, GROSSBERG S and ROSEN D B. fuzzy ART-fast stable learning and categorization of analog patterns by an adaptive resonance system [J]. Neural Networks,1991,4(6):759-771.
    [147]王石青,邱林,王志良等.确定隶属函数的统计分析法[J].华北水利水电学院学报,2002,23(1):68-71.
    [148]丁士晟.多元分析方法及其应用[M].吉林人民出版社,1981.
    [149]GUHA S, RASTOGI R and SHIM K. CURE:an efficient clustering algorithm for large databases [C]// Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, Seattle, Washington, United States. ACM,1998.
    [150]黄振华,吴诚一.模式识别原理[M].浙江大学出版社,1996.
    [151]钟旭.ART2神经网络与化学模式聚类分析的研究[D];浙江大学,2004.
    [152]MALSBURG C. Self-organization of orientation sensitive cells in the striate cortex [J]. Biological Cybernetics,1973,14(2):85-100.
    [153]GROSSBERG S. Adaptive pattern classification and universal recoding:Ⅱ. Feedback, expectation, olfaction, illusions [J]. Biological Cybernetics,1976,23(4):187-202.
    [154]胡上序,程翼宇.人工神经元计算导论[M].科学出版社.1994.1.
    [155]阎平凡,张长水.人工神经网络与模拟进化计算[M].清华大学出版社,2000.11.
    [156]周志华,陈兆乾,陈世福.自适应谐振理论综述[J].计算机科学,1999,(04).
    [157]CAO Y Q, WU, J. H. Projective ART for clustering data sets in high dimensional spaces [J]. Neural Networks,2002,15(1):105-120.
    [158]PHAM D T and SUKKAR M F. A predictor based on adaptive resonance theory [J]. Artificial Intelligence in Engineering,1998,12:219-228.
    [159]CARPENTER G A, GROSSBERG S. ART2:self-organization of stable category recognition codes for analog input patterns [J]. Applied Optics,1987,26(23):4919-4930.
    [160]HOUSHMAND G P B. An efficient neural classification chain of SAR and optical urban images [J]. International Journal of Remote Sensing,2001,22(8):1535-1553.
    [161]PHAM D T and CHAN A B. Unsupervised adaptive resonance theory neural networks for control chart pattern recognition [J]. Proceedings of the Institution of Mechanical Engineers,2001,215(1):59-67.
    [162]马吉胜.一种新的ART2神经网络模型[J].模式识别与人工智能,2000,13(2):231-234.
    [163]钟旭,陈德钊,陈亚秋,罗建宏.具有双向检测机制的ART2神经元网络[J].浙江大学学报,2004,38(12).
    [164]FREEMAN J A and SKAPURA D M. Neural networks algorithms.applications and programming techniques [M]. Houston; University of Houston Press.1988.
    [165]CARPENTER G A, GROSSBERG S and ROSEN D B. ART 2-A:an adaptive resonance algorithm for rapid category learning and recognition [J]. Neural Networks,1991,4(4):493-504.
    [166]AGGARWAL C C, PROCOPIUC C, WOLF J L, et al. Fast algorithms for projected clustering: proceedings of the Proceedings of the ACM SIGMOD International Conference on Management of Data, 1999 [C].
    [167]CARPENTER.G.A, GROSSBERG S. A massively paralled architecture for a self-orgnizing neural pattern recognition machine [J]. Computer Vision, Graphics, and Iamge Proeessing,1987.
    [168]CARPENTER G A, GROSSBERG S and REYNOLDS J H. ARTMAP-supervised real-time learning and classification of nonstationary data by a self-organizing neural network [J]. Neural Networks,1991,4(5): 565-588.
    [169]CARPENTER G A, GROSSBERG S, MARKUZON, et al. A neural network architecture for incremental supervised learning of analog multidimensional maps [J]. IEEE Trasactions on Neural Networks,1992.
    [170]FALSETT. Fundamentals of neural networks, algorithms and applications [M]. Prentlee-Hall.1994.
    [171]HOPKE P K and MASSART D L. Reference data sets for chemometrical methods testing [J]. Chemometrics and Intelligent Laboratory Systems,1993,19(1):35-41.
    [172]WEISS G M. Learning with rare cases and small disjuncts [C]//Proceedings of the 12 th International Conference on Machine Learning, San Francisco. Morgan Kaufmann,1995:558-565.
    [173]WEISS G M. Miningwith rarity:a unifying framework [J]. SIGKDD Explorations,2004,6(1):7-19.
    [174]DRUMMOND C and HOLTE R C. C4.5, class imbalance, and cost sensitivity:why under-sampling beats over-samp ing [C]//International Conference on Machine Learning, Washington DC,2003:152-154.
    [175]JAPKOW ICZ N and STEPHEN S. The class imbalance problem:a systematic study [J]. Intelligent Data Analysis Journal,2002,6(5):429-450.
    [176]KANG P and CHO S. EUS SVMs:ensemble of under-sampled SVMs for data imbalance problems [C]// Proceedings of ICONIP, Hong Kong,2006:837-846.
    [177]CHEN C, L IAW A and BREIMAN L, Using random forest to learn imbalanced data [R]:No.666, Statistics Department, University of California at Berkeley,2004.
    [178]PAZZAN I M, MERZ C, MURPHY P, et al. Reducing misclassification costs [C]//Proceedings of the 11th International Conference on Machine Learning, San Francisco, CA, USA,1994:217-225.
    [179]CHAWLA N V. C4.5 and imbalanced data sets:investigating the effect of sampling method, probabilistic estimate, and decision tree structure [C]//International Conference on Machine Learning, Washington D C,2003:125-130.
    [180]ELKAN C. The foundation of cost-sensitive learning [C]//Proceedings of the 17th International Joint Conference on Artificial Intelligence, Seattle, Washington,2001:239-246.
    [181]MURPHY P M and AHA D W. UCI repository of machine learning database [DB/OL] 1996, http://www.ics.uci.edu/~mlearn/MLRepository.html.
    [182]CRISTIANINI N, AND SHAWE-TAYLOR, J. An introduction to support vector machines and other kernel-based learning methods. [M]. Cambridge:Cambridge University Press,2000.
    [183]PLATT J C. Fast training of support vector machines using sequential minimal optimization [M]//SCHOELKOPF B, BURGES C and SMOLA A. Advances in kernel methods:support vector learning. Cambridge, MA:MIT Press.1999:185-208.
    [184]WU J X, ZHOU Z H and CHEN Z Q. Ensemble of GA-based selective neural network ensembles [C]// Proceeding of the 8th International Conference on Neural Information Processing(ICONIP'O1), Shanghai, 2001:1477-1482.
    [185]KROGH A and VEDELSBY J. Neural network ensembles, cross validation, and active learning [M]//TESAURO G, TOURETZKY D S and LEEN T K. Advances in Neural Information Processing Systems. Cambridge,MA:MIT Press.1995:231-238.
    [186]TUMER K and GHOSH J. Error correlation and error reduction in ensemble classifiers [J]. Connection Science,Special Issue on Combining Artificial Neural Networks:Ensemble Approaches 1996,8(3,4): 385-404.
    [187]BROWN G, WYATT J, HARRIS R, et al. Diversity creation methods:a survey and categorization [J]. Information Fusion 2005,6(1):5-20.
    [188]NAVONE H D, VERDES P F, GRANITTO P M, et al. Selecting diverse members of neural network ensembles [C]//Proceedings of the VI Brazilian Symposium on Neural Networks (SBRN'00). IEEE Computer Society,2000:255-260.
    [189]BREIMAN L. Randomizing outputs to increase prediction accuracy [J]. Machine Learning,2000,40(3): 229-242.
    [190]MELVILLE P and MOONEY R J. Constructing diverse classifier ensembles using artificial training examples [C]//Proceedings of the 18th International Joint Conference on Artificial intelligence, Acapulco, Mexico. Morgan Kaufmann Publishers Inc.,2003.
    [191]MELVILLE P and MOONEY R J. Creating diversity in ensembles using artificial data [J]. Information Fusion,2005,6(1):99-111.
    [192]HO T. The random subspace method for constructing decision forests[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1998,20(8):832-844.
    [193]CUNNINGHAM P and CARNEY J. Diversity versus quality in classification ensembles based on feature selection [C]//Proceedings of the 11th European Conference on Machine Learning. Springer-Verlag, 2000.
    [194]凌锦江,周志华.基于因果发现的神经网络集成方法[J].软件学报,2004,15(10):1479-1484.
    [195]SHARKEY N E, NEARY J and SHARKEY A J C. Searching weight space for backpropagation solution types [C]//Current Trends in Connectionism:Proceedings of the 1995 Swedish Conference on Connectionism, Lawrence Erlbaum,1995:103-120.
    [196]MACLIN R and SHAVLIK J W. Combining the predictions of multiple classifiers:using competitive learning to initialize neural networks [C]//Proceedings of the 14th International Joint Conference on Artificial intelligence-Volume 1, Montreal, Quebec, Canada. Morgan Kaufmann Publishers Inc.,1995: 524-530.
    [197]ROSEN B E. Ensemble learning using decorrelated neural networks [J]. Connection Science,1996,8(3): 373-384.
    [198]LIU Y. Negative correlation learning and evolutionary design of neural network ensembles [D]; University of New South Wales,1999.
    [199]YONG L and XIN Y. A cooperative ensemble learning system [C]//IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on Neural Networks, Anchorage, Alaska. IEEE,1998:2202-2207.
    [200]LIU Y and YAO X. Negatively correlated neural networks for classification [C]//3d International Symposium on Artificial Life and Robotics (AROBIII'98),1998:736-739.
    [201]LIU Y and YAO X. Simultaneous training of negatively correlated neural networks in an ensemble [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,1999,29(6):716-725.
    [202]YATES W B and PARTRIDGE D. Use of methodological diversity to improve neural network generalisation [J]. Neural Computing & Applications,1996,4(2):114-128.
    [203]孟江,王耀才,王天成,巩敦卫..神经网络集成的免疫学习算法[J].中国矿业大学学报,2005,34(4):486—489.
    [204]OLIVEIRA L S, SABOURIN R, BORTOLOZZI F, et al. A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition [J]. International Journal of Pattern Recognition and Artificial Intelligence,2003,17(6):903-930.
    [205]LAZAREVIC A, LAZAREVIC A and OBRADOVIC Z. Effective pruning of neural network classifier ensembles [C]//Proceeding of International Joint Conference on Neural Networks,2001:796-801.
    [206]BAKKER B and HESKES T. Clustering ensembles of neural network models [J]. Neural Networks,2003, 16(2):261-269.
    [207].李凯,黄厚宽.一种基于聚类技术的选择性神经网络集成方法[J].计算机研究与发展,2005,42(4):594-598.
    [208]傅强.选择性神经网络集成算法研究[D];浙江大学,2007.
    [209]王珏,周志华,周傲英.机器学习机器应用[M].北京:清华大学出版社.2006:170-188.
    [210]RUSSOM C L, BRADBURY S P, BRODERIUS S J, et al. Predicting modes of toxic action from chemical structure:acute toxicity in the fathead minnow (pimephales promelas) [J]. Environmental Toxicology and Chemistry 1997,16(5):948-967.
    [211]SCHULTZ T W, SINKS G D and BEARDEN A P. QSARs in aquatic toxicology:a mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri [M]//DEVILLERS J. comparative QSAR. New York:Taylor&Francis.1998:51-109.
    [212]APTULA A O, NETZEVA T I, VALKOVA I V, et al. Multivariate discrimination between modes of taxic action of phenols [J]. Quantitative Structure-Activity Relationships,2002,21:12-22.
    [213]FREUND Y and SCHAPIRE R E. Experiments with a new boosting algorithm [C]//Proceedings of the Thirteenth International Conference on Machine Learning, San Francisco. Morgan Kaufmann Publishers, 1996:148-156.
    [214]赵子都.自适应控制技术及应用[J].自动化博览,1996,1:11-12.
    [215]LAKE C L and MERZ C J. UCI repository of machine learning database [DB/OL] 1998, http://www.ics.uci.edu/-mlearn/mlrepository.html.
    [216]HOUCK C R, JOINES J A and KAY M G, A genetic algorithm for function optimization:a Matlab implementation.Technical Report:NCSU-IE-TR-95-09, [R]. Raleigh, NC:North Carolina State University, 1995.
    [217]HE Y J, CHEN D Z and ZHAO W X. Ensemble classifier system based on ant colony algorithm and its application in chemical pattern classification [J]. Chemometrics and Intelligent Laboratory Systems,2006, 80(1):39-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700