雪柳的生物学特性与解剖结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雪柳(Fontanesia fortunei Carr.),属木犀科雪柳属,落叶小乔木或灌木。主要分布于我国东北、华北以及华南地区。目前,雪柳的药理作用以及繁殖等方面已经做了初步的研究。本试验以吉林农业大学校园内的雪柳作为供试材料,利用石蜡切片法、木材切片法、Jeffrey氏离析法、徒手切片法等方法,对雪柳的营养器官进行解剖学研究,并从雪柳的解剖学特性出发,对雪柳的抗旱性加以分析,从而,为雪柳在干旱以及半干旱地区的推广应用提供理论依据。通过试验分析,结果如下:
     (1)雪柳初生根为星状中柱,初生木质部为二原型,外始式发育;初生韧皮部位于初生木质部之间,呈径向辐射状排列,由筛管、韧皮薄壁细胞构成。
     (2)雪柳次生根为环孔材,主要由孔纹导管组成,网纹以及环纹导管较少。木射线属异型Ⅱ型,其多列部宽2-3个细胞,木射线密度为34-40枚/mm2,由直立细胞以及横卧细胞构成。轴向木薄壁组织细胞极为丰富,为星散薄壁组织。
     (3)雪柳初生茎为真中柱,初生木质部内始式发育,髓较发达。
     (4)雪柳的次生茎属于环孔材,生长轮较为明显。次生木质部中的导管主要为孔纹导管,孔纹导管密度为437枚/mm2。次生茎中管胞较少。木射线属异型Ⅱ型,单列射线较少,多列射线较多,大都宽度为2-3个细胞。木射线在径切面上由直立细胞和横卧细胞构成。筛管、韧皮薄壁组织细胞以及韧皮射线组成雪柳茎部的次生韧皮部,筛管分子的直径约为18.75μm。
     (5)雪柳叶片为异面叶。上表皮的角质层较厚,没有气孔分布;下表皮细胞较上表皮稍大,气孔分布密集,在20X物镜下,一个视野中气孔数为114个。雪柳叶肉由栅栏组织与海绵组织构成,其栅栏薄壁组织与海绵薄壁组织的比为0.97:1。
     通过对雪柳营养器官的研究,可以得出:
     (1)雪柳根部较厚的周皮,多层且排列紧密的木栓层细胞可以有效的保护根,并且在一定程度上保留了根部的水分不过重的向外散失。其根部导管的特征增强了雪柳根在土壤中吸收水分以及运输水分的能力,在受到水分胁迫时,其导管的运输水分的能力会增大,木质部的向心速度会加快,更有利于水分的充分利用,提高了其抗旱胁迫的能力。
     (2)茎同根一样,均具有较厚的周皮,均为环孔材。Huber认为,环孔材在生长于干旱环境中的植物极为普遍。因此,环孔材可以作为植物适应干旱环境的特征之一。另外,雪柳次生木质部中,其春材的导管数量较秋材多,说明雪柳茎不仅有非常旺盛的输导能力,还能够调节当其处于干旱环境中时的保水以及节水。
     (3)雪柳叶片上表皮具蜡质,由于蜡质独特的不透水性,能够有效的防止叶片中水分由于蒸腾作用的过分散失,上表皮没有气孔的分布,在一定程度上能够减少雪柳处于干旱环境中时,因蒸腾作用而散失水分,从而表现出其抗旱的特点。
     雪柳叶片下表皮细胞排列较为紧密,密布气孔,气孔口径较小,且有腺体的分布,这是植物对于干旱胁迫突出的结构特点之一,也是植物对于干旱抵抗的重要机制。
     雪柳叶肉中,栅栏组织与海绵组织所占比例相当,其栅栏组织中含有一定的叶绿体,说明其栅栏组织不仅仅其道机械支持和保护的作用,在一定程度上也参与了光合作用,促进了叶片中养分的形成。较大而较为疏松的海绵组织则具有相对好的储存水分的能力,从而使其能在较为干旱的条件下顺利进行生长活动。
Fontanesia fortunei Carr.is a perennial deciduous shrub of Fontanesia in Oleaceae. In China. it is mainly distributed in the northeastern, northern and southern regions. At present, it has been primarily studied on its pharmacology action and breeding. The experimental material of this study collected from Jilin agricultural university. The structure of the roots, stems and leaves were studied through paraffin section method, unarmed section method, Jeffrey maceration and so on. And analysis th e drought resistance of Fontanesia fortunei from anatomical characteristics.Thus, provide theoretical basis for it used to arid and semi-arid regions.The results are as follows:
     1.The primary structure of root of Fontanesia fortunei is actinostele. The primary xylem is diarch and exarch. The primary phloem alternate with the primary xylem, and emerge radial arrangement. The sieve tube and phloem parenchyma constitute the primary phloem. The vugs are distributed in cortex.
     2.The secondary root is ring-porous wood. The secondary xylem is mainly consisted of pitted vessel and little of reticulate vessel and annular vessel. The wood rays are heterogeneous II.The multiseriate rays are 2-3 cells wide. There are 34-40 wood rays in 1mm2.And it consist of upright and procumbent ray cell. Ther wood parenchyma is abundant. As well as, it belongs to diffuse parenchyma.
     3.The primary shoot is eustele. It has endarch primary xylem and developed pith.
     4.The secondary stem is ring-porous wood and the the growth ring is very clear. The secondary xylem is mainly consisted of pitted vessel. There are 437 pitted vessels in 1mm2.There is little of tracheid in secondary stem. The wood rays are heterogeneousⅡ. There are little of uniseriate ray and lots of multiseriate ray. The multiseriate rays are 2-3 cells wide. The wood rays consist of upright and procumbent ray cell. The secondary phloem is mainly consisted of sieve tube, phloem parenchyma and phloem ray.The diameter of sieve elements is 18.75μm.There are druse in bast parenchyma cells.
     5.The leaf is dorsi-ventral type. The cuticle of epicuticle is thicker and there is no stomata on the epicuticle. The lower epidermis cells are bigger than epicuticle. The stoma distribute widely on lower epidermis. There is some glandular hairs on the lower epidermis. The number of the stoma in 20×view is 114. The mesophyll consists of palisade tissue and spongy tissue. The ratio of palisade tissue and spongy tissue is 0.97:1.There are druse in the parenchyma of mesophyll, petiole and leaf vein.
     We can get results through the nutritive organ research of Fontanesia fortunei:
     1.The periderm of root is very thick. The multilayer cork layer cells arrange very close, so it can conserve the water of root. The characteristic of roots increase the ability of root sucking and transport water in soil. When the water is insufficiency, the ability of transport water will increase, the entad speed of xylem will accelerate. So it is more benefit to the availability of the water. And the drought-resisting capability will raise.
     2.The stem is similarity to the root. The periderm is very thick. The stem and root are ring-porous wood. Huber considered that the ring-porous wood is common in the plants which grow in drought. So it can be used as the characteristic of the plants fit the drought. Moreover, the number of vessel in spring wood is bigger than autumn wood,this result explained that the ability of dredge water of stem is very vigorous, and adjust the water use ratio when it is in drought environment.
     3.The epicuticle of leaf have waxiness. The waxiness can reduce the water lost in leaf because the waxiness is waterproof. There is no stoma on epicuticle, so it can reduce the water lost to a certain extent.
     The cells of lower epidermis is very close. There are lots of small stoma on it. There are some glandular hairs on the lower epidermis. This is one of the plant's drought resistance characteristic and the mechanism of the plants resist the drought environment.
     The mesophyll of Fontanesia fortunei, the thickness of palisade tissue and spongy tissue is nearly the same. There are some chloroplast in the palisade tissue, it can explain that the palisade tissue participate in photosynthesis. The loose and big spongy tissue has better ability of storing water, thereby the plants can live in drought environment.
引文
[1]费蓉葆.二种地被植物抗旱性初步研究[D].哈尔滨:东北林业大学,2007.
    [2]余叔文.植物生理与分子生物学[M].北京:科学出版社,1998.
    [3]杨守仁.水稻高产栽培及高产育种论丛[M].北京:农业出版社.1988,46-56.
    [4]山仑.节水农业的研究与实施[J].北京:中国科学院院刊,1996,6:430-435.
    [5]邓毅.城市生态公园规划设计方法[M].北京:中国建筑工业出版社,2007.
    [6]山仑,陈培元.旱地农业生态基础[M].北京:科学出版社,1998.9-33.
    [7]Boyer J S.Leaf enlargement and metabolic rates in corn,soybean and sunflower at various leaf water potential[J].Plant Physiol,1970,46:23-235.
    [8]Neumann P M,Azaizch H,Leon D.Hardening of root cell wall:A growth in-hibitory response to salinity stress[J].Plant Cell Environ,1994:17:303.
    [9]Neumann PM.Rapid and reversible modifications of extension capacity of cellwall in elongatingmaize leaf tissues responding to root addition and removal ofNaCl[J].Plant Cell Environ,1993,16:1107.
    [10]Nonami H,Boyer J S.Primary events regulating stemgrowth at lowwater poten-tials[J].Plant Physiol,1990,93:1610.
    [11]Nonami H,Boyer J S.Wall extensibility and cell hydraulic conductivity decreasein enlarging stem tissues at low water potentials[J].Plant Physiol,1990,93:1610.
    [12]Cramer G R,Bowman,D C,Kinetics J L,et al.Cell-wall proteins induced by water deficit in bean(phaseolus valgaorisL.)seedings[J].Plant Physiol,1995,107:119.
    [13]孙梅霞,祖朝龙,徐经年.干旱对植物影响的研究进展[J].安徽农业科学2004,32(2):365-367.
    [14]陈晓天,罗远培,石元春.作物对水分胁迫的反应[J].生态农业研究,1998,6(4):12-15.
    [15]李连朝,王学臣.水分亏缺对植物细胞壁的影响及其与细胞延伸生长的关系[J].植物生理学通讯,1996,32(5):321-327.
    [16]王辰阳.土壤水分胁迫对小麦形态及生理影响的研究[J].河南农业大学学报,1992,1:89-97.
    [17]Laetsch WM.Chloroplast specialization in dicotyledons possessing the C4di-carboxylic acid pathway of photosynthetic CO2 fixation[J].Amer JBot,1968,55:875-883.
    [18]李勤报,梁厚果.轻度水分胁迫的小麦幼苗中与呼吸有关的几种酶活性变化[J].植物生理学报,1988,14(3):217-222.
    [19]Osmond C B,Bjorkman O.Simultaneous measurement of oxygen effects onnet photosynthesis and glycolatemetabolism in C3 and C4 species of Atripex[J].Carnegie Inst Washington Yearb,1972,71:141-148.
    [20]Kriedeman P E,Downton W J S.Photosynthesis[M].Paleg and Aspinall,1981.283-314.
    [21]汤章城.植物对水分胁迫的反应和适应性Ⅱ.植物对干旱的反应和适应性[J].植物生理学通讯,1983,(4):1-7.
    [22]Todd G W.In TTKozlowski Ed.Water Deficits and Plant Growth(Vol 3)[M].NewYork-San Francisco-London:Academis Press,1972.177.
    [23]Hanson A D,Nelsen C E,Pedersen A R,et al.Capacity for proline accu-mulation duringwater stress in barley and its implicationsfor drought resis-tance[J].CropSci,1979,19:489-493.
    [24]Bewley J D.Protein synthesis[M].Paleg and Aspinall,1981.182-261.
    [25]SinghNK,Handa AK,Hasegawa PM,et al.Protein associatedwith adap-tation of cultured tobacco cellstoNaCl[J].PlantPhysiol,1985,79:126-137.
    [26]Hsiao T C.Rapid changes in levels of polyribosomes in Zea mays in re-sponse to water stress[J].Plant Physiol,1970,46:281-285.
    [27]Mattasm R E,Pauli AW.Trends in nitrate reduction and nitrogen fractionsin young corn plants during heat and moisture stress[J].Corp Sci,1965,5:181-184.
    [28]Shaner DL,Boyer J S.Nitrate reductase activity inmaize leaves II.Regu-lation by nitrate flux at low leaf water potential[J].Plant Physiol,1976,58:505-509.
    [29]Pilet O E,Saugy M.Effect of applied and endogenous indol-3-yl-aceticacid on maize root growth[J].Planta,1985,164:254-258.
    [30]Loveys B R,Robinson S P,Downton J S.Seasonal and diunal changes in abscisic acid and water relation of apricot leaves[J].New Phytol,1987,107:15.
    [31]王学臣,任海云,娄成后.干旱胁迫下植物根与地上部间的信息传递[J].植物生理学通讯,1992,28(6):397-402.
    [32]Ether E F.Oxygen activation and oxygen toxicity[J].Ann Plant Physiol,1982,33:73-96.
    [33]景蕊莲.作物抗旱研究的现状与思考[J].干旱地区农业研究,1999,17(6):79-85.
    [34]张正斌.作物抗旱节水的生理遗传育种基础[M].北京:科学出版社,2004
    [35]赖声渭,曹宾.谈林木抗旱性评价方法[J].防护林科技,2002.(3):48-49.
    [36]李慧卿,马文元.沙生植物抗旱性比较的主要指标及分析方法[J].干旱区研究,1998,(4):12-15.
    [37]陈雅君,冯淑华,陈桂芬.植物抗旱性鉴定指标的研究现状与进展[J].中国林副特产,2005,(06):66-67.
    [38]孙彩霞,沈秀英.作物抗旱性鉴定指标及数量分析方法的研究进展[J].中国农学通报,2002;18(1):49-51.
    [39]赵翠仙,黄子深.腾格里沙漠主要旱生植物旱性结构的初步研究[J].植物学报,1981,23(4):278-283.
    [40]周智彬,李培军.我国旱生植物的形态解剖学研究[J].干旱区研究,2002,19(1):35-40.
    [41]冯显逵.宁夏干旱地区树木叶片旱性结构的研究[M].林业科技通讯,1981,(11):13-17.
    [42]刘家琼.我国荒漠不同生态型植物的旱生结构[J].植物生态与地植物丛刊.1982,6(4):314-319.
    [43]王耀芝,王勋陵,李蔚.荒漠化草原常见植物叶内部结构的观察[J].兰州大学学报,1983,19(3):87-96.
    [44]李正理,李荣敖.我国甘肃九种旱生植物同化枝的解剖观察[J].武汉:植物学报,1981,23(3)181-185.
    [45]Yang Minsheng.Studies on the Growth of Double Cress Clone of P.to men to saunder the conditions of water stress[A].20th session of the international poplarcom mission[C].1996.292-298.
    [46]杨敏生,费保华,朱之悌.白杨双交杂种无性系抗旱性鉴定指标分析[J].林业科学,2002,38(6):3642.
    [47]张建国.中国北方主要造林树种耐旱特性及其机理的研究[D].北京林业学,1993.
    [48]郭连生.对几种阔叶树种耐旱性生理指标的研究[J].林业科学,1989,25(5):389-394.
    [49]张建国,李吉跃,沈国舫.树木耐旱特性及其机理研究[M]北京:中国林业出版社,2000.
    [50]孙志虎,王庆成.应用PV技术对北方4种阔叶树抗旱性的研究[J].林业科学,2003,39(2):3438.
    [51]谢寅峰,沈惠娟,罗爱珍.水分胁迫下南方四种针叶树幼苗水分参数的测定[J].南京林业大学学报,1999,23(1):4144.
    [52]刘建伟,刘雅荣,王世绩.不同杨树无性系光合作用与其抗旱能力的初步研究[J].林业科学,1994,30(1):83-87.
    [53]曹兵,苏润海,王标,等.水分胁迫下臭椿幼苗几个生理指标的变化[J].林业科技,2003,28(3):1-3.
    [54]郭程瑾,肖凯,李雁鸣,等.不同生态型小麦品种旗叶光合性能的研究[J].麦类作物学报2002,22(3):42-46.
    [55]王爱国,邵从本,罗广华,等.丙二醛作为植物膜脂过氧化指标的探讨[J].植物生理学通讯,1986,22(2):56-58.
    [56]王霞.水分胁迫对柽柳植物可溶性物质的影响[J].干旱区研究,1999,16(2):7-11.
    [57]袁力行,傅骏骅RFLP和SSR标记划分玉米白交系杂种优势群研究[J].作物学报,2001,27(2):149-156.
    [58]黄颜梅,张健,罗承德.树木抗旱性研究[J].四川农业大学学报,1997,15(1):49-54.
    [59]李吉跃.植物耐旱性及其机理[J].北京林业大学学报.1991,13(3):92-99
    [60]Levitt J. Responses of plant to environmental stress[M]. Academic Press,New York,1980.165-171.
    [61]Truner N.C.Adaptation to water deficits:A changing perspective[J].Aust.J.Plant Physiol.,1983,13:175-190
    [62]赵秀莲,江泽平,李慧卿等.林木抗旱性鉴定研究进展[J].内蒙古林业科技,2004,(4):18-21,47.
    [63]中国科学院中国植物志编辑委员会.中国植物志[M].北京:科学出版社,1985
    [64]中国科学院沈阳应用生态研究所.东北植物检索表[M].沈阳:科学出版社,1995
    [65]卓丽环,陈龙清.园林树木学[M].北京:中国农业出版社,2004
    [66]张天麟.园林树木1200种[M].北京:中国建筑工业出版社,2005
    [67]张思路,马立华等.雪柳在园林中的应用[J].吉林农业,2010,(5):102-103.
    [68]王雪莲,蔡永革等.生长调节剂对雪柳嫩枝扦插效果的影响[J].石河子大学学报(自然科学版),2001,5(4):302-304.
    [69]李洁.雪柳的组织培养初探[J].山西农业大学学报,2003,(3):292-294.
    [70]赵玉,付江峰,程军宏.雪柳绿篱截干复壮实验[J].承德职业学院学报,2007,(1):111-112.
    [71]罗永清,孙志蓉,唐隆清.雪柳引种实验初报[J].塔里木农垦大学学报,1995,7(1):79-80.
    [72]王静,黄薇.初生根的形态解剖结构与春小麦抗旱性的关系初探[J].兰州大学学报(自然科学版),1998,34(4):154-156.
    [73]Richards R A, Passioura J B. Seminal root morphology and water use of wheat I.Environmental effects.Crop Science,1981(2):249-252.
    [74]杜金伟.水分胁迫对山杏抗旱生理指标及解剖构造的影响[D].内蒙古农业大学,2009.
    [75]彭柞登,李吉跃,沈熙环.林木抗旱性育种的现状与思考[J].北京林业大学学报,1998;20(4):98-103.
    [76]宋俊乔.水稻叶片形态、解剖结构与抗旱性的关系研究[D].华中农业大学,2010.
    [77]杨建昌.水分胁迫对水稻叶片气孔频度、气孔导度及脱落酸含量的影响[J].作物学报.1995,21(5):532-539.
    [78]孟雷,李磊鑫,陈温福等.水分胁迫对水稻叶片气孔密度、大小及净光合速率的影响[J].沈阳农业大学学报.1999,30(5):477-480.
    [79]李海波,李全英,陈温福.氮素不同用量对水稻叶片气孔密度及有关生理性状的影响[J].沈阳农业大学学报,2003,34(5):340-343.
    [80]王艳,张绵.结缕草和早熟禾解剖结构与其抗旱性、耐践踏性和弹性的对比研究[J].辽宁大学学报(自然科学版),2000,27(4):372-375.
    [81]Svenningsson M.Epi-and intracuticular lipids and cuticular transpiration rates of primary leaves of eight barley(Hordeum vulgare)cultivars.Physiologia Plantarum,1998,512-517.
    [82]张志飞,饶力群,向佐湘等.高羊茅叶片表皮蜡质含量与其抗旱性的关系[J].西北植物学报,2007,27(7):1417-1421.
    [83]孟庆杰,董绍锋,王光全等.桃叶片组织结构特征与其抗旱性关系的研究[J].干旱地区农业研究.2004,22(3):123-126.
    [84]Chartzoulakis K,Patskas A,Kofidis G,et al.Water stress af-fects leaf anatomy,gas exchange,water elations and growth oftwo avocado cultivers[J]. Scientia Horticult turae,2002,95:39-50.
    [85]侯艳伟,贾志斌,杨持.皇甫川流域不同生态环境区5个共有植物种群性状特征的比较研究[J].内蒙古大学学报(自然科学版),2001,32(3):319-323.
    [86]周智彬,李培军.我国旱生植物的形态解剖学研究[J].干旱区研究,2002,19(1):38-40.
    [87]黄振英.新疆30种旱生植物的结构及其对沙漠环境的适应[J].植物生态学报,1997,21(6):521-530.
    [88]孟庆辉,潘青华,鲁韧强.4个品种扶芳藤茎叶解剖结构及其与抗旱性的关系[J].中国农学通报,2006,22(4):138-142.
    [89]FahnA. Structural and functional properties of trichomes of xeromor-phic leaves.Annual ofBotany[J].1986,57:631-637.
    [90]李扬汉.植物学(第2版)[M].上海:科学技术出版社,1995.139-155.
    [91]王学婧,罗建勋,石大兴等.光秃爱沙木茎和叶片形态解剖结构与抗旱性研究[J].西南农业学报,2007,20(5):1074-1077.
    [92]赵祥,董宽虎,朱慧森等.不同居群达乌里胡枝子茎解剖结构与其抗旱性的关系[J].草地学报,2010,18(5):615-620.
    [93]邓彦斌,姜彦成,刘健.新疆10种藜科植物叶片和同化枝的旱生和盐生结构的研究[J].植物生态学报,1998,22(2):164-170.
    [94]李晓燕,王林和,李连国等.沙棘茎的形态解剖特征与其生态适应性研究[J].干旱区资源与环境,2008,22(3):189.
    [95]李庆.几种胡枝子旱盐逆境生理学研究[D].北京:北京林业大学,2004.
    (96]侯小改.芝麻不同抗性品种营养器官结构的比较研究[J].河南农业大学学报,1994,28(4):399-402.
    [97]刘飞虎,张寿文,梁雪妮等.干旱胁迫下不同苎麻品种的形态解剖特征研究[J].中国麻作,1999,21(4):1-6.
    [98]王彦辉,张星耀,张守攻.我国林业生态环境的建设[J].科学对社会的影响,2002,(3):31-37.
    [99]侯丕勇,罗立新,吴树明,等.植物生态解剖学进展[J].河南科学,1996,172-173.
    [100]马全林,刘世增,严子柱,等.沙葱的抗旱性特征[J].草业科学,2008,25(6):56-61.
    [101]张大勇.植物生活史对策与繁殖生态学[M].北京:科学出版社,2004:1-160.
    [102]陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展[J].植物学通报,1999,16(5):555-560.
    [103]Fahn A. Some anatomical adaptations of desert plants[M].Phytom orphology,1964:93-102.
    [104]郑国铝,谷祝平.生物显微技术[M].河北:高等教育出版社,1993.
    [105]李正理.植物制片技术[M].北京:北京科学出版社,1978.
    [106]王勋陵.植物形态结构与环境[M].兰州:兰州大学出版社,1989
    [107]孙高明,石浩来.山东青石山区主要经济树种的抗旱特性[J].山东农业大学学报,1999,30(4):336-344.
    [108]郭淑晶,燕玲,王福慧,胡云.内蒙野丁香的形态解剖学研究[J].干旱区资源与环境2007,21(3):136-138.
    [109]龙启炎,叶安华,徐翠荣等.除破水芹种子休眠的方法研究[J].种子,2006,25(6):34-37.
    [110]谷安根,陆静梅,王立军.维管植物演化形态学[M].吉林:吉林科学技术出版社,1993.
    [111]白宝璋,徐克章,赵景阳.植物生理学[M].北京:中国农业科技出版社,1996.
    [112]吕海霞.三种丁香属植物解剖结构与耐荫性相关研究[D].东北师范大学,2010.
    [113]王金照,张文辉.不同生境下栓皮栋叶形态解剖的研究[J].西北林学院学报,2004,19(2):44-46
    [114]黎明,苏金乐,杨芳绒等.琪桐营养器官解剖学研究[J].河南农业大学学报,1999,33(4):357-359。
    [115]李军,卫发兴,陈风顺.从六个核桃无性系(种)叶的形态解剖比较其抗旱性[J].河南林业科技,1997,17(3):9-11
    [116]张思路,马力华,金青龙,金研铭.雪柳在园林中的应用[J].吉林农业,2010,5:102-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700