柴油机高效清洁燃烧方式基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围绕φ? T燃烧原理图探索能避开NOx和soot排放区域的柴油机高效清洁新型燃烧方式是目前国际内燃机界研究的热点。本文以CFD与化学动力学耦合数值模拟研究为主要手段,结合实验研究,对均质充量压缩燃烧(HCCI)、混合气分层充量压燃(SCCI)和EGR稀释的低温燃烧(LTC)三种燃烧方式燃烧排放机理及高效清洁燃烧基础理论进行了系统研究。
     本文首选以正庚烷为对象,研究了HCCI燃烧反应动力学机理,结果表明:正庚烷燃烧呈现低温反应和高温反应阶段双阶段燃烧。低温反应阶段发生的关键是庚烷基的两次加氧过程,高温反应阶段是CH2O氧化成CO2的过程。在此基础上发展了HCCI简化动力学模型,并建立与CFD耦合的数学模型。结果表明:低温反应先在气缸压缩余隙和燃烧室内壁发生;高温反应开始于燃烧室内核区及气缸压缩余隙。未燃碳氢(UHC)排放主要来自于侧隙,大部分CO排放在气缸壁面附近。HCCI燃烧和排放特性实验研究表明,混合气变浓,缸内最大爆发压力和放热率峰值都升高,主燃烧持续期缩短,燃烧效率升高,指示热效率先上升后下降,UHC排放先降低再升高,CO排放降低。
     对正庚烷HCCI燃烧简化机理进行扩展和修正,发展了正庚烷分层充量压燃简化动力学机理。应用简化机理与CFD耦合,对缸内七种理论分层模式的燃烧及排放生成机理进行研究,结果表明:中心浓的前四种分层使着火时刻提前,最大压力升高率降低。七种理论分层燃烧UHC排放都比HCCI燃烧低,中心浓的分层使CO排放和NOx排放恶化,周边浓的后两种分层能使NOx排放基本不变而UHC排放和CO排放降低。对于预混/直喷分层燃烧来说,低温反应先发生在压缩余隙和凹坑内活塞表面附近的燃料均质分布区,而高温反应先发生在喷雾导致的浓混合气区域。在预混合气低温燃烧开始时刻附近喷油与中心浓的分层类似,小比例喷油条件下,-65 deg. ATDC前早喷与周边浓的分层类似。
     最后,本文应用实验和CFD数值模拟对在低氧浓度条件下LTC机理进行了研究,结果表明:随着氧浓度的降低,缸内压力峰值降低,滞燃期延长且预混燃烧放热比例增加;碳烟排放先升高后降低,低氧浓度soot排放降低的本质是低缸内温度抑制了soot的生成。缸内温度降低导致NOx和CO排放快速降低;HC排放先降低,在低氧浓度条件下又快速升高。随着喷油压力增加,缸内流场速度和湍动能都增加。促进燃油与空气的混合,碳烟排放的最高值和最终值都很显著降低。NOx排放其最终生成量随喷油压力增加而增大。进气压力增大,增大进气压力能改善低氧浓度局部缺氧的情况。soot生成的最大值和最终值都随进气压力的增大而降低。进气压力增大,最大局部温度的降低使得NOx排放降低。
Many researchers in the world focus on the advanced combustion modes of diesel engines which can avoid NOx and soot forming regions. In this study, combustion mechanisms of three advanced combustion modes were investigated: Homogenous charge compression ignition (HCCI), Charge stratification compression ignition (SCCI) and Low temperature combustion (LTC). The potential of clean and high-efficiency of the three combustion modes was investigated using fully coupled multi-dimensional CFD and reduced chemical kinetics model combined with experiments.
     Based on the analysis of detailed mechanism, a reduced mechanism of n-heptane HCCI combustion is developed. The simulation results with CFD coupled the reduced mechanism model indicate that low temperature reaction begins from the vicinity of the cylinder wall and the bottom of the piston bowl, while the high temperature reaction takes place around the center of the bowl region and is widely distributed in space. UHC emissions mainly reside in the piston-ring crevice region. The majority of CO emissions are located in the region near the top surface of the piston. The Experimental study on n-heptane HCCI combustion shows that the increase of fuel/air equivalence ratio increases the maximum cylinder pressure and the maximum rate of heat release of combustion. With the increase of fuel/air equivalence ratio, the combustion efficiency increases; the indicated thermal efficiency increases first and then decreases; the UHC emissions decreases first and then increases; and the CO emissions decreases.
     A reduced chemical kinetics model of n-heptane SCCI combustion which consists of 42 species and 58 elementary reactions is developed. Applying CFD coupled the reduced mechanism model, seven different kinds of imposed stratification have been introduced according to the position of the maximal local fuel/air equivalence ratio in the cylinder at intake valve close. The results show that: The former four kinds of stratification, whose maximal local equivalence ratios locate between the cylinder center and half of the cylinder radius, advance ignition timing, reduce the pressure-rise rate, and retard combustion-phasing. All kinds of stratification can reduce UHC emissions. The last two kinds of stratification can reduce UHC and CO emissions while maintain low NOx emissions simultaneously. For premixed/direct-injected fuel combustion, the combustion process by fuel injection at the timing near the start of low temperature reaction is similar to the imposed stratification cases whose maximal local equivalence ratios locate between the cylinder center and half of the cylinder radius; the combustion process by early fuel injection before -65 deg. ATDC is similar to the imposed stratification cases whose maximal local equivalence ratios appear between half of the cylinder radius.
     Effects of oxygen concentration on combustion process and emissions of diesel engine are investigated by engine experiments and numerical simulation. The results indicate: Soot emissions increase first then decrease. It is the essential reason of low soot emissions at low oxygen concentration that the low in-cylinder combustion temperature leads to the inhibition of soot formation. The decrease of in-cylinder temperature leads to rapidly decrease of NOx emissions and the increase of CO emissions. HC emissions increase decrease first then rapidly increase at very low oxygen concentration. With the increase of injection pressure, the flow velocity and turbulent kinetic energy in the cylinder increases which are benefit to improving the mixing of fuel and air. The enhancement of intake pressure improves the mixing of fuel and air in the condition of oxygen lack in local regions at lower oxygen concentration. They are significant measures to reduce soot emissions in LTC combustion.
引文
[1].村进俊水,汽车发动机技术的发展方向,天津大学-日本丰田公司汽车技术研讨会技术资料(二),1997
    [2]. http://www.dieselnet.com/standards/us/fe.php
    [3]. Schindler K. P., Why Do We Need the Diesel, SAE paper 972684, 1997
    [4]. Arcoumanis C., Mixture Formation and Combustion in the DI Diesel Engine, SAE paper 972681, 1997
    [5].安德?巴斯蒂安,大众汽车公司开创柴油机的新时代,国际车用柴油机技术研讨会,北京:中华人民共和国科学技术部,2000
    [6].王建昕,傅立新,黎维彬,汽车排气污染治理及催化转化器,北京:化学工业出版社,2000.1~21
    [7].刘湘俊,内燃机的排放与控制,北京,机械工业出版社,2002.1~12
    [8]. Dec J E. A conceptual model of DI diesel combustion based on laser-sheet imaging. SAE 970873, 1997
    [9]. Dec J E. Christoph Espey, Chemiluminescence imaging of auto ignition in a DI diesel engine. SAE 982685, 1998
    [10]. Flynn P F, Durrett R P,. Dec J E, Westbrook, C K. Diesel combustion: An integrated view combining laser diagnostics, chemical kinetics, and empirical validation, SAE 1999-01-0509, 1999
    [11]. Baumgarten C. Mixture Formation in Internal Combustion Engine, New York: Springer-Verlag, 2006
    [12]. Dickey D W, Ryan III T W. NOx Control in Heavy-Duty Diesel Engines- What is the Limit?, SAE 980174,1998
    [13]. Akihama K, Takatori Y, Inagaki K, Mechanism of the smokeless rich Diesel combustion by reducing temperature, SAE paper 2001-01-0655, 2001
    [14]. Kamimoto T, and Bae M. High Combustion Temperature for the Reduction of Particulate in Diesel Engines, SAE paper 880423, 1988
    [15]. Lutz A E, Kee R J, and Miller J A. Senkin: A Fortran Program For Predicting Homogenous Gas Phase Chemical Kinetics with Sensitivity Analysis, Sandia National Laboratories, SAND87-8248; 1994
    [16]. Kitamura T, Ito T, Senda J and Fujimoto H, Mechanism of smokeless diesel combust ion with oxygenated fuels based on the dependence of the equivalence ratio and temperature on soot particle formation, International Journal of Engine Research, 2002, Vol. 3(4): 223-247
    [17]. Kee R J, Rupley F M, and Miller J A. Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Kinetics, Sandia National Laboratories, SAND89-8009B, UC-706; 1992
    [18]. Bae C, Miles P C, Pickett L M. The Influence of Charge Dilution and Injection Timing on Low-Temperature Diesel Combustion and Emissions, SAE Paper 2005-01-3837, 2005
    [19]. Kelly-Zion P L and Dec J E. A Computational Study of The Effect of Fuel Type on Ignition Time in HCCI Engines, Proceedings of the Combustion Institute, 2000, Vol. 28(1): 1187-1194
    [20]. Han Z Y, Uludogan A, Reitz R D. Mechanism of Soot and Nox Emission Reduction Using Multiple-Injection in a Diesel Engine, SAE Paper 960633, 1996
    [21]. Sj?berg M, Dec J E. An investigation into lowest acceptable combustion temperatures for hydrocarbon fuels in HCCI engines, Proceedings of the Combustion Institute 30, 2005, 2719-2726
    [22]. Lachaux T, Musculus M P. In-cylinder unburned hydrocarbon visualization during low-temperature compression-ignition engine combustion using formaldehyde PLIF, Proceedings of the Combustion Institute 31, 2007, 2921-2929
    [23]. Heywood J B. Internal combustion engine fundamentals, New York: McGraw-Hill Book Company, 1998
    [24]. Ciajolo A, D'Anna A, Barbella R, Tregrossi A, Violi A. The Effect of Temperature on Soot Inception in Premixed Ethylene Flames, Proceedings of the Combustion Institute 26, 1996, 2327-2333
    [25]. Onishi S, Jo S H, Shoda K, et al. Active Thermo-Atmosphere Combustion (ATAC)– A New Combustion Process for internal Combustion Engines, SAE Paper 790501, 1979
    [26]. Zhao F, Asmus T W, Assanis D N, et al. Homogenous Charge Compression Ignition (HCCI) Engine: Key Research and Development Issues, Society of Automotive Engineers, 2002
    [27]. Najt P M, Foster D E., Compression Ignited Homogeneous Charge Combustion. SAE 830264, 1983
    [28]. Thring R H, Homogeneous Charge Compression Ignition (HCCI) Engines. SAE 892068, 1989
    [29]. Christensen M, Einewall P, Johansson B. Homogeneous Charge Compression Ignition (Hcci) Using Isooctane, Ethanol and Natural Gas--A Comparison with Spark-Ignition Operation. SAE 972874, 1997
    [30]. Christensen M, Hultqvist A, Johansson B. Demonstrating the Multi Fuel Capacity of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio. SAE Paper 1999-01-3679, 1999
    [31]. Morimoto S S, Kawahata Y, Sakurai T, Amano T. Operating Characteristics of a Natural Gas-Fired Homogeneous Charge compression ignition Engine (Performance improvement Using EGR). SAE Paper 2001-01-1034, 2001
    [32]. Fiveland S B, Agama R. Experimental and Simulated Results Detailing the Sensitivity of Natural Gas HCCI Engines to Fuel Composition. SAE Paper 2001-01-3609, 2001
    [33]. Olsson J O, Tunestal P, Johansson B, Fiveland S B, Agama R. Combustion Ratio Influence on Maximum Load of Natural Gas-Fueled HCCI Engine. SAE Paper 2002-01-0111, 2002
    [34]. Chen Z. Study on Homogeneous Premixed Charge CI Engine Fueled With LPG. JSAE Paper 20014339, 2001
    [35]. T. Seko, et al. Methanol Lean Burn in an Auto-Ignition DI Engine. SAE Paper 980531, 1998
    [36]. Seko T, Kuroda E. Combustion Improvement of a Premixed Charge compression Ignition Methanol Engine Using Flash Boiling Fuel Injection. SAE Paper 2001-01-3611, 2001
    [37]. Yao M F, Chen Z, Zheng Z Q, et al. Study on the controlling strategies of homogeneous charge compression ignition combustion with fuel of dimethyl ether and methanol. Fuel, 85(10), 2006, 2046-2056
    [38]. Yao M F, Zheng Z Q, Chen Z, et al. Experimental Study on Hcci Combustion of Dimethyl Ether (Dme)/Methanol Dual Fuel. 2004-01-2993, 2004
    [39]. Oakley A, Zhao H, and Ladommatos N. Dilution Effects on the Controlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuels, SAE 2001-01-3606
    [40]. Daeyup L, Hochgreb S, Keck J C. Autoignition of Alcohols and Ethers in a Rapid Compression Machine. SAE Paper 932755, 1993
    [41]. Cathy K N, Murray J T. A Computational Study of the Effect of Fuel Reforming, Egr and Initial Temperature on Lean Ethanol Hcci Combustion. SAE Paper 2004-01-0556, 2004
    [42]. Gnanam G. An HCCI Engine Fuelled with Iso-octane and Ethanol. SAE Paper 2006-01-3246, 2006
    [43]. Ogawa H, Miyamoto N, Kaneko N, et al. Combustion Control and OperatingRange Expansion With Direct Injection of Reaction Suppressors in a Premixed Dme Hcci Engine. SAE Paper 2003-01-0746, 2003
    [44]. Shudo T. Hcci Combustion of Hydrogen, Carbon Monoxide and Dimethyl Ether. SAE Paper 2002-01-0112, 2002
    [45]. Yamada H, Goto Y, Tezaki A. Analysis of Reaction Mechanisms Controlling Cool and Thermal Flame with DME Fueled HCCI Engines. SAE Paper 2006-01-3299, 2006
    [46]. Stanglmaier R H, Roberts C E. Homogenous Charge Compression Ignition (HCCI): Benefits, Compromises, and Future Engine Applications, SAE Paper 1999-01-3682, 1999
    [47]. Noguchi M, Tanaka Y, Tanaka T. A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products during Combustion. SAE Paper 790840, 1979
    [48]. Li J, Zhao H, Ladommatos Ni. Research and Development of Controlled Auto-Ignition (CAI)Combustion in a 4-Stroke Multi-Cylinder Gasoline Engine, SAE 2001-01-3608
    [49]. Zhao H, Li J, Ma T, Ladommatos N. Performance and Analysis of a 4-stroke Multi-Cylinder Gasoline Engine with CAI combustion, SAE 2002-01-0420
    [50]. Willand J, Nieberding R G, Vent G, Enderle C. The Knocking Syndrome——Its Cure and Its Potential, SAE 982483, 1998
    [51]. Kontarakis G, Collings N, Ma T. Demonstration of HCCI Using a Single Cylinder Four-stroke SI Engine with Modified Valve Timing, SAE 2000-01-2870, 2000
    [52]. Wolters P, Salber W, Geiger J, et al. Controlled Auto Igniton Combustion Process with an Electromechanical valve Train. SAE paper 2003-01-0032, 2003
    [53]. Ryan T W, Callahan T J. Homogeneous Charge Compression Ignition of Diesel Fuel. SAE Paper 961160, 1996
    [54]. Gray AW, Ryan T W. Homogeneous Charge Compression Ignition (HCCI) of Diesel Fuel. SAE Paper 971676, 1997
    [55]. Suzuki H, Odaka M, Kariya T. Effect of start of injection on NOx and smoke emissions in homogeneous charge diesel combustion. JSAE Review, 2000, 21: 390~392
    [56]. Walter B, Gatellier B. Near Zero NOx Emissions and High Fuel Efficiency Diesel Engine: the NADITM Concept Using Dual Mode Combustion. Oil & Gas Science and Technology-Rev.IFP, 2003, Vol.58 (1): 101~114.
    [57]. Walter B, Gatellier B. Development of the High Power NADI Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions”, SAE Paper 2002-01-1744, 2002
    [58]. Takeda Y, Nakagome K. Emission Characteristics of Premixed Lean Diesel Combustion with Extremely Early Staged Fuel Injection. SAE Paper 961163, 1996
    [59]. Walter B, Gatellier B. Near Zero NOx Emissions and High Fuel Efficiency Diesel Engine: the NADI Concept Using Dual Mode Combustion, Oil & Gas Science and Technology-Rev. IFP, Vol.58 (2003), No.1, pp. 101~114. 2003
    [60]. Akagawa H, Miyamoto T, Tsujimura K. Approaches to Solve Problems of the Premixed Lean Diesel Combustion, SAE Paper 1999-01-0183, 1999
    [61]. Nishijima Y, Asaumi Y, Aoyagi Y. Premixed Lean Diesel Combustion (PREDIC) Using Impingement Spray System, SAE Paper 2001-01-1892, 2001
    [62]. Hashizume T, Miyamoto T, Akagawa H, Tsujimura K. Combustion and Emission Characteristics of Multiple Stage Diesel Combustion, SAE Paper 980505, 1998
    [63]. Hashizume T, Miyamoto T, Akagawa H, Tsujimura K. Emission Characteristics of a MULDIC Combustion Diesel Engine: Effects of EGR, JSAE Review, 1999, 20: 421~438
    [64]. Lee J H, Goto S, Tsurushima T, Miyamoto T, Wakisaka T. Effects of Injection Conditions on Mixture Formation Porcess in a Premixed Compression Ignition Engine, SAE Paper 2000-01-1831, 2000
    [65]. Nishijima Y, Asaumi Y, Aoyagi Y. Impingement Spray System with Direct Water Injection for Premixed Lean Diesel Combustion Control, SAE Paper 2002-01-0109, 2002
    [66]. Tsurushima T, Harada A, Iwashiro Y, Enomoto Y, Asaumi Y, Aoyagi Y. Thermodynamic Characteristics of Premixed Compression Ignition Combustion, SAE Paper 2001-01-1891, 2001
    [67]. Tsurushima T, Kunishima E, Asaumi Y, Aoyagi Y. The Effect of Knock on Heat Loss in Homogeneous Charge Compression Ignition Engines, SAE Paper 2002-01-0108, 2002
    [68].阪田一郎,最新发动机技术,丰田汽车技术讲座,天津大学,2003,12
    [69]. Yanagihara H, Sato Y, Mizuta J. A Study of DI Diesel Combustion under Uniform Higher-Dispersed Mixture Formation, JSAE, 1997, Review 18: 247~254
    [70]. Hasegawa R, Yanagihara H. HCCI Combustion in DI Diesel Engine, SAE Paper 2003-01-0745, 2003
    [71]. Mase Y, Kawashina J I, Sato T, Euguchi M. Nissan’s New Multivalve DI Diesel Engine Series, SAE Paper 981039, 1998
    [72]. Aiyoshizawa E, Hasegawa M, Kawashima J, et al. Combustion Characteristics of a Small DI Diesel Engine, JSAE Review, 2000, 21: 241-263, 2000
    [73]. Kondo M, Kimura S, Hirano I, et al, Development of Noise Reduction Technologies for a Small Direct-Injection Diesel Engine, JSAE Review, 2000, 21: 327~333,
    [74]. Kimura S, Aoki O, Ogawa H, Muranaka S, Enomoto Y. New Combustion Concept for Ultra-clean and High-efficiency Small DI Diesel Engines, SAE Paper 1999-01-3681, 1999
    [75]. Kimura S, Aoki O, Kitahara Y. Ultra-clean Combustion Technology Combining a Low-temperature and Premixed Combustion Concept for Meeting Future Emission Standards, SAE Paper 2001-01-0200, 2001
    [76]. Kimura S. An experimental analysis and future trend of Low-temperature and premixed combustion for Ultra-Clean Diesel, SAE Homogeneous Charge Compression Ignition system, 2005
    [77]. Pischinger F. The Diesel Engine for Cars– is there a Future?, ASME Fall Conference, 1995
    [78]. Sj?berg M, Dec J E. An Investigation of the Relationship Between Measured Intake Temperature, BDC Temperature, and Combustion Phasing for Premixed and DI HCCI Engines. SAE paper 2004-01-1900, 2004
    [79]. Dec. J E, Wontae H, Sj?berg M. An Investigation of Thermal Stratification in HCCI engines Using Chemiluminescence Imaging. SAE Paper 2006-01-1518, 2006
    [80]. Flowers D L, Aceves S M, Smith J R, et al. Hcci in a Cfr Engine: Experiments and Detailed Kinetic Modeling. SAE Paper 2000-01-0328, 2000
    [81]. Dec. J E. Sj?berg M. Comparing Enhanced Natural Thermal Stratification Against Retarded Combustion Phasing for Smoothing of HCCI Heat-Release Rates. SAE Paper 2004-01-2994, 2004
    [82]. Dec. J E. Understanding HCCI charge stratification using optical, conventional, and computational diagnostics. SAE HCCI Symposium, Lund, Sweden, September, 2005
    [83]. Milovanovic N, Blundell D, Pearson R, Turner J, Chen R. Enlarging the operational range of a gasoline HCCI engine by controlling the coolant temperature. SAE paper 2005-01-0157, 2005
    [84]. Christensen M, Johansson B. Influence of Mixture Quality on Homogeneous Charge Compression Ignition. SAE Paper 982454, 1998
    [85]. Dec. J E. Sj?berg M. Isolating the Effects of Fuel Chemistry on Combustion Phasing in An Hcci Engine and the Potential of Fuel Stratification for Ignition Control. SAE Paper 2004-01-0557, 2004
    [86]. Tanet A, Philipp W, Volker M S, et al. Expanding the Hcci Operation With the Charge Stratification. SAE Paper 2004-01-1756, 2004
    [87]. Sj?berg M, Dec. J E. Smoothing HCCI Heat-Release Rates Using Partial Fuel Stratification with Two-Stage Ignition Fuels. SAE Paper 2006-01-0629, 2006
    [88]. Steeper R, Zilwa S D. Automotive HCCI Combustion Research. 2005 Advanced Combustion Engine Program Review. Argonne National Laboratory, USA. April 2005
    [89]. Tian G H, Wang J X, Shuai S J, et al. HCCI Combustion Control by Injection Strategy with Negative Valve Overlap in a GDI Engine, SAE Paper 2006-01-0415, 2006
    [90].苏万华,林铁坚,张晓宇等, MULINBUMP-HCCI复合燃烧放热特征及其对排放和放热率的影响,内燃机学报,2004,22(3):193~200
    [91]. Su W H, Lin T J, Pei Y Q. A Compound Technology for HCCI Combustion in a DI Diesel Engine Based on the Multi-pulse Injection and the BUMP Combustion Chamber, SAE Paper 2003-01-0741, 2003
    [92]. Su W H, Zhang X Y, Lin T J, et al. Study of Pulse Spray, Heat Release, Emissions and Efficiencies in A Compound Diesel HCCI Combustion Engine, Proceedings of ASME-ICE ASME Internal Combustion Engine Division 2004 Fall Technical Conference, ICEF2004-927, 2004
    [93]. Su W H, Zhang X Y, Lin T J, et al. Effects of Heat Release Mode on Emissions and Efficiencies of a Compound Diesel Homogeneous Charge Compression Ignition Combustion Engine. Journal of Engineering for Gas Turbines and Power. APRIL 2006, Vol. 128: 446~454
    [94]. Weissβ?ck M, CsatóJ, Glensvig M, Sams T, Herzog P. Alternative Combustion– An Approach for Future HSDI Diesel Engines, MTZ Worldwide, Vol. 64, No. 9, pp.17-20, 2003
    [95]. Mueller C., and Upatnieks A., Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI, 11th Annual Diesel Engine Emissions Reduction Conference, Chicago, Illinois, 2005
    [96]. Mueller C. Using Unconventional Fuels and In-Cylinder Strategies to Achieve High-Efficiency, Clean Combustion, Sandia National Laboratories, ERC Symposium on Future Fuels for Internal Combustion Engines, June 6, 2007
    [97]. Alriksson M, Rente T, Denbratt I. Low Soot, Low NOx in a Heavy Duty Diesel Engine Using High Levels of EGR. SAE Paper 2005-01-3836.
    [98]. Alriksson M, Denbratt I. Low Temperature Combustion in a Heavy Duty Diesel Engine Using High Levels of EGR. SAE paper 2006-01-0075
    [99]. Miles P. In-cylinder Flow and Mixing Processes in Low-Temperature Diesel Combustion Systems, 2nd International Symposium on Clean High-Efficiency Combustion in Engines, 10-13, July 2006 Tianjin University, China
    [100]. Miles P C, Hildingsson L, Hultqvist A. The Influence of Fuel Injection and Heat Release on Bulk Flow Structures in a Direct-Injection, Swirl-Supported Diesel Engine, 13th Int Symp on Applications of Laser Techniques to Fluid Mechanics, 26-19 June 2006, Lisboa
    [101]. Dodge L G, Simescu S, Dickey D W. Effect of Small Holes and High Injection Pressures on Diesel Engine Combustion, SAE 2002-01-0494, 2002
    [102].宫木正彦, The Future of Diesel EMS in China--Denso Technology Contribute to Your Success, The Beijing 2006 Forum on sustainable Development of Internal Combustion Engine and the 2nd International forum of Automotive Powertrain in China, 2006
    [103]. Henein N A, Bhattacharyya B, Schipper J, Kastury A, Bryzik W. Effect of Injection Pressure and Swirl Motion on Diesel Engine-out Emissions in Conventional and Advanced Combustion Regimes. SAE paper 2006-01-0076.
    [104]. Choi D, Miles P C, Yun H H, Reitz R D. A Parametric Study of Low-Temperature, Late-Injection Combustion in a HSDI Diesel Engine. Vol. 48, 2005, No. 4 Special Issue on Advanced Combustion Technology in Internal Combustion Engines pp.656-664
    [105]. Alfuso S, Allocca L, Auriemma M, Caputo G. Analysis of a High Pressure Diesel Spray at High Pressure and Temperature Environment Conditions, SAE Paper 2005-01-1239, 2005
    [106]. Colban W, Miles P C, Oh S. Effect of Intake Pressure on Performance and Emissions in an Automotive Diesel Engine Operating in Low Temperature Combustion Regimes. SAE Paper 2007-01-4063.
    [107]. Benson R S, Whitehouse N D. Internal Combustion Engines. Vol. 1, and 2, London: Pergamon Press, Inc. 1979
    [108]. Su W H, Pei Y Q, Zhang X Y. Mixing-enhanced Combustion in the Circumstances of Diluted Combustion in Direct-injection Diesel Engines. SAE Paper 2008-01-0009.
    [109]. Su W H, Wang H, Liu B. Injection Mode Modulation for HCCI Diesel Combustion, SAE Paper 2005-01-0117, 2005
    [110]. Helmantel A, Denbratt I. HCCI Operation of a Passenger Car Common Rail DI Diesel Engine with Early Injection of Conventional Diesel Fuel, SAE Paper 2004-01-0935, 2004
    [111]. Buchwald R, Brauer M, Blechstein A. Adaption of Injection System Parameters to Homogeneous Diesel Combustion, SAE 2004-01-0936, 2004
    [112]. Kook S, Bae C. Combustion Control using Two-Stage Diesel Fuel Injection in a Single-Cylinder PCCI Engine, SAE 2004-01-0938, 2004
    [113]. Nevin R M, Sun Y, and Reitz R D. PCCI Investigation Using Variable Intake Valve Closing in a Heavy Duty Diesel Engine, SAE 2007-01-0903, 2007
    [114]. Inagaki K, Fuyuto T. Combustion System with Premixture-controlled Compression Ignition, R&D Review of Toyota CRDL, 2006, Vol. 41(3): 35~46
    [115]. SAKAI A, TAKEYAMA H. Improvements in PCCI Combustion and Emissions with Lower Distillation Temperature Fuels, COMODIA 2004, 2004
    [116]. Ogawa H, Sakai A, Takeyama H. Fuel ignitability and compression ratio dependence of a premixed charge compression ignition engine, International Journal of Vehicle Design, 2006, Vol. 41(1): 227-241
    [117]. Ranzi E, Faravelli T, Sogaro A, Gaffuri P, Pennati G. A Wide Range Modeling Study of Propane and n-Butane oxidation. Combustion Science and Technology 1994; 100: 229-330.
    [118]. Frouzakis G E, Boulouchos K. Analysis and Reduction of the CH4-Air Mechanism at Lean Conditions. Combustion Science and Technology 2000; 151: 281-303.
    [119]. Dagaut P, Cathonnet M, Boettner J C. Ethylene pyrolysis and oxidation: A kinetic modeling study. International Journal of Chemical Kinetics 1990; 22: 641-664.
    [120]. Curran H J, Gaffuri P, Pitz W J, Westbrook C K. A Comprehensive Modeling Study of n-Heptane Oxidation. Combustion and Flame 1998; 114:149-177
    [121]. Curran H J, Gaffuri P, Pitz W J, Westbrook C K. A comprehensive modeling study of iso-octane oxidation. Combustion and Flame 2002; 129: 253-280
    [122]. Westbrook C K, Dryer F L. Chemical Kinetics and Modeling of Combustion Processes, 18th Symposium on Combustion 1981
    [123]. Jun D, Ishii K, and Iida N. Combustion analysis of natural gas in four stroke HCCI engine using experiment and elementary reactions calculation. SAE paper 2003-01-1089, 2003.
    [124]. Yamasaki Y, Iida N. Numerical Analysis of Auto Ignition and Comubstion of n-Butane and Air Mixture in the Homogeneous Charge Compression Ignition Engine by Using Elementary Reactions. SAE Tech. Pap. Ser. 2003, 2003-01-1090.
    [125]. Fiveland S B, Assanis D N, Development of a Two-Zone HCCI Combustion Model Accounting for Boundary Layer Effects, SAE paper, No. 2001-01-1028, 2001.
    [126]. Fiveland S B, Assanis D N. Development and Validation of a Quasi-Dimensional Model for HCCI Engine Performance and Emissions Studies under Turbocharged conditions. SAE Technical Paper 2002-01-1757, 2002.
    [127]. Komninos N P, Hountalas D T, Kouremenos D A. Description of In-Cylinder Combustion Processes in HCCI Engines Using a Multi-Zone Model. SAE Paper 2005-01-0171, 2005.
    [128]. Kongsereeparp P, Checkel M D. Investigation of Reformed Fuel Blending Effects in HCCI Engines Using a Multi-Zone Model. SAE paper 2007-01-0205
    [129]. Aceves S M, Flowers D L, Westbrook C K, Smith J R, Pitz W J, Dibble R W, Christensen M, Johansson B. A Multi-Zone Model for Prediction of HCCI Combustion and Emissions, SAE paper, No. 2000-01-0327, 2000.
    [130]. Aceves S M, Flowers D L, Martinez-Frias, J, Smith J R, Westbrook C K, Pitz W J, Dibble R W, A Sequential Fluid-Mechanic Chemical-Kinetic Model of Propane HCCI Combustion, SAE paper, No. 2001-01-1027, 2001.
    [131]. Aceves S M, Martinez-Frias, J, Flowers D L, Smith J R, Dibble R W, Wright J F, Hessel R P. A Decoupled Model of Detailed Fluid Mechanism Followed by Detailed Chemical Kinetics for Prediction of Iso-Octane HCCI Combustion, SAE, 2001-01-3612, 2001
    [132]. Babajimopoulos A, Assanis D N, Fiveland S B. An approach for modeling the effects of gas exchange processes on HCCI combustion and its application in evaluating variable valve timing control strategies. SAE 2002-01-2829, 2002.
    [133]. Flowers D L, Aceves S M, Martinez-Frias J, Hessel R, Dibble R W. Effect of Mixing on Hydrocarbon and Carbon Monoxide Emissions Prediction for Isooctane HCCI Engine Combustion Using a Multi-Zone Detailed Kinetics Solver. SAE Paper 2003-01-1821.
    [134]. Babajimopoulos A, Lavoie G A, Assanis D N. Modeling HCCI Combustion with High Levels of Residual Gas Fraction - A Comparison of. Two VVA Strategies. SAE Paper 2003-01-3220.
    [135]. Aceves S M, Flowers D L, Martinez-Frias J, Espinosa-Losa F, Christensen ., Johansson B, Hessel R P. Analysis of the Effect of Geometry-Generated Turbulence on HCCI Combustion by Multi-Zone Modeling. SAE paper 2005-01-2134.
    [136]. Agarwal A, Assanis D N. Modeling the effect of natural gas composition on ignition delay under compression ignition conditions. SAE Paper 971711.
    [137]. Agarwal A, Assanis D N. Multi-dimensional modeling of natural gas ignition under compression ignition using detailed chemistry. SAE. 980136.
    [138]. Agarwal A, Assanis D N. Multi-Dimensional Modeling of Ignition,. Combustion and Nitric Oxide Formation. in Direct Injection Natural Gas Engines. SAE paper 2000-01-1839.
    [139]. Kong S C, Reitz R D. Modeling HCCI engine combustion using detailed chemical kinetics with consideration of turbulent mixing effects. Journal of Engine Gas Turbines Power, 2002, 124: 702-709
    [140]. Kong S C, Reitz R D, Christensen M, et al. Modeling the effects of Geometry-Generated Turbulence on HCCI engine combustion. SAE 2003-01-1088, 2003
    [141]. Kong S C, Reitz R D. Numerical study of premixed HCCI engine combustion and its sensitivity to computational mesh and model uncertainties. Combution theory and modeling, 2003, 7:417-433
    [142]. Halstead M P, Kirsh L and Quinn C. The Autoignition of Hydrocarbon Fuels at High Temperatures and Pressure-Fitting of Mathematical Model. Combustion and Flame, 1977,30(1): 45~60
    [143]. Hu H and Keck J C. Autoignition of adiabatically compressed combustible gas mixtures. SAE Paper 872110, 1987
    [144]. Li H, Miller D L and Cernansky N P. Development of reduced kinetic model for prediction of preignition reactivity and autoignition of primary reference fuels. SAE Paper 960498, 1996
    [145]. Zheng J C, Yang W Y, Miller D L, et al. Prediction of pre-ignition reactivity and ignition delay for HCCI using a reduced chemical kinetic model. SAE Paper 2001-01-1025, 2001
    [146]. Griffiths J F, Hughes K J, Schreiber M, et al. A unified approach to the reduced kinetic modeling of alkane combustion. combustion and flame, 1994, 99: 533~540
    [147]. Su W H, Huang H Z. Development and calibration of a reduced chemical kinetic model of n-heptane for HCCI engine combustion Fuel. 2005, 84, 1029-1040.
    [148].梁霞,二甲基醚/甲醇双燃料均质压燃燃烧数值模拟研究:[硕士学位论文],天津;天津大学,2005
    [149]. Jia M, Xie M Z. A chemical kinetics model of iso-octane oxidation for HCCI engines. Fuel. 2006, 85, 2593-2604.
    [150]. Kim M, Kong S C, Reitz R D. Modeling Early Injection Processes in HSDI Diesel Engines. SAE Paper 2006-01-0056.
    [151]. Ohashi T. Yang X, Takabayashi T, Urata Y, Kubota S, Katsuyama H. Ignition and Combustion Simulation in HCCI Engines. SAE 2006-01-1522.
    [152].黄晨,尧命发,DME燃料HCCI燃烧过程及排放的数值模拟,燃烧科学与技术,2006,12(3):248-252
    [153]. Yao M F, Huang C, Zheng Z L. Multi-dimensional Numerical Simulation on Dimethyl Ether/Methanol Dual Fuel HCCI Engine Combustion and Emission Processes. Energy Fuels 21 (2): 812-821.
    [154]. Badock C, Wirth R, Fath A, Leipertz A. Investigation of Cavitation in Real Size Diesel Injection Nozzles. Heat and Fluid Flow, 1999, 20(5): 538-544
    [155]. Payri F, Bermudez V, Payri R, Salvador F J. The Influence of Cavitation on the Internal Flow and the Spray Characteristics in Diesel Injection Nozzles. Fuel, 2004, 83(4): 419-431
    [156]. Obermeier F. Modeling of nozzle-flow, IDEA Project, Subprogram A1, 1991
    [157]. Gosman A D, Marooney C J. Development and validation of a computer code for Diesel combustion, IDEA Project, Subprogram E1, 1991
    [158]. Reitz R D, Diwakar R. Effect of drop breakup on fuel sprays. SAE, 860469, 1986
    [159]. Huh K Y, Gosman A D. A Phenomenological Model of Diesel Spray Atomization. International Conference on Multiphase Flows, Tsukuba, 1991
    [160]. Bai C, Gosman A D. Development of Methodology for Spray Impingement Simulation. SAE, 950283, 1995
    [161]. Eng J A, Leppard W R, Sloane T M. The Effect of POX on the Autoignition Chemistry of N-heptane and Iso-octane in an HCCI Engine. SAE Paper 2002-01-2861
    [162]. Kusaka J, Yamamoto T, Daisho Y. Simulation the Homogeneous Charge Compression Ignition Process Using a Detailed Kinetic Model for N-heptane Mixtures. International Journal of Engine Research.Vol.no.3 JER 0070
    [163].尧命发郑尊清,张波等.辛烷值对均质压燃发动机燃烧特性和性能的影响.燃烧科学与技术, 2004, Vol. 10(3):245~249
    [164]. Tanaka S Y, Ayala F, Keck J C. A Reduced Chemical Kinetic Model for HCCI Combustion of Primary Reference Fuels in a Rapid Compression Machine. Combustion and Flame,1998,133,467-481
    [165]. CD adapco Group. STAR-CD User Guide (Version 3.22). Japan: Yokohama Computational Dynamics Limited, 2004.
    [166]. CD adapco Group. STAR-CD Command (Version 3.22). Japan: Yokohama Computational Dynamics Limited, 2004. STAR/KINetics Manual. Reaction Design/adapco. 2004
    [167]. U.S. Department of Energy Efficiency and Renewable Energy Office of Transportation Technologies, Homogeneous Charge Compression Ignition (HCCI) Technology - A Report to the U.S. Congress April 2001
    [168]. Fayoux A, DupréS, Scouflaire P, Houille S, Pajot O, Rolon C. OH and HCHO LIF Measurements in HCCI Engine. 12th International Symposium on application of laser techniques to Fluid Mechanics. 2004.
    [169].张波,燃料理化特性对均质压燃影响的试验研究:[博士学位论文],天津;天津大学,2007
    [170]. Warnatz J, Mass U, Dibble R W. Modeling and Simulation, Experiments, Pollutant Formation. Combustion: Physical and Chemical Fundamentals. 2001, Berlin: Spring; 3rd Edition.
    [171]. Bowman C T. Control of combustion generated nitrogen oxide emissions: technology driven by regulation. 24th Symposium (International) on Combustion. The Combustion Institute, 1992
    [172]. Halstead M P, Kirsch L J, Prothero A, Quinn C P. A mathematical model for hydrocarbon autoignition at high pressures, Proc. R. Soc. Lond., A346, pp. 515-538. 1975
    [173]. Kong S C, Han Z, Reitz R D. The development and application of Diesel ignition and combustion model for muti-dimensional engine simulation, SAE 950278, 1995
    [174]. Theobald M A, Cheng W K. A numerical study of Diesel ignition, Proc. ASME Energy-Sources Technology Conf. and Exhibit., Dallas, Texas, USA, 15-20 February, Paper No. 87-FE-2. 1987
    [175]. Halstead M P, Kirsch L J, Quinn C P. The autoignition of hydrocarbon fuels at high temperatures and pressures - fitting a mathematical model, Combust. Flame, 30, pp. 45-60. 1977
    [176]. Sazhina E M, Sazhin S S, Heikal M R. Marooney, C.J., The Shell autoignition model: applications to gasoline and diesel fuels, Vol: 78, Issue: 4, March, 1999
    [177].解茂昭,内燃机计算燃烧学,大连:大连理工大学出版社,2004
    [178]. Magnussen B F, Hjertager B W. On the structure of turbulence and a generalised eddy dissipation concept for chemical reaction in turbulent flow. 19th AIAA Aerospace Meeting, St. Louis, USA., 1981
    [179]. Aberg P, Smith G P, Jeffries J B. Nitric Oxide Formation and Reburn in Low-pressure Methane Flames. 27th Symp. (Int.) on Combustion, The Combustion Institute, 1998
    [180]. Monat J P, Hanson R K, Kruger C H. Shock tube determination of the rate coefficient for the reaction N2 + O→NO + O. 17th Symp. (Int.) on Combustion, The Combustion Institute, 1979
    [181]. Karlsson A, Magnusson I, Balthasar M. Simulation of soot formation under Diesel engine conditions using a detailed kinetic soot model. SAE Paper 981022, 1998
    [182].李晓娟,车用柴油机燃烧过程及碳烟和NOX排放的数值模拟:[硕士学位论文],天津;天津大学,2007
    [183].成存玉,柴油机全气缸取样系统的开发:[硕士学位论文],天津;天津大学,2005
    [184].裴毅强,董素荣,宋崇林,基于电控燃油喷射技术的柴油机全气缸取样系统的设计与开发,燃烧科学与技术,2006,12(2): 115~120
    [185]. Miles P C, Choi D, Pickett L M, and Reitz R D. Rate-Limiting Processes in Late-Injection, Low-Temperature Diesel Combustion Regimes,”THIESEL 2004 Conferences on Thermo- and Fluid Processes in Diesel Engines, September, Valencia, Spain, 2004
    [186].何学良,李疏松,内燃机燃烧学,北京:机械工业出版社, 1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700