乙烯火焰反应动力学简化模型及烟黑生成模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代社会约88%的能源由化石燃料的燃烧所产生,燃料的燃烧也引起了大气污染和能源危机等社会问题及环境问题。乙烯是化石燃料的一种重要成分,也是高阶碳氢燃料高温分解过程中产生的一种中间产物,研究其燃烧化学动力学对理解更高阶的碳氢燃料高温分解过程有帮助。另一方面,乙烯较之于其它低碳碳氢燃料更易产生烟黑这一重要的污染物。因此本文选用乙烯的氧化作为研究烟黑生成的平台。烟黑是化石燃料燃烧排放的主要颗粒物,其排放不但会降低燃料发热利用率,也会对人体会造成极大的危害。然而,相对单一的动力学模拟研究,烟黑在实际形成过程中涉及到热力学、流体力学、传质传热及化学反应动力学等输运的知识,是耦合质量能量交换的复杂物理化学过程,对烟黑详细形成过程的理解和有效模拟有待进一步研究。为此,本文基于化学反应动力学模拟研究,尝试简化既定系统的化学反应机理,进而发展化学反应动力学与计算流体力学(CFD)、辐射传热及烟黑模型的耦合模拟研究。
     本文系统地综述了烟黑形成国内外研究现状,重点阐述烟黑生成机理的模型研究。详细介绍了碳氢燃料化学反应动力学模型的简化方法,重点阐述了当前较成熟的乙烯氧化反应机理类型。在此基础上,本文对乙烯氧化过程中烟黑及中间体前驱物的生成行为进行了较系统的模拟研究。
     本文首先基于动力学模拟软件CHEMKIN-PRO及高级功能(API),采用两种反应机理对低压和富燃条件下,一维预混的C2H4/02/Ar火焰中烟黑前驱物的生成特征进行了模拟分析和验证。结果表明,对单环芳烃苯及大分子多环芳烃(PAH)中间体的预测,本文选用的两种机理优劣不明显。此外,对前人实验系统用1个全混反应器(PSR)和2个柱塞流反应器(PFR)的组合反应器来建模和模拟研究。模拟工作中,首先采用经典的乙烯燃烧化学动力学模型(Wang-Frenklach气相机理模型)对大气压下、富燃的C2H4/O2/N2火焰中,芘及以下小分子中间体的形成进行了模拟和验证。在综合考虑模拟和实验误差的基础上,通过比较模拟和实验结果改进了本文选用的气相模型,在原模型基础上添加了小分子PAH-PAH的缩合反应,与脱氢-C2H2-加成(HACA)生长路径共同来描述苯到大分子PAHs的生长机理。在此基础上,本文进而采用改进后的气相模型耦合表面化学的方法,应用粒子跟踪特征程序来预测烟黑的转化行为特征。通过比较预测与实验结果表明,本文的建模合理,改进的模型(HACA+PAH-PAH缩合生长机理)能够有效的预测烟黑前驱物及体积浓度分布。烟黑前驱物从苯生长到大分子PAH的过程是HACA与PAH-PAH缩合两个生长机理共同作用的结果。
     基于详细的化学机理模拟多维燃烧时,由于反应过程包括成千上万的组分和基元反应而使计算无能为力。为了发展计算燃烧学,有必要对详细的化学反应机理进行简化。为此,本文基于GRI-Mech 3.0,在常压、化学计量比条件下的一维预混火焰中,采用敏感性分析、反应路径分析(RPA)结合准稳态假设(QSSA)和计算机帮助简化机理(CARM)程序包,发展了一个19组分20步的简化动力学模型。进而分别在PSR反应器中分析测试和在一维预混火焰中验证。结果表明,简化的模型能够在一个较大当量比范围内(0.01-2.5)合理的预测乙烯在空气中燃烧的各特征量。
     在对二维扩散火焰的研究中,本文模拟研究了同向C2H4/O2/N2扩散火焰的温度和烟黑体积浓度分布。数值模拟工作采用简化的气相化学模型和一个2-D火焰源代码通过CHEMKINⅡ耦合复杂的热传输特性,一个简单的二方程烟黑模型用来预测烟黑生成。基于上述模拟计算与原程序包(GRI-Mech3.0的耦合)的计算时间进行了比较。结果表明,在同等的计算精度下,简化的模型与2-D火焰源代码耦合后相比原程序包可节省52.5%的计算时间,这为与多维燃烧的耦合计算提供了思路。此外,辐射图像处理技术和解耦的重建方法同时用来测量与模拟同等条件下火焰的温度和烟黑的体积浓度,通过比较预测结果和测量结果表明,两者吻合良好。
     作为简化模型与燃烧耦合的应用,本文采用该简化模型耦合上述的2-D火焰源代码,探索了伴流空气流速和微重力对火焰结构及烟黑生成特性的影响。结果表明,在正常重力情况下,随伴流气体速度的减小,火焰的外形结构变化不大,而烟黑的总生成量逐渐增加。随重力加速度从1g减小到Og,火焰外形结构由细长形变为微圆形且径向变宽;比较1g和Og工况下的预测结果表明,混合流场最大值骤减;火焰最高温度略微减小,高温区变短;烟黑体积浓度剧增,可见火焰高度略微增加;CO和一些未提供组分的浓度分布沿径向变宽。在1g和0.5g工况下扩散火焰由浮力控制,在Og时火焰由径向动量控制;温度和烟黑的体积浓度都分布在焰舌下部的一个环形区域。
Combustion of fossil fuels provides around 88% of total energy supply for modern society, and meanwhile causes many environmental problems and social problems such as air pollution and energy crisis. Ethylene itself is major components of fossil fuels, and is an important intermediate product in the oxidation of higher-order hydrocarbons. Therefore investigation on the chemical kinetics of ethylene will help us understand the combustion behaviors of higher-order hydrocarbons and predict key parameters of practical combustion processes. On the other hand, ethylene has greater sooting tendencies than other low-order hydrocarbons, making its combustion an ideal system to study soot formation mechanism. Soot is the main particulate matter produced by burned fossil fuel, and it represents unrealized chemical energy of fuel. The emission of soot by combustion processes can reduce utilization rate of heat output of fuel, and tiny particulate matter (PM2.5) can cause serious harm to human health. Otherwise, soot formation process is a complicate physicochemical process, which involves an exchange of mass energy, such as thermodynamics, fluid dynamics, heat and mass transfer and chemical reaction kinetics. It is an interesting topic in understanding soot formation in detail and effective simulation. So, based on study of simulation for chemical reaction kinetics, the effort is to simplify detail mechanism for a specific combustion system of hydrocarbons. Another goal is to develop computational combustion for practical ways to numerically simulate flame environments, such as chemical kinetics coupled with CFD, radiant heat transfer and soot kinetics.
     In this dissertation, the present situation of investigations about soot formation and oxidation at home and abroad was systematically summarized. The mechanism models of soot formation and influences in soot formation process were emphatically elaborated. The simplification methods for chemical reaction kinetics models of hydrocarbons and characteristics for different reaction models were presented in detail. The fairly mature mechanisms of ethylene oxidation were were emphatically elaborated. On this basis, the characteristics of soot formation and intermediates for ethylene oxidation were systemly investigated by simulation.
     Firstly, bssed on CHEMKIN-PRO and advanced functions (AIP), the formations of soot precursors for ethylene flame is investigated by kinetics modeling. In the kinetic modeling work, different pressure laminar premixed ethylene/oxygen/argon flames at broad ranged of equivalence ratio (stoichiometric and rich flames) were computational studied using different gas mechanisms for formation of soot precursors, and regularly results are given. Otherwise, a reaction system for jet stired ractor/plug flow reactor (JSR/PFR) was modeled by using one perfectly stirred reactor (PSR) and two PFR and investigated by simulation. In the simulation, the gas model (Wang-Frenklach mechanism), which is used by this paper, was optimized to satisfiedly predict intermediates and soot volume fractions for ethylene oxidation using Particle Tracking Feature. The results show that modeling is reasonable in this paper, and the growth process from benzene to PAHs is caused by H-abstraction-C2H2-addition (HACA) mechanism combining PAH-PAH radical recombination and addition reactions.
     Nevertheless, detailed chemical kinetics simulation of hydrocarbon combustion within multidimensional turbulent reacting flows is computationally prohibitive. Therefore, it is necessary to develop a reduced mechanism with a minimum number of species and reactions. The reduced mechanism (19 species and 20 reactions) is obtained from the full ethylene mechanism (GRI-Mech 3.0) by using sensitivity and reaction path diagram analysises (RPA), quasi steady state assumption (QSSA) and Computer Assisted Reduction Mechanism (CARM) software in this paper. And the calculation results are in good agreement with the existing detail mechanism and literatures.
     For investigation of two-dimension diffusion flame, a combined computational and experimental investigation that examines temperature and soot volume fraction in coflow ethylene-air diffusion flames was presented. A numerical simulation was conducted by using a reduced gas-phase chemistry and complex thermal and transport properties coupled with a semi-empirical two-equation soot model. Thermal radiation was calculated using the discrete ordinates method. The results show that it saves 52.5 percent calculation time by comparing the computation time using reduced mechanism and detail menchanism. Otherwise, an image processing technique and decoupled reconstruction method were used to simultaneously measure the distributions of temperature and soot volume fraction. The results show that the simulation results are identical to the measurement results.
     As an application attempt, the reduced mechanism coupled with 2-D flame code by using CHEMKIN II to investigate the effects of coflow velocity and gravity on flame structure and soot formation in diffusion flames. The results show that the coflow velocities produce little influence on the distribution of temperature and average velocity in normal gravity. However, the enhancement soot formation is observed when the coflow air velocity is decreased. The gravity has a rather significant effect on the flame structure and soot formation such as flame shape, mixture velocity, temperature, species fraction and soot. The visible flame height in general increase with the gravity from 1g decreased to Og. The peak flame temperature decreases with decreasing gravity level. The peak soot volume fraction increases with decreasing the gravity level. Comparing the calculated results from 1g to Og, the flame becomes wider along radial direction, the high temperature zone becomes shorter, the mixture velocity has a sharp decrease, the soot volume fraction has a sharp increase, CO and unprovided species mole fraction distribution becomes wider along radial direction. At normal and half gravity, the flame is buoyancy controlled and the axial velocity is largely independent of the coflow air velocity. At microgravity (0g), the flame is momentum controlled. The temperature and soot volume fraction in each case occur in the annular region.
引文
[1]Kosllland C. P. Impacts and control of air toxics from combustion. Proceedings of the Combustion Institute,1996,26:2049-2065
    [2]郑楚光,柳朝晖.弥散介质的光学特性及辐射传热.华中理工大学出版社,1996
    [3]Haynes B. S., Wagner H. G. Soot formation. Progress in Energy and Combustion Science,1981,7:229-273
    [4]Tambour Y., Khosid S. On the stability of the process of formation of combustion-generated particles by coagulation and simultaneous shrinkage due to particle oxidation. International Journal of Engineering Science,1995,33:667-687
    [5]Koylii U.O., Faeth G. M. Carbon monoxide and soot emissions from liquid-fueled buoyant trubulent diffusion flames. Combustion and Flame,1991,87:61-76
    [6]Miller J.H., Elreedy S., Ahvazi B., Woldu F. Hassanzadeh P. Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane-air diffusion flame. Applied Optics,1993,32:6083-6089
    [7]Ammann M., Kalberer M., Jost D.T.,Tobler L.,Rossler E., Piguet D.,Gaggeler H.W., Baltensperger U. Heterogeneous production of nitrous acid on soot in polluted air masses. Nature,1998,395:157-160
    [8]朱广一.大气可吸入颗粒物研究进展.环境保护科学,2002,28(3):3-5
    [9]Mauderly J. L. Diesel exhaust, in:Lippman M(Ed), Environmental Toxicants:human exposures and their health effects, Van Nostrnad-Reinhold, New York,1992,119-162
    [10]Brookes S.J., Moss J.B. Measurement of soot production and thermal radiation from confined turbulent jet diffusion flames of methane. Combustion and Flame,1999,116:49-61
    [11]Tien C.L., Lee S.C. Flame radiation. Progress in Energy and Combustion Science, 1982,8:41-59
    [12]Dickerson R.R, Kondragunta S., Stenchikov G., Civerolo K. L., Doddrige B.G., Holben B.N. The impact of aerosols on solar ultraviolet radiation and photochemical smog. Science,1997,278:827-830
    [13]温家宝.十一届全国人大四次会议《政府工作报告》.新华网2011年全国两会特别专题.http://www.news.cn/politics/20111h/zhibo/20110305.htm
    [14]王宇.电场作用下火焰中碳烟颗粒的分布与聚积规律.清华大学博士学位论文.2009.
    [15]Bonig M., Feldermann C., Jander H., etal. Soot formation in premixed C2H4 flat flames at elevated pressure. Proceedings of the Combustion Institute,1991, 23:1581-587.
    [16]Dobbins R. A., Fletcher R. A., Chang H-C. The evolution of soot precursor particles in a diffusion flame. Combustion and Flame,1998,115:285-298
    [17]钟北京,刘晓飞.碳黑颗粒生长模型的初步研究.工程热物理学报,2004,25(5):894-896
    [18]Santoro R. J., Semerjian H. G., Dobbins R. A. Soot particle measurements in diffusion flames. Combustion and Flame,1983,51:203-218
    [19]Kent J. H., Wagner H. G Why do diffusion flames emit smoke? Combustion Science and Technology,1984,41:245-269
    [20]Colket M. B., Hall R. J. Sucesses and uncertainties in modeling soot formation in laminar, premixed flames. In:Bockhorn H, ed. Soot Formation in Combustion: Mechanisms and Models. Berlin:Springer-Verlag,1994.442-468
    [21]Kennedy I. M., Kollmann W., Chen J. Y. A model for soot formation in laminar diffusion flame. Combustion and Flame,1990,81:73-85
    [22]Xu F., Faeth G. M. Soot formation in laminar acetylene/air diffusion flames at atmospheric pressure. Combustion and Flame,2001,125:804-819
    [23]李玉阳.芳烃燃料低压预混火焰的实验和动力学模型研究.中国科学技术大学博士学位论文.2010.
    [24]McEnally C. S., Pfefferle L. D., Atakan B., etal. Studies of aromatic hydrocarbon formation mechanism in flames:Progress towards closing the fuel gap. Progress in Energy and Combustion Science,2006,32:247-294
    [25]Frenklach M. Reaction mechanism of soot formation in flames. Physical Chemistry Chemical Physics,2002,4:2028-2037
    [26]Frenklach M., Wang H. Detailed mechanism and modeling of soot particle formation. In:Bockhorn H, ed. Soot formation in combustion:mechanisms and models. Berlin: Springer,1994,162-190
    [27]Leung K. M., Lindstedt R. P., Jones W. P. A simplified reaction mechanism for soot formation in nonpremixed flames. Combustion and Flame,1991,87:289-305
    [28]Kennedy I. M., Yam C., Rapp D. C. et al. Modeling and measurements of soot and species in a laminar diffusion flame. Combustion and Flame,1996,107:368-382
    [29]艾育华.基于辐射成像的扩散火焰温度和烟黑浓度分布研究.华中科技大学博士学位论文.2006.
    [30]卢晶.轴对称层流扩散火焰温度和烟黑体积浓度检测方法研究.华中科技大学博士学位论文.2009.
    [31]Marr J. A. PAH chemistry in a JET-stirred/Plug-flow reactor system. Doctor of philosophy at MIT,1993.
    [32]Stein S. E. On the high temperature chemical equilibria of polycyclic aromatic hydrocarbons. Journal of Physical Chemistry,1978,82(5):566-571
    [33]Gerhardt P., Loffler S., Homann K. H. Polyhedral carbon ions in hydrocarbon flames. Chemical Physics letters,1987,137:306-310
    [34]Griesheimer J., Homann K. H. Large molecules, radicals ions, and small soot particles in fuel-rich hydrocarbon flames:Part Ⅱ. Aromatic radicals and intermediate PAHs in a premixed low-pressure naphthalene/oxygen/argon flame. Combustion and Flame,1998,27(2):1753-1759
    [35]Baehmann M., Wiese W., Homann K. H. PAH and aromers:Precursors of fullerenes and soot. Proceedings of the Combustion Institute,1996,26:2259-2267
    [36]Weilmunster P., Keller A., Homann K. H. Large molecules, radicals, ions, and small soot particles in fuel-rich hydrocarbon flames part I:Positive ions of polycyclic aromatic hydrocarbons (PAH) in low-pressure premixed flames of acetylene and oxygen. Combustion and Flame,1999,116:62-83
    [37]Fialkov A. B., Dennebaum J., Homann K. H. Large molecules, ions, radicals, and small soot particles in fuel-rich hydrocarbon flames part V:Positive ions of polycyclic aromatic hydrocarbons (PAH) in low-pressure premixed flames of benzene and oxygen. Combustion and Flame,2001,125:763-777
    [38]Fialkov A. B., Homann K. H. Large molecules, ions, radicals, and small soot particles in fuel-rich hydrocarbon flames:part Ⅵ:Positive ions of aliphatic aromatic hydrocarbons in a low-pressure premixed flame of n-butane and oxygen. Combustion and Flame,2001,127:2076-2090
    [39]Markatou P., Wang H., Frenklach M. A computational study of sooting limits in laminar premixed flames of ethane, ethylene, and acetylene. Combustion and Flame, 1993,93:467-482
    [40]Grieco W. J., Lafleur A. L., Swallow K. C., Richter H., Taghizadeh K., Howard J. B. Fullerenes and PAH in low-pressure premixed benzene/oxygen flames. Proceeding of the Combustion Institute,1998,27:1669-1675
    [41]Musick M., Tiggelen P. J. Van, Vandooren J. Flame structure studies of several premixed ethylene-oxygen-argon flames at equivalence ratios from 1.00 to 2.00. Combustion Science and Technology,2000,153(1):247-261
    [42]Renard C., Dias V., Tiggelen P. J. Van, Vandooren J. Flame structure studies of rich ethylene-oxygen-argon mixtures doped with CO2, or with NH3, or with H2O. Proceedings of the Combustion Institute,2009,32:631-637
    [43]周怀春.炉内火焰可视化检测原理和技术.科学出版社,2005.
    [44]Miller J. A., Melius C. F. Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels. Combustion and Flame,1992, 91(1):21-39
    [45]Miller J. A., KliPPenstein S. J. The recombination of propargyl radicals and other reaction on a C6H6 potential. Journal of Physical Chemistry A,2003,107:7783-7799
    [46]Hansen N., Miller J. A., Westmoreland P. R. Isomer-specific combustion chemistry in allene and propyne flames. Combustion and Flame,2009,156:2153-2164
    [47]Marinov N. M., Castaldi M. J., Melius C. E., etal. Aromatic and polycyclic aromatic hydrocarbon formation in a premixed propane flame. Combustion Science and Technology,1997,128:295-342.
    [48]Westmoreland P. R. Experimental and theoretical analysis of oxidation and growth chemistry in a fuel-rich acetylene flame [Ph.D]. Cambridge, MA:Massachusetts Institute of Technology,1986.
    [49]Wang H., Frenklach M. Calculations of rate coefficients for the chemically activated reactions of acetylene with vinylic and aromatic radicals. Journal of Chemical Physics, 1994,98:11465-11489
    [50]Hansen N., Miller J. A., Kasper T., etal. Benzene formation in premixed fuel-rich 1,3-butadiene flames. Proceedings of the Combustion Institute,2009,32:623-630
    [51]Moskaleva L. V., Mebel A. M., Lin M. C. The CH3+C5H5 reaction:A potential source of benene at high temperatures. Proceedings of the Combustion Institute,1996, 26:521-526
    [52]Melius C. F., Colvin M. E., Marinov N. M., etal. Reaction mechanism in aromatic hydrocaebon formation involving the C5H5 cyclopentadienyl moiety. Proceedings of the Combustion Institute,1996,26:685-692
    [53]Wang H., Frenklach M. A detail kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames. Combustion and Flame,1997, 110:173-221
    [54]Marinov N. M., Pitz W. J., Westbrook C. K., etal. Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame. Combustion and Flame, 1998,114:192-213
    [55]Appel J., Bockhorn H., Frenklaeh M. Kinetic modeling of soot formation with detailed chemistry and physics:laminar premixed flames of C2 hydrocarbons. Combustion and Flame,2000,121:122-136
    [56]Richter H, Granata S, Green W H, Howard J B. Detailed modeling of PAH and soot formation in a laminar premixed benzene/oxygen/argon low-pressure flame. Proceedings of the Combustion Institute,2005,30:1397-1405
    [57]Bachmann M, Wiese W, Homann K H. PAH and aromers:Precursors of fullerenes and soot. Proceedings of the Combustion Institute,1996,26:2259-2267
    [58]Minutolo P., Gambi G, D'Alessio A. Properties of carbonaceous nanoparticles in flat premixed C2H4/air flames with C/O ranging from 0.4 to soot appearance limit. Proceedings of the Combustion Institute,1998,27:1461-1469
    [59]Schuetz C. A., Frenklach M. Nucleation of soot:molecular dynamics simulations of pyrene dimerization. Proceedings of the Combustion Institute,2002,29:2307-2314
    [60]Howard J. B. Fullerenes formation in flames. Proceedings of the Combustion Institute,1999,123:1107-1127
    [61]D'Anna A., Violi A., D'Alessio A., Sarofim A. F. A reaction pathway for nanoparticle formation in rich premixed flames. Combustion and Flame,2001,127(2):1995-2003
    [62]Frenklach M., Wang H. Detailed modeling of soot particle nucleation and growth. Proceedings of the Combustion Institute,1991,23:1559-1566
    [63]Mckinnon J. T., Howard J. B. The roles of PAH and acetylene in soot nucleation and growth. Proceedings of Combustion Institute,1992,24:965-971
    [64]Marinov N. M., Pitz W. J., Westbrook C. K., Lutz A. E., Vincitore A. M., Senkan S. M. Chemical kinetic modeling of a methane opposed-flow diffusion flame and comparison to experiments. Proceedings of the Combustion Institute,1998, 27:605-613
    [65]Bartok W., Sarofim A. F., editors. Fossil Fuel Combustion, New York:Wiley; 1991.
    [66]Glassman I. Combustion. 3rd ed., Appendix B, Academic Press, San Diego,1996.
    [67]Haynes B, SaHGGW. Soot formation. Progress in Energy and Combustion Science, 1981,7:229-273.
    [68]Harris S. J., Weimer A. M. Chemical kinetics of soot particle growth. Annual Review Physical Chemistry,1985,36:31-52
    [69]Sunderland P. B., Faeth G. M. Soot formation in hydrocarbon/air laminar jet diffusion flames. Combustion and Flame,1996,105:132-146
    [70]Wieschnowsky U., Bockhorn H., Fetting F. Some new observations concerning the mass growth of soot in premixed hydrocarbon-oxygen flames. Proceedings of the Combustion Institute,1989,22:343-352
    [71]Sunderland P. B., Koylii U. O., Faeth G. M. Soot formation in weakly buoyant acetylene-fueled laminar jet diffusion flames burning in air. Comments. Combustion and Flame,1995,100:310-322
    [72]Puri R., Richardson T. F., Santoro R. J., Dobbins R. A. Aerosol dynamic processes of soot aggregates in a laminar ethene diffusion flame. Combustion and Flame,1993,92: 320-333
    [73]Nagle J., Strickland-Constable R. F. Oxidation of carbon between 1000-2000 C. Proceedings of the Fifth Conference on Carbon. Pergamon Press, London,1962, p154.
    [74]Neoh K. G., Howard J. B., Sarofim A. F. Particulate carbon formation during combustion. in particulate carbon:formation during combustion, ed. D. C. Siegla and G. W.Smith, Plenum Press, New York,1981, p.261.
    [75]Roth P., Brandt O., Gersum S. V. High temperature oxidation of suspended soot particles verified by CO and CO2 measurements. Proceedings of the Combustion Institute,1991,23:1485-1491
    [76]Pope C. J., Miller J. A. Exploring old and new benzene formation pathways in low-pressure premixed flames of aliphatic fuels. Proceedings of the Combustion Institute,2000,28:1519-1527
    [77]Lindstedt R. P, Skevis G. Chemistry of acetylene flames. Combustion Science and Technology,1997,125:73
    [78]McEnally C. S. Pfefferle L. D. An experimental study in non-premixed flames of hydrocarbon growth processes that involve five-membered carbon rings. Combustion Science and Technology,1998,131:323
    [79]Smooke M. D., McEnally C. S., Pfefferle L. D., Hall R. J., Colket M. B. Computational and experimental study of soot formation in a coflow, laminar diffusion flame. Combustion and Flame,1999,117:117-139
    [80]Hu D., Braun-Unkhoff M., Frank P. Modeling study on soot formation at high pressures. Combustion Science and Technology,1999,149:79
    [81]Goldaniga A., Faravelli T. Ranzi E. The kinetic modeling of soot precursors in a butadiene flame. Combustion and Flame,2000,122:350-358
    [82]Bohm H., Lamprecht A., Atakan B., Kohse-Hoinghaus K. Modelling of a fuel-rich premixed propene-oxygen-argon flame and comparison with experiments. Physical Chemistry Chemical Physics,2000,2:4956-4961
    [83]Richter H., Benish T. G., Mazyar O. A., Green W. H., Howard J. B. Formation of polycyclic aromatic hydrocarbons and their radicals in a nearly sooting premixed benzene flame. Proceedings of the Combustion Institute,2000,28:2609-2618
    [84]Kazakov A., Wang H., Frenklach M. Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar. Combustion and Flame, 1995,100:111-120
    [85]Kazakov A., Frenklach M. Dynamic modeling of soot particle coagulation and aggregation:Implementation with the method of moments and application to high-pressure laminar premixed flames. Combustion and Flame,1998,114:484-501
    [86]Hall R. J., Smooke M. D., Colket M. B. in Physical and Chemical Aspects of Combustion. A Tribute to Irvin Glassman, ed. F. L. Dryer and R. F. Sawyer, Gordon and Breach, Amsterdam,1997, p.189.
    [87]Pope C. J., Howard J. B. Simultaneous particle and molecule modeling (SPAMM):An approach for combining sectional aerosol equations and elementary gas-phase reactions. Aerosol Science and Technology,1997,27:73
    [88]Mitchell P., Frenklach M. Monte carlo simulation of soot aggregation with simultaneous surface growth-why primary particles appear spherical. Proceedings of the Combustion Institute,1998,27:1507-1514
    [89]Kennedy I. M. Models of soot formation and oxidation. Progress in Energy and Combustion Science,1997,23:95-132
    [90]Liu Y., Tao F., Foster D. E., Reitz R. D. Application of a multiple-step phenomenological soot model to HSDI diesel multiple injection modeling. SAE Paper 2005-01-0924,2005.
    [91]Fusco A, Knox-Kelecy A, Foster DE. Application of a phenomenological soot model to diesel engine combustion. In:Proceedings of the third international symposium on diagnostics and modeling of combustion in internal combusiton engines,1994.
    [92]Glassman I. Soot formation in combustion processes. In:Proceedings of the 22nd international symposium on combustion. The Combustion Institute,1988,295-311
    [93]Sato H., Tree D. R., Hodges J. T., Foster D. E. A study on the effect of temperature on soot formation in a jet stirred reactor. In:Proceedings of the 23rd international symposium on combustion. The Combustion Institute,1990,1469-1475
    [94]Bohm H., Hesse D., Jander H., Luers B., Pietscher J., Wagner H. G., et al. The influence of pressure and temperature on soot formation in premixed flames.22nd international symposium on combustion. The Combustion Institute,1988,403-411
    [95]Flower W. L. Laser diagnostic techniques used to measure soot formation. Applied Optics,1985,24(8):1101
    [96]Griffiths J F. Reduced kinetic models and their application to practical combustion systems. Progress Energy Combustion Science,1995,21(8):25-107
    [97]Chevalier. C., Pitz. W., Warnatz. J., Westbrook. C. K., Melenk, H. Hydrocarbon ignition:automatic generation of reaction mechanisms and applications to modeling of engine knock. Twenty-Fourth Symposium (International) on Combustion. The Combustion Institute, Pittsburgh.1992,93
    [98]Frenklach M., Wang, H., Rabinowitz N. J. Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane. Progress in Energy and Combustion Science,1992,18:47-73
    [99]Warnatz J. Resolution of gas phase and surface combustion chemistry into elementary reactions. Twenty-Fourth Symposium (Inlernational) on Combustion. The Combustion Institute, Pittsburgh.1992,24:553-579
    [100]Westbrook C. K., Pitz W., Wamatz, J. Twenty-Second Symposium (International) on Combustion. The Combustion Institute, Pittsburgh.1988,893
    [101]Golden D.M. Evaluation of chemical thermodynamics and rate parameters for use in combustion modeling. Fossil Fuel Combustion. Edited by W. Bartok and A. F. Sarofim, Wiley, New York,1989,49-119
    [102]Holbrook K. A., Pilling M. J., Robertson S. H. Unimolecular Reactions,2nd ed.,Wiley, Chichester, England, U.K.,1996
    [103]董刚,黄鹰,陈义良.不同化学反应机理对甲烷射流湍流扩散火焰计算结果影响的研究.燃料化学学报,2000,28(1):49-54
    [104]Kars-Petersen C., Scott S. K. Homoclinic orbits in a simple chemical model of and autocatalytic reaction. Physica D.1988,32:461
    [105]Doedel E., Kernevez J. AUTO:Software for continuation problems in ordinary differential equations with applications, Technical report, California Institute of Technology. Applied Mathematics,1986.
    [106]Chinnick S. J., Baulch D. L., Ayscough P. B. An expert system for hydrocarbon pyrolysis reactions. Chemometrics and Intelligent Laboratory Systems,1988, 5:39-52
    [107]Turanyi T. KINAL—a program package for kinetic analysis of reaction mechanisms. Computers & Chemistry,1990,14(3):253-254
    [108]Rabitz H., Kramer M., Dacol D. Sensitivity analysis in chemical kinetics. Annual Review of Physical Chemistry,1983,34:419-461
    [109]Edelson D., Rabitz H. Oscillations and traveling waves in chemical systems. R. J. Field and M. Burger (Eds), Wiley, New York.1985,193
    [110]Turanyi T. Sensitivity analysis of complex kinetic systems. Tools and applications. Journal of Mathematical Chemistry,1990,5:203-248
    [111]陈义良,董刚,李艺.燃料氧化反应动力学机理简化的研究进展.中国工程热物理学会燃烧学学术会议论文集2000:47-52,武汉。
    [112]Turanyi T., Tomlin A. S., Pilling M. J. On the error of the quasi-steady-state approximation. Journal of Chemical Physics,1993,97:163-172
    [113]Lam S. H., Goussis D. A. The CSP method for simplifying kinetics. International Journal of Chemical Kinetics,1994,26:461-468
    [114]Massias A., Diamantis D., Mastorakos E. et al. A lgorithm for the construction of global reduced mechanisms with CSP data. Combustion and Flame,1999,117: 685-708
    [115]Massias A, Goussis D A. CSP-STEP Version 3.0:A fortran program for automatically producing global reduced chemical kinetic mechanisms of prescribed size[Z].1999, University of Patras, Patras, Greece
    [116]Mass U., Pope S. B. Implementation of simplified chemical kinetics based in intrinsic low-dimensional manifolds. In:24th Symp (Int) on Combust. The Combustion Institute,1992.103-112
    [117]Mass U., Pope S. B. Laminar flame calculations using simplified chemical kinetics based on intrinsic low-dimensional manifolds. In:25th Symp (Int) on Combust. The Combustion Institute,1994.1349-1356
    [118]Pope S. B. Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combustion Theory and Modeling,1997,1:41-63
    [119]Blasco J.A., Fueyo N., Dopazo C., Ballester J. Modelling the temporal of a reduced combustion chemical system with an artificial neural nwtwork. Combustion and Flame,1998,113:38-52
    [120]GreenW. H., Schwer D. A. Computational fluid and solid mechanics. In:Bathe K J, ed. Elsevier Science Ltd,2001,1209-1212
    [121]Chen J. Y. A general procedure for constructing reduced reaction mechanisms with given independent relations. Combustion Science and Technology,1988,57 (1-3): 89-94
    [122]Grcr J. F., Kee R. J., Smooke M. D., et al. A hybrid newton/time-integration procedure for the solution of stead, laminar, one-dimension, premixed flames. Twenty-First Symposium(International)on Combustion.The Combustion Institute, 1986,1773-1782
    [123]Smedley J. M., Williams A., Hainsworth D. Soot and carbon deposition mechanisms in ethane/air flames. Fuel,1995,74 (12):1753-1761
    [124]Mawid M. A., Sekart B. Kinetic modeling of ethylene oxidation in high speed reacting flows. AIAA Journal,1997,3269-3373
    [125]Gal T., Lakatos B. G. Re-pyrolysis of recycled hydrocarbon gsa-mixture:A simulation study. Chemical Engineering and Processing,2008,47:603-612
    [126]Taha A.A. Combustion characteristics of ethylene in scramjet engines. Journal of Propulsion and Power,2002,18:716-718
    [127]Dagaut P., Togbe C., Experimental and modeling study of the oxidation of butanol-n-heptane mixture in a jet-stirred reactor. Energy Fuels,2009,23:3527-3535
    [128]Wang H., Laskin A. Comprehensive kinetic model of ethylene and acetylene oxidation at high temperatures. Dept. of Mechanical Engineering, Univ. of Delaware, Internal Report, Newark,1998.
    [129]Smith G. P., Golden D. M., Frenklach M., Moriarty N. W., Eiteneer B., Goldenberg M., Bowman C. T., Hanson R. K., Song S., Gardiner Jr. W. C., Lissianski V. V., Qin Z. GRI-Mech, version 3.0.2002. http://www.me.berkeley.edu/gri_mech/.
    [130]Varatharajan B., Williams F. Ethylene ignition and detonation chemistry, part 1: Detailed modeling and experimental comparison. Journal of Propulsion and Power, 2002,18344-351
    [131]Varatharajan B., Williams F. Ethylene ignition and detonation chemistry, part 2: Ignition histories and reduced mechanisms. Journal of Propulsion and Power,2002, 18:352-362
    [132]Chemical Kinetic Mechanism for Combustion Applications, Center for Energy Research(Combustion Division), University of California at San Diego. http://maeweb. ucsd. edu/combustion/.
    [133]Marinov N.M., Pitz W.J., Westbrook C.K., Castaldi M.J., Senkan S.M. Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames. Combustion Science and Technology,1996,116/117:211-287
    [134]Castaldi M. J., Marinov N. M., Melius C. F., Huang J., Senkan S. M., Pit W. J., Westbrook C. K. Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame. Symposium(International)on Combustion,1996,26(1):693-702
    [135]Tan Y., Dagaut P., Cathonnet M., Claude Boettner J., Sylvain Bachman J., Carlier P. Natural gas and blends oxidation and ignition:Experiments and modeling, Symposium(International)on Combustion,1994,25(1):1563-1569
    [136]Dagaut P., Nicolle A. Experimental and detailed kinetic modeling study of hydrogen-enriched natural gas blend oxidation over extended temperature and equivalence ratio ranges. Proceedings of the Combustion Institute,2005, 30(2):2631-2638
    [137]Gueniche H. A., Glaude P. A., Dayma G, Fournet R., Battin-Leclerc F. Rich methane premixed laminar flames doped with light unsaturated hydrocarbons:I.Allene and propyne. Combustion and Flame,2006,146(4):620-634
    [138]Konnov A. A. Detailed reaction mechanism for small hydrocarbons combustion, version 0.5,2000.
    [139]Hidaka Y., Nishimori T., Sato K., Henmi Y., Okuda R., Inami K., et al. Shock-tube and modeling study of ethylene pyrolysis and oxidation. Combustion and Flame,1999,117:755-776
    [140]Carriere T., Westmoreland P.R., Kazakov A., Stein Y. S., Dryer F. L. Modelling ethylene combustion from low to high pressure. Proceedings of the Combustion Institute,2002,29:1257-1266
    [141]乔瑜.基于自适应化学理论的均相反应过程模拟及其在甲烷预混火焰中的应用.华中科技大学博士论文.2006.
    [142]Liu F., Guo H., Smallwood G. J. Effects of radiation model on the modeling of a laminar coflow methane/air diffusion flame. Combustion and Flame,2004,138 136-154
    [143]Liu F., Smallwood G. J., Gulder O. L. Application of the statistical narrow-band correlated-k method to low-resolution spectral intensity and radiative heat transfer calculations-effects of the quadrature scheme. International Journal Heat Mass Transfer,2000,43:3119-3135
    [144]Liu F., Guo H., Smallwood G. J., Gulder O. L. Numerical modelling of soot formation and oxidation in laminar coflow non-smoking and smoking ethylene diffusion flames. Combustion Theory and Modelling,2003,7,301-315
    [145]Liu F., Guo H., Smallwood G. J., Gulder O. L. Effects of gas and soot radiation on soot formation in a two-dimensional laminar ethylene-air diffusion flame. Journal of Quantitative Spectroscopy & Radiative Transfer,2002,6,173-187
    [146]Guo H., Liu F., Smallwood G. J., Gulder O.L. Numerical study on the influence of hydrogen addition on soot formation in a laminar ethylene-air diffusion flame. Combustion and Flame,2006,145:324-338
    [147]Kaplan C.R., Kailasanath K. Flow-field effects on soot formation in normal and inverse methane-air diffusion flames. Combustion and Flame,2001,124:275-294
    [148]Lewis B., Elbe G. V.,王方.燃气燃烧与瓦斯爆炸.北京.中国建筑工业出版社.2010.
    [149]Harris S.J., Weiner A.M., Blint R.J. Formation of small aromatic molecules in a sooting ethylene flame. Combustion and Flame,1988,72:91-109
    [150]Westmoreland P.R., Dean A.M., Howard J.B., Longwell J. P. Forming benzene in flames by chemically activated isomerization. Journal of Chemical Physics,1989,93: 8171-8180
    [151]D'Anna A., Violi A., D'Alessio A. Modeling the rich combustion of aliphatic hydrocarbons. Combustion and Flame,2000,121:418-429
    [152]Senosiain J. S., Miller J. A. The reaction of n-and i-C4H5 radicals with acetylene. Journal of Physical Chemistry A,2007,111:3740-3747
    [153]Skjoth-Rasmussen M.S., Glarborg P.,(?)stberg M., Johannessen J.T., Livbjerg H.,Jensen A.D., Christensen T.S. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor. Combustion and Flame,2004,136:91-128
    [154]Kee R. J., Miller J. A. CHEMKIN:a general-purpose, problem-independent, transportable, FORTRAN chemical kinetics code package. Sandia Natl. Lab. Tech. SAND-80-, (1) 1980
    [155]CHEMKIN-PRO帮助文件。
    [156]Turns S.R.,姚强,李水清,王宇.燃烧学导论:概念与应用(第二版):清华大学出版社,2009.
    [157]Smoluchowski M. V. Mathematical Theory of the Kinetics of the Coagulation of Colloidal Particle. Chemical Physics,1917,92:129
    [158]Frenklach M., Harris S. J. Aerosol dynamics modeling using the method of moments. Journal of Colloid and Interface Science,1987,118:252-261
    [159]Renard C., Musick M., Tiggelen P. J. Van, Vandooren J. Effect of CO2 or H2O addition on hydrocarbon intermediates in rich C2H4/O2/Ar flames. Proceedings of the European Combustion Meeting,2003.
    [160]Miller J. H. Aromatic excimers:evidence for polynuclear aromatic hydrocarbon condensation in flames. Proceedings of the Combustion Institute,2005, 30:1381-1388
    [161]Kohse-Hoinghaus K., Kamphus M., Gonzalez Alatorre G., Atakan B., Schocker A., Brockhinke A., et al. Concentration and temperature measurement in fuel-rich flames. CR Acad Sci Paris t 2 Ser IV,2001,2:973-982
    [162]Ciajolo A., Tregrossi A., Barbella R., Ragucci R., Apicella B., deJoannon M. The relation between ultraviolet-excited fluorescence spectroscopy and aromatic species formed in rich laminar ethylene flames. Combustion and Flame, 2001,125:1225-1229
    [163]Miller J. A., Kee R. J. Chemical kinetics and combustion modeling, Annual Review of Physical Chemistry,1990,41:345-87
    [164]Bowman C. T., Hanson R. K., Davidson D. F., Gardiner W. C., Lissianski V., Smith G. P., Golden D. M., M F. GRI-Mech,2.11. http://www.me.berkeley.edu/grimech/.
    [165]Law C. K., Sung C. J., Wang H., Lu T. F. Development of comprehensive detailed and reduced reaction mechanism for combustion modeling. AIAA Journal,2003, 41(9):1629-1646
    [166]陈征.甲醇高效清洁燃烧过程的基础理论研究.天津大学博士学位论文.2007.
    [167]Chen J. Y. Workshop on numerical aspects of reduction in chemical kinetics, CERMICS-ENPC Cite Descartes-Champus sur Marne, France, Sept 2,1997. http://firebrand.me.berkelev.edu/reduced.
    [168]Kee R. J., Warnatz J., Miller J. A. A fortran computer program package for the evaluation of gas Phase viscosities, conductivities, and diffusion coefficients [R]. Albuquerque, New Mexico:Sandia National Laboratories,1983.
    [169]Frenklach M., Wang H., Goldenberg M., Smith G. P., Golden D. M., Bowman C. T., Hanson R. K., Gardinier W. C., Lissianski V. GRI-Mech-An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion, Gas Research Institute ReptNoGRI-95/0058,1995.
    [170]Sung C. J., Law C. K., Chen J. Y. An augmented reduced mechanism for methane oxidation with comprehensive global parametric validation. Proceedings of the Combustion Institute,1998,27:295-304
    [171]Stefanidis G. D., Heynderickx G. J., Marin G. B. Development of reduced combustion mechanisms for premixed flame modeling in steam cracking furnaces with emphasis on NO emission. Energy & Fuels,2006,20:103-113
    [172]Law C. K. A compilation of experimental data on laminar burning velocities, reduced kinetic mechanisms for applications in combustion systems. edited by N. Peters and B. Rogg, Vol. m 15, Lecture Notes in Physics, Springer-Verlag, Berlin,1993, Chap.2, pp.15-26
    [173]Egolfopoulos F. N., Zhu D. L., Law C. K. Experimental and numerical determination of laminar flame speeds:mixtures of C2-hydrocarbons with oxygen and nitrogen. Proceedings of the Combustion Institute,1990,23:471-478
    [174]UC San Diego Chemical Kinetic Mechanisms, http://maemail.ucsd.edu/combustion/ cermech/.
    [175]Snelling D. R., Thomson K. A., Smallwood G. J., Gulder O. L., Weckman E. J., Fraser R. A. Spectrally resolved measurement of flame radiation to determine soot temperature and concentration. AIAA Journal,2002,40(9):1789-1795
    [176]Connelly B. C., Long M. B., Smooke M. D., Hall R. J., Colket M. B. Computational and experimental investigation of the interaction of soot and NO in coflow diffusion flames. Proceedings of the Combustion Institute,2009,32(1):777-784
    [177]Smooke M. D., Long M. B., Connelly B. C., Colket M. B., Hall R. J. Soot formation in laminar diffusion flames. Combustion and Flame,2005,143:613-628
    [178]Liu L. H., Man G. L. Reconstruction of time-averaged Temperature of non-axisymmetric turbulent unconfined sooting flame by inverse radiation analysis. Journal of Quantitative Spectroscopy & Radiative Transfer,2003,78(2):139-149
    [179]Deiuliis S., Barbini M., Benecchi S., Cignoli F., Zizak G. Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation. Combustion and Flame,1998,115(1-2):253-261
    [180]Huand Y., Yan Y. Transient two-dimensional temperature measurement of open flames by dual-spectral image analysis. IEEE Transactions of the Institute of Measurement and Control,2000,22(5):371-384
    [181]Lou C., Zhou H. C. Deduction of the two-dimensional distribution of temperature in a cross section of a boiler furnace from images of flame radiation. Combustion and Flame,2005,143(1-2):97-105
    [182]Zhou H. C., Han S. D., Sheng F., Zheng C. G. Visualization of Three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images:numerical studies. Journal of Quantitative Spectroscopy & Radiative Transfer,2002,72(4):361-383
    [183]Ai Y. H., Zhou H. C. Simulation on simultaneous estimation of non-uniform temperature and soot volume fraction distributions in axisymmetric sooting flames. Journal of Quantitative Spectroscopy & Radiative Transfer,2005,91(1):11-26
    [184]Moss J. B., Stewart C. D., Young K. J. Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions. Combustion and Flame,1995,101:491-500
    [185]Truelove J. S. Evaluation of a multi-flux model for radiative heat transfer in cylindrical furnaces. In:Technical Report AERE-R-9100, AERE (1978), Harwell, UK.
    [186]Thurgood C. P., Pollard A., Becker H. A. The TN quadrature set for the discrete ordinates method. Journal of Heat Transfer,1995,117:1068-1070
    [187]Buckius R. O., Tien C. L. Infrared flame radiation. International Journal Heat and Mass Transfer,1977,20:93-106
    [188]Lou C., Chen C., Sun Y. P., Zhou H. C. Review of soot measurement in hydrocarbon-air flame. Science China Technological Sciences,2010,53:2129-2141
    [189]Zhou H. C., Han S. D., Lou C., Liu H. A New model of radiative image formation used in visualization of 3-D temperature distributions in large-scale furnaces. Numerical Heat Transfer:Fundamental,2002,42(3):243-258
    [190]Zhang J., Zhang M. C., Yu J. Extended application of the moving flame front model for combustion of a carbon particle with a finite-rate homogenous reaction. Energy & Fuels,2010,24(2):871-879
    [191]王伟刚.微重力和弱浮力环境下固体燃料表面火焰传播机理研究.中国科学院工程热物理研究所硕士学位论文,2003.
    [192]Friedman R., Sacksteder K. R., Risks and issues in fire safety on the space station. NASA TM106430,1990
    [193]Urban D. Risks, design, and research for fire safety in spacecraft. NASA TM105317,1991
    [194]Friedman R. Fire safety in extraterrestrial environments. NASA TM207417,1998
    [195]Olson S. L, T'ien J. S. Buoyant low-stretch diffusion flames beneath cylindrical PMMA samples. Combustion and Flame,2000,121:439-452
    [196]Torero J. L., Vietoris T., Legros G, Joulain P. Estimation of a total mass transfer number from the stand-off distance of a spreading flame. Combustion Science and Technology,2002,174:187-203
    [197]Bahadori M. Y., Edelman R. B., Stocker D. P., Olson S. L. Ignition and behavior of laminar gas-jet diffusion flames in microgravity. AIAA Journal,1990,28:236-244
    [198]Megaridis C. M., Griffin D. W., Konsur B. Soot-field structure in laminar soot-emitting microgravity nonpremixed flames. Proceedings of the Combustion Institute,1996,26:1291-1299
    [199]Greenberg P. S., Ku J. C. Soot volume fraction maps for normal and reduced gravity laminar acetylene jet diffusion flames. Combustion and Flame,1997,108:227-230
    [200]Konsur B., Megaridis C. M., Griffin D. W. Fuel preheat effects on soot-field structure in laminar gas jet diffusion flames burning in 0-g and 1-g. Combustion and Flame, 1999,116:334-347
    [201]Urban D. L., Yuan Z.-G., Sunderland P. B., Lin K.-C., Dai Z., Faeth G. M. Smoke-point properties of non-buoyant round laminar jet diffusion flames. Proceedings of the Combustion Institute,2000,28:1965-1972
    [202]Kaplan C. R., Oran E. S., Kailasanath K. Gravational effects on sooting diffusion flames. Proceedings of the Combustion Institute,1996,26:1301-1309
    [203]Walsh K. T., Fielding J., Smooke M. D., Long M. B. Experimental and computational study of temperature, species, and soot in buoyant and non-buoyant coflow laminar diffusion flames. Proceedings of the Combustion Institute,2000, 28:1973-1979
    [204]Kong W. J., Liu F. Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames under different air stream velocities. Combustion Theory and Modelling,2009,13(6):993-1023
    [205]Lin K.-C., Faeth G. M. Shapes of nonbuoyant round luminous laminar-jet diffusion flames in coflowing air. AIAA Journal,1999,37:759-765
    [206]Kim C. H., EI-Leathy A. M., Xu F., Faeth G. M. Soot surface growth and oxidation in laminar diffusion flames at pressures of 0.1-1.0 MPa. Combustion and Flame,2004, 136:191-207
    [207]Bilger R. W., Starner S. H., Kee R. J. On reduced mechanisms for methane-air combustion in nonpremixed flames. Combustion and Flame,1990,80:135-149
    [208]Roper F. G., Smith C., Cunningham A. C. The prediction of laminar jet diffusion flame sizes:Part Ⅱ. Experimental verification. Combustion and Flame,1977, 29:227-234
    [209]Roper F. G. The prediction of laminar diffusion flames sizes:Part Ⅰ. Theoretical model. Combustion and Flame,1977,29:219-226

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700