无线协作网络的中继节点选择问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线网络已经受到了广泛关注,而信道衰退效应是其最为严重的缺点之一,该效应会降低无线信道的传输性能。空间分集技术通过在—个无线节点上安装并使用多根传输天线(例如,MIMO),被证明可以有效地克服无线信道衰退。
     然而随着微电子技术的飞速发展,节点体积越来越小,因而在一个节点上配置多根天线在实际中有时并不可行。从而为了克服多天线的缺陷,研究人员提出了使用分布式单天线节点的协作通信技术来同样达到空间分集效果。在这种模式下,每个节点只安装了一根天线,但是它可以使用网络中其它节点(中继节点)上的天线为自己传输数据,从而达到空间分集效果。然而在协作通信技术中,使用不同的中继节点将极大地影响协作通信的最终性能。因此本文研究如何在无线网络中选择合适的中继节点来进行协作通信,以达到提高无线网络传输容量,降低其能量消耗的目的。特别地,对于无线网络,我们分别考虑了单跳网络和多跳网络环境;而对于协作通信技术,我们则分别考虑了只使用一个中继节点和同时使用多个中继节点的情况。本文主要研究内容和贡献如下:
     ·无线协作网络的多传输对最大寿命调度问题我们首先考虑最多只使有一个中继节点的协作通信模式。对于该模式,在单跳网络的中继分配问题中,已有的工作大都假设网络中存在多个传输对和多个中继节点且每个节点只能担任传输节点或中继节点一种角色。而在实际的网络环境当中,可能每个节点都有传输任务,从而不能只作为其它节点的中继节点。因此,我们研究了基于无线协作网络的容量保证的最大寿命调度问题,在该网络中存在多个传输对,但每个节点可以担任传输节点和中继节点两种角色。我们提出采用两个传输对之间相互协作以应用协作通信的方法来提高单个传输对的寿命。随后设计了一个最优的多项式时间算法来最大化整个网络的寿命,并对该算法的最优性进行了证明。最后的实验仿真表明本算法相对于直接传输能够延长199%的网络寿命。
     ·无线协作网络的可信诚实中继分配问题由于不同的中继节点对协作通信的最终性能会产生极大影响,且网络中多个传输对竞争同一组中继节点,因此传输对之间可能会互相欺诈以骗取相对于自己较优的中继节点来提高自身的收益。然而这些欺诈行为会极大地影响整个网络的性能。因此,我们为协作通信设计了一个中继分配协议(RA-VCG)来最大化总共社会价值(所有传输对的总共真实价值),并同时通过收取每个传输对一定的惩罚费用来保证传输对间的可信诚实性。随后,我们在理论上证明了该协议的有效性,并利用仿真实验验证了该协议的性能。
     ·无线协作网络的多中继分配问题很多工作在研究多个传输对的中继分配问题上都局限于为每个传输对分配至多一个中继节点。而对于一个给定的传输对,采用多个中继节点进行协作通信时所达到的传输容量很可能远大于只采用一个中继节点。因此,我们研究了无线协作网络中的多中继分配问题,其中,多个传输对竞争同一集合的多个中继节点,但是每个传输对可以使用多个中继节点进行协作通信,以达到在所有传输对中最大化最小传输容量的目标。我们首先形式化该问题为一个0-1非线性整数规划问题。由于此类问题一般是NP难的,因此我们设计了一个高效地近似算法来解决该问题,并对算法的近似比进行了分析。最终,实验结果表明,相对于ORA和NCR算法,该算法能够分别提高目标值大约56%和65%。
     ·能量高效的基于树的协作数据聚集问题最后,我们将协作通信技术应用到一个多跳无线网络环境中,即考虑如何利用协作通信技术来节省无线传感器网络中数据聚集操作的能量消耗。数据聚集在基于环境监测的无线传感器网络中是一个很基本的操作,基于树的拓扑结构由于其本身的简单性和能量高效性经常被用来支持该操作。而在基于树的数据聚集的动态过程中,可能存在很多个节点的聚集数据相同,因此我们可以引入协作通信技术来减少其能量消耗。特别地,我们首先形式化描述了基于树的协作数据聚集问题,并设计了一个最优的集中式算法来解决该问题。随后,我们把该集中式算法扩展为一个在实际中可使用的只利用节点局部信息的分布式算法。最终的仿真实验结果表明,本文提出的算法相对于MCT和PEDAP算法,能够分别降低23%和31%的网络能耗。
Wireless network has attracted a lot of attention, but the wireless channel fading is one of the most serious weaknesses of wireless communication because it can re-duce the performance of wireless channel greatly. Moreover, Spatial diversity has been shown to be very effective in copping fading in wireless channel by employing multiple transceiver antennas on a wireless node (i.e., MIMO).
     However, with the rapid development of micro-electronic technology, the size of wireless node becomes smaller and smaller, and so it may be infeasible for equipping multiple antennas on a wireless node in practice. In order to cope the weakness of multiple antennas on the same node, the researchers have proposed the cooperative communication (CC) technology to achieve spatial diversity by using distributed single antenna nodes. Under this communication scheme, each node is equipped with only a single antenna and can use the antennas on other (relay) nodes to achieve the spatial diversity. However, the choice of different relay nodes will affect the performance of CC greatly. Thus, this thesis study how to select the relay nodes in wireless cooperative network, so as to increase the transmission capacity or reduce the energy consumption of wireless network. Specially, we consider both the single-hop and multi-hop network environments for wireless network; we also consider the cooperative communication schemes with only one relay node and with multiple relay nodes respectively. The main research points and contributions of this thesis are as following:
     ●Maximal lifetime scheduling for multiple transmission pairs in wireless co-operative networks
     We first consider the CC scheme with at most one relay node. In the relay as-signment problems of single-hop wireless network, most previous works assume that there are multiple transmission(source-destination) pairs and multiple relay nodes in a network where each node only serves as one role:either transmission node or relay node. However, this assumption will not always hold in practice where each node has its own information to transmit. Thus, we study the maxi-mal lifetime scheduling problem for cooperative communication with guaranteed capacity in a network environment where there are multiple source-destination pairs and each node can serve as both two roles:transmission node and "relay" node. We propose that each two pairs can cooperate with each other to use CC to improve the lifetime. After that, we design an optimal polynomial-time algorithm to maximize the network lifetime and also prove the optimality of this algorithm. The simulation results show that the algorithm can prolong about199%lifetime than that of direct transmission.
     ●Truthful relay assignment in wireless cooperative networks
     Since the choice of deference relay nodes will affect the performance of CC great-ly and there are multiple transmission pairs compete for the same relay node set, each pair may cheat others to get a better relay node so as to achieve more in-dividual revenue in practice. However, the cheating behavior may decrease the overall performance of network greatly. Thus, we propose a relay assignment protocol (RA-VCG) for cooperative communication to maximize the total social value (i.e. the total true value of all source-destination pairs) while guaranteeing truthfulness in an auction-theoretic sense by charging each pair an extra payment. Then, we prove the validity of this protocol and use the simulation results to show the efficiency of this protocol.
     ●Multiple relay nodes assignment in wireless cooperative networks
     Most of the existing results on relay assignment problem with multiple transmis-sion pairs are limited to assign each single pair at most one relay node. Moreover, for a given pair, the capacity gain obtained by employing multiple relay nodes for cooperative communication may be greater than that can be obtained by selecting only a single relay node. Therefore, this thesis studies the cooperative relay as-signment problem in a network environment, where multiple transmission pairs compete for the same pool of relay nodes, but each pair can employ multiple re-lay nodes for cooperative communication to maximize the minimum transmission capacity among all pairs. We first formulate this problem into a0-1non-linear in-teger program. Because this problem is NP-hard, we develop a polynomial-time approximation algorithm to solve this problem and we also analyze the approx-imation ratio of this algorithm. The simulation results show that this algorithm can increase the object value by about56%and65%comparing with ORA and NCR schemes respectively.
     ●Energy efficient tree-based cooperative data aggregation
     At last, we extend the CC technology to a multi-hop wireless network, and we consider how to use CC to reduce the energy consumption of data aggregation operation in wireless sensor networks. Data aggregation is an essential operation in wireless sensor networks where the tree-based underlying network structure is often used to support this operation because of its simplicity and energy effi-cient. Moreover, there is always a special situation that some nodes may have the same aggregate data in a dynamic tree-based data aggregation process, and so we can use the CC technology to reduce the energy consumption. Specially, we first formally define the tree-based cooperative data aggregation problem, and then design an optimal centralized algorithm to solve this problem. After that, a distributed algorithm is proposed for this problem in which each sensor node only use local information. The simulation results show that the proposed algorithms can reduce the energy consumption by about23%and31%comparing with MCT and PEDAP algorithms respectively.
引文
[1]Laneman J N, Tse D N C, Wornell G W. Cooperative diversity in wireless networks:efficient protocols and outage behavior[J]. IEEE Transactions on Information Theory,2004,50(12):3062-3080.
    [2]Laneman J N, Wornell G W. Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks[J]. IEEE Transactions on Information Theory,2003,49(10):2415-2425.
    [3]Sendonaris A, Erkip E, Aazhang B. User cooperation diversity-part I, system description[J]. IEEE Transactions on Communications,2003,51(11):1927-1938.
    [4]Sendonaris A, Erkip E, Aazhang B. User cooperation diversity-part Ⅱ, implementation aspects and performance analysis[J]. IEEE Transactions on Communications,2003,51(11):1939-1948.
    [5]Nosratinia A, Hunter T E, Hedayat A. Cooperative communication in wireless networks. IEEE Communications Magazine,2004,42(10):74-80.
    [6]Khandani A E, Abounadi J, Modiano E, et al. Cooperative routing in static wireless networks[J]. IEEE Trans-actions on Communications,2007,55(11):2185-2192.
    [7]Kramer G, Maric I, Yates R D, Cooperative communications[M]. Foundations and Trends in Networking, Now publishers,2007.
    [8]Shi Y, Sharma S, Hou Y T, et al. Optimal relay assignment for cooperative communications[C]. MobiHoc, 2008.
    [9]Sharma S, Shi Y, Hou Y T, et al. An optimal algorithm for relay node assignment in cooperative as hoc net-works[J]. IEEE/ACM TRANSACTIONS ON NETWORKINK,2011,19(3):879-892.
    [10]Urgaonkar R, Neely, M J. Delay-Limited cooperative communication with reliability constraints in wireless networks[C]. IEEE INFOCOM 2009,2009.
    [II]Bletsas A, Khisti A, Reed D, et al. A simple cooperative diversity method based on network path selection[J]. IEEE Journal on Selected Areas in Communications,2006,24(3):659-672.
    [12]Zhang J, Zhang Q. Stackelberg game for utility-based cooperative cognitive radio networks[C]. MobiHoc'09, 2009.
    [13]Huang W J, Hong Y W, Jay Kuo C C. Lifetime maximization for amplify-and-forward cooperative networks[J]. IEEE TRANSACTION ON WIRELESS COMMUNICATION,2008,7(5):1800-1805;
    [14]Zhao Y, Adve R S, Lim T J. Improving amplify-and-forward relay networks:optimal power allocation versus selection[C]. IEEE International Symposium on Information Theory,2006.
    [15]Ng T C Y, Yu W. Joint optimization of relay strategies and resource allocations in cooperative cellular nerwork-s[J]. IEEE Journal on Selected Areas in Communications,2007,25(2):328-339.
    [16]Kadloor S, Adve R. Relay Selection and Power Allocation in Cooperative Cellular Networks[J]. IEEE TRANS-ACTIONS ON WIRELESS COMMUNICATIONS,2010,9(5):1676-1685.
    [17]Zhang X, Ghrayeb A, Hasna M. Relay assignment schemes for multiple source-destination cooperative net-works[C].17th international conference on telecommunications,2010.
    [18]Cai J, Shen S, Mark J W, et al. Semi-distributed user relaying algorithm for amplify-and-forward wireless relay networks[J]. IEEE Transactions on Wireless Communications,2008,7(4):1348-1357.
    [19]Xu H, Huang L, Gang W, Xu T, Liu G. Joint relay assignment and power allocation for cooperative communi-cations[J]. Journal of Wireless Networks,2010,16(8):2209-2219.
    [20]Zhang P, Xu Z, Wang F, et al. A relay assignment algorithm with interference mitigation for cooperative com-munication[C]. IEEE WCNC 2009,2009.
    [21]Yang D, Fang X, Xue G. Truthful auction for cooperative communications[C]. ACM MOBIHOC,2011:89-98.
    [22]Yang D, Fang X, Xue G. HERA:An optimal relay assignment scheme for cooperative networks[J]. IEEE JOUR-NAL ON SELECTED AREAS IN COMMUNICATIONS,2012,30(2):245-253.
    [23]魏雨博.无线网络协作通信中继选择问题研究[D]:[硕士].北京交通大学硕士毕业论文,2012.
    [24]Li D, Xu Y, Liu J, et al. Relay assignment and cooperation maintenance in wireless networks[C]. IEEE WCNC 2010,2010.
    [25]Anderegg L, Eidenbens S. Ad hoc-VCG:a truthful and cost-efficient routing protocol for mobile ad hoc net-works with selfish agents[C]. MobiCom'03,2003.
    [26]Jia J, Zhang Q, Zhang Q, et al. Revenue generation for truthful spectrum auction in dynamic spectrum access[C]. Mobihoc'09,2009.
    [27]Shu J, Varaiya P. Smart pay access control via incentive alignment[J]. IEEE JOURNAL ON SELECTED AR-EAS IN COMMUNICATIONS,2006,24(5):1051-1060.
    [28]Zhong S, Yang Y R, Chen J. Sprite:A simple, cheat-proof, credit-based system for mobile ad-hoc networks[C]. Infocom'03,2003.
    [29]Buttyan L, Hubaux J. Enforce service availability in mobile as-hoc wans[C]. MobiHoc'00,2000.
    [30]Munkres J. Algorithm for the assignment and transportation problem[J]. Journal of the Society for Industrial and Applied Mathematics,1957,5:32-38.
    [31]Shastry N, Adve R. Stimulating cooperative diversity in wireless ad hoc networks through pricing[C]. IEEE ICC,2006:3747-3752.
    [32]Wang B, Han Z, Liu K. Distributed relay selection and power control for multiuser cooperative communication networks using buyer/seller game[C]. IEEE INFOCOM,2007:544-552.
    [33]Huang J, Han Z, Chiang M, et al. Auction-based resource allocation for cooperative communications. IEEE J. Sel. Areas Commun,2008,26(7):1226-1237.
    [34]Van der Meulen E C. Three terminal communication channels[J]. Advances in Applied Probability,1971,3: 120-154.
    [35]Cover T M, Gamal A EL. Capacity theorems for the relay channel[J]. IEEE Transactions on Information Theory, 1979,25(5):572-584.
    [36]Aazhang B, Blum R S, Laneman J N. et al. IEEE Journal on Selected Areas in Communications-Special Issue on Cooperative communications and Networking[J],2007,25(2).
    [37]Kramer G, Berry R, Gamal A El, et al. IEEE Transactions on Information Theory-Special Issue on Models, Theory, and Codes for Relaying and Cooperation in Communication Networks[J].2007,53(10).
    [38]Liu K J R, Sadek A K, Su W, et al. Cooperative communications and networking[M]. Cambridge University Press,2009.
    [39]Dohler M, Li Y. Cooperative Communications:Hardware, Channel and PHY[M]. Wiley,2010.
    [40]Edmonds. Matching and polyhedrons with 0,1 vertices[J]. Journal of Research if the National Bureau of Stan-dards B,1965:125-130.
    [41]Gabow H N. An efficient implementation of Edmonds' algorithm for maximum matching on graphs[J]. Journal of the Association for Computing Machmery,1976,23(2):221-234.
    [42]刘海军.RNA二级结构预测的建模及其应用研究[D]:[博士].上海大学博士学位论文.2005:62-68.
    [43]Garey M R, Johnsom D S. Computers and Intractability:A Guide to the Theory of NP-Completness[M]. New York:W. H. Freeman and Company,1979.
    [44]Vazirani V V. Approximation Algorithms[M]. Berlin, Germany:Springer Verlag,2011.
    [45]Estrin D, Govindan R, Heidemann J, et al. Next century challenges:scalable coordination in sensor network-s[C). ACM International Conference on Mobile Computing and Networking (MOBICOM),1999:263-270.
    [46]Kahn J M, Katz R H, Pister K S J. Next century challenges:mobile networking for "Smart Dust"[C]. ACM International Conference on Mobile Computing and Networking (MOBICOM),1999:271-278.
    [47]Manges W W, Allgood G O, Smith S F. It's time for sensors to go wireless[J]. Sensor magazine,1999,16(4): 10-20.
    [48]Akyildiz I F, Su W, Sankarasubramaniam Y, et. al. Wireless sensor networks:a survey [J]. Computer Networks, 2002,38(4):393-422
    [49]Krishnamachari L, Estrin D, Wicker S. Modeling data-centric routing in wireless sensor networks[C] Proceed-ings of IEEE INFOCOM,2002.
    [50]Intanagonwiwat C, Govindan R, Estrin D. Directed diffusion:a scalable and robust communication paradigm for sensor networks[C]. ACM International Conference on Mobile Computing and Networking (MOBICOM), 2000:56-67.
    [51]Solis I, Obraczka K. In-network aggregation trade-offs for data collection in wireless sensor networks[J]. In-ternational Journal of Sensor Networks (IJSNet),2006,1(3/4):200-212.
    [52]Kafetzoglou S, Papavassiliou S. Energy-efficient framework for data gathering in wireless sensor networks via the combination of sleeping MAC and data aggregation strategies[J]. International Journal of Sensor Networks (IJSNet),2011,10(1/2):3-13.
    [53]Kalpakis K, Dasgupta K, Namjoshi P. Maximum lifetime data gathering and aggregation in wireless sensor networks[C]. Proc. of IEEE international Conference on Networking,2002.
    [54]Tan H, Korpeoglu I. Power efficient data gathering and aggregation in wireless sensor networks[J]. SIGMOD Record,2003,32(4):66-71.
    [55]Lindsey S, Raghavendra C, Sivalingam K M. Data gathering algorithm in sensor networks using energy met-rics[J]. IEEE Transaction on Parallel and Distributed Systems,2002,13(9):924-932.
    [56]Goel A, Estrin D. Simultaneous optimization for concave costs:single sink aggregation or single source buy-at-bulk[C]. Proceedings of the ACM Symposium on Discrete Algorithms,2003:499-505.
    [57]Wu Y, Fahmy S, Shroff N B. On the construction of a maximum-lifetime data gathering tree in sensor networks: NP-completeness and approximation algorithm[C]. Proceedings of IEEE INFOCOM,2008:356-360.
    [58]Khan M, Pandurangan G. A fast distributed approximation algorithm for minimum spanning trees[C]. Proceed-ings of International Symposium on Distributed Computing,2006:355-369.
    [59]Yu B, Li J, Li Y. Distributed data aggregation scheduling in wireless networks[C]. Proceedings of IEEE INFO-COM,2009:2159-2167.
    [60]Li F, Luo B, Liu P. Secure and privacy-preserving information aggregation for smart grids[J]. International Journal of Security and Networks (IJSN),2011,6(1):28-39.
    [61]Zhang J, Zhang Q. Cooperative routing in multi-source multi-destination multi-hop wireless networks[C]. Pro-ceedings of IEEE INFOCOM,2008:2369-2377.
    [62]Ibrahim A, Han Z, Liu K J R. Distribted energy-efficient cooperative routing in wireless networks[J]. IEEE Transaction on Wireless Communications,2008,7(10):3930-3941.
    [63]Agarwal M, Cho J, Gao L, et al. Energy efficient broadcast in wireless ad hoc networks with hitch-hiking[C]. Proceedings of IEEE INFOCOM,2004.
    [64]Zhu Y, Huang M, Chen S, et al. Cooperative energy spanners:Energy-efficient topology in cooperative ad hoc networks[C]. Proceedings of IEEE INFOCOM,2011:231-235.
    [65]Xu H, Huang L, Zhang Y, huang H, Jiang S, Liu G. Energy-efficient cooperative data aggregation for wireless sensor networks[J]. Journal of Parallel and Distributed Computing,2010,70(9):953-961.
    [66]Wang X, Li J. Precision constraint data aggregation for dynamic cluster-based wireless sensor networks[C]. International Conference on Mobile Ad-hoc and Sensor Networks,2009:172-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700