内燃机一维流动计算方法研究及性能仿真软件设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十余年,随着计算机技术、计算数学和计算流体力学的迅速发展,内燃机一维循环模拟程序对于发动机的设计和性能改进发挥着越来越重要的作用,大幅度地降低了新发动机的开发周期和开发成本。已有的商业软件虽然功能强大,由于其源代码的保密性,用户自主开发的新模型、新算法很难和这些软件的内核协调地工作。而且这些软件的费用一般非常昂贵。因此,商用软件无法支持内燃机的前沿研究,必须开发自主的模型和软件。本文采用新的方法,深入研究了相关的一维流动计算模型和性能仿真软件的设计思路,开发了通用的高效高精度内燃机一维循环模拟程序。
     采用图论中的有向图来定义发动机热流体网络的拓扑结构。有向图中的节点用来描述各种发动机组件,有向边则用来建立这些组件之间的网络拓扑关系。采用这种定义方式,能够对带有任意个气缸、任意进排气管系的发动机进行建模,发动机还可以带有任意串并联的涡轮增压器。采用图论方法对发动机流体网络进行分析。利用图论中的深度优先搜索算法再结合发动机流体网络的特点,可以精确辨别进排气管;通过对有向图中的组件进行拓扑排序,可以自动生成从上游到下游的求解顺序。这些工作为开发通用的一维循环模拟程序奠定了扎实的基础。
     进排气管道内的流动特性对整机性能有着很大的影响。为了克服现有特征线法流量不守恒的问题,采用基本无振荡有限体积法进行排气管系的流动分析。首先使用有限体积法把每根管子划分为若干个控制容积,然后采用高精度ENO格式计算管道内部控制容积交界面上的通量,管子两端的边界条件则通过特征线法得到。这样做不仅保持了流量守恒、而且还提高了计算精度。采用具有精确解的激波管,比较了不同阶数的ENO格式对计算精度和计算效率的影响。结果表明,ENO格式阶数越高计算精度越高。从1阶到2阶ENO格式,数值解和解析解的误差下降的最快。随着精度的提高,误差下降得越来越慢,但是计算时间却成倍地增长。实际应用时,推荐使用2阶ENO格式,精度高又能保证计算效率。
     为了进一步提高一维非定常流动的计算效率,提出了自适应当地时间步长推进算法。发动机流体网络中每根管道的计算采用不同的时间步长,不再受其他管道时间步长的约束。时间步长的不同步导致边界条件处理的困难。通过自适应动态调整管道的求解顺序解决了上述问题。实际计算表明:新的时间层推进算法对计算精度没有影响,但是可以节约25%-40%的计算时间。
     三通接头模型对于进排气质量流量和压力波的模拟精度有比较大的影响,进而对整机性能模拟产生重要影响。通过对柴油机进排气管中常见三通接头在较高空气流速下冷态吹风试验研究,获取流动测试数据,得到了三通接头处的压力损失变化规律。实验所得的总压损失系数和采用Vazsonyi公式计算所得的结果有一定的偏差,但是两者随流量比的变化趋势相同。流速越高,这种偏差越明显。通过改进Vazsonyi公式,同时引入分配函数,建立了考虑较高流速的修正型压力损失模型。对排气管涡前压力波的计算研究表明,修正型压力损失模型比常规压力损失模型的计算精度提高4.3%。
     在采用有向图定义的流体网络基础上,建立了循环模拟程序的总体框架,设计了有效的数据结构来实现这种框架。通过研究串行程序中逻辑上并行的区域,本文首次采用并行算法把原来的串行求解器改造成并行求解器。在多核PC机上,使用并行计算程序对一维流动及整机性能进行模拟。计算结果表明,并行程序计算所需的时间可以缩短到串行程序的1/3都不到,计算效率显著提高。
     搭建了D6114增压柴油机实验台架,对排气压力波在全工况范围内的变化规律进行了实验研究。采用前面自主开发的程序,进行了计算和实验的全工况对比。在各个工况下,涡前排气平均压力误差在5%以下。发动机转速低时,误差更小。在一个工作循环内,排气管进出口流量守恒性误差可以控制在0.053%以下。计算所得的各项发动机主要性能参数都和实验结果吻合得很好。
In recent twenty years, with the rapid development of computer technology, computationalmathematics and computational fluid mechanics, one-dimensional cycle simulation program is playingan increasingly important role on engine design and performance improvement. Development cycle andcosts of new engine can be reduced greatly. Although commercial software is powerful, new model andalgorithm developed by users are difficult to be integrated into kernel of commercial software becausesource code is secret. Therefore, commercial software can't support frontier research of internalcombustion engine. It is necessary to develop new model and new program for users. In this thesis,some new models about one-dimensional fluid flow are proposed and the design idea of software isalso presented. New general one-dimensional cycle simulation code with high precision andefficiency is developed.
     Directed graph in graph theory is used to define the engine thermal fluid network topology. Nodesin directed graph are used to describe all kinds of engine components, and directed edges are used toestablish network topological relationship among components. Using this definition, the engine systemwith arbitrary cylinders, intake and exhaust manifold can be modeled, and engine can also be equippedwith arbitrary series or parallel connected turbochargers. Graph theory is adopted to analyze enginefluid network. Intake and exhaust manifold can be accurately distinguished by depth-first algorithmcombining with features of engine fluid network. Numerical solving order from upstream todownstream can be automatically generated by topological sorting on components in directed graph.These work set a solid base for developing general one-dimensional cycle simulation code.
     The flow features in intake and exhaust manifold have great influence on overall engineperformance. In order to simulate one-dimensional unsteady flow in intake and exhaust manifoldaccurately, the finite volume method was adopted to divide each pipe into a number of control volumes.High resolution ENO scheme is used to calculate the flux of the internal face of control volumes inpipes. Boundary conditions at the ends of the pipes are obtained by the method of characteristics. Inthis way, the flow conservation can be guaranteed and calculation accuracy is improved. By using the theoretical solution of shock tube, it shows how ENO schemes with different orders affect simulationaccuracy and computational efficiency. The results indicate that simulation accuracy increases as orderof ENO scheme increases. The error between numerical and analytical solutions drops fastest as orderof ENO scheme increases from first-order to second-order. With the improvement of precision, errordrops slower and slower but the computation time grows exponentially. For real application, thesecond-order ENO scheme is recommended because it has high resolution and good computationalefficiency.
     In order to further improve the computational efficiency of one-dimensional unsteady flow,adaptive local time step marching algorithm is proposed. During calculation, each pipe in engine fluidnetwork has its own time step, which is no longer restricted by time step of other pipe. Inconsistenttime step leads to difficulties of dealing with boundary conditions. By adjusting solving order of pipesdynamically, the above problem is overcome. The practical calculation results indicate that new timestep marching algorithm has no effect on calculation precision and computing time can be reduced by25%-40%.
     Three way junction model has large impact on simulation precision of pressure wave and massflow in intake and exhaust manifold. Furthermore, overall engine performance can also be affected. Acold wind tunnel experiment with higher air velocity for normal junction in exhaust manifold has beencarried out. The variation law of total pressure loss coefficients is obtained. The measured totalpressure loss coefficients have some deviation from calculated results obtained by Vazsonyi equation,but they have the same trend with flow ratio. The higher the air velocity is, the more obvious thedeviation is. By improving Vazsonyi equation and introducing the distribution function, the correctedpressure loss model considering high air velocity is presented. The calculated pressure before turbineshows that the error of the new pressure loss model has been reduced by4.3%, compared with the oldmodel.
     On the basis of fluid network defined by directed graph, general framework of cycle simulationprogram is proposed. The efficient data structure is designed to implement the framework. By studyinglogical parallel regions in the serial program, it is the first time to transform the original serial solverinto parallel solver by using parallel algorithm in this article. The modified program is adopted tosimulate one-dimensional fluid flow and the whole engine performance on a multi-core computer. Theresults show that the simulation time with the parallel program can be reduced to one third of the serialprogram.
     A turbocharged D6114diesel engine test bed was established. The exhaust pressure waves were tested under the entire engine operation range. The simulation code developed by the thesis has beenused to simulate fluid flow in d6114. Under all operating conditions, the measured and calculatedresults were compared and analyzed. The error of simulated average pressure before turbine is under5%.When the engine speed is slow, the error becomes smaller. In one working cycle, the error of flowconservation between the inlet and outlet of exhaust manifold can be controlled under0.053%. Themajor engine performance parameters agree well with measured results.
引文
[1] Benson, R.S., Garg, R. D. and Woolatt, D. A numerical solution of unsteady flow problems[J].Int. J. Mech. Sci.,1964,6,117.
    [2] Benson, R.S. A comprehensive digital computer program to simulate a compression ignitionengine including intake and exhaust systems[C]. SAE710713,1971.
    [3] Ledger, J. D. and Walmsley, N. D. Computer simulation of a turbocharged diesel engineoperating under transient load conditions[C]. SAE paper710177,1971.
    [4] Ledger, J. D., Benson, R. S. and Furukawa, H. Improvements in transient performance of aturbocharged diesel engine by air injection into the compressor[C]. SAE paper730665,1973.
    [5] Benson, R. S., Baruah, P. C. and Evans, P. G. Steady and non-steady flow through an exhaustgas recirculating valve[C]. Paper presented at the Technical Conference of Institution ofEngineers, Australia,1974.
    [6] Benson, R. S., Annand, W. J. D. and Baruah, P. C. A simulation model including intake andexhaust systems for a single cylinder four-stroke cycle spark ignition engine[J]. Int. J. Mech.Sci.,1975,17,97–124.
    [7] Benson, R. S. and Baruah, P.C. Performance and emission predictions for a multicylinderspark-ignition engine[J]. Proc. Instn Mech. Engrs,1977,191,339.
    [8] Watson, N. and Marzouk, M. A non-linear digital simulation for turbocharged diesel enginesunder transient conditions[C]. SAE paper770123,1977.
    [9] Baruah, P. C., Benson, R. S. and Gupta, H. N. Performance and emission prediction of amulti-cylinder spark ignition engine with catalytic converter[C]. SAE paper780672,1978.
    [10] Baruah, P. C., Benson, R. S. and Balouch, S. K. Performance and emission prediction of amulti-cylinder spark ignition engine with exhaust gas recirculation[C]. SAE paper780663,1978.
    [11] Payri, F., Coberan, J. M. and Boada, F. Modifications to the method of characteristics for theanalysis of the gas exchange process in internal combustion engines[J]. Proc. Instn Mech.Engrs, Part D, Journal of Automobile Engineering,1986,200(D4),259–266.
    [12] Hiroyasu H,Kadota T. Fuel droplet size distribution in diesel combustion Chamber[C]. SAEpaper740715,197.4
    [13] Hiroyasu H,Kadota T., Arai M.柴油机中燃料喷雾体的特性及其模拟[M]。内燃机燃烧模拟论文集,1987,北京:机械工业出版.
    [14] Morel, T., Keribar, R. and Blumberg, P. N. A new approach to integrating engine performanceand component design analysis through simulation[C]. SAE paper880131,1988.
    [15] Hong, C. W. A PC-based computer simulation package for spark ignition engine systemdesign[C]. In Proceedings of IMechE International Conference on Computers in Technology,1991, paper C430:069.
    [16] Baruah, P. C. A simulation model for transient operation of spark-ignition engines[C]. SAEpaper900682,1990.
    [17] Van Hove, W. and Sierens, R. Calculation of the unsteady flow in exhaust pipe systems: newalgorithm to fulfill the conservation law in pipes with gradual area changes[J]. Proc. InstnMech. Engrs, Part C, Journal of Mechanical Engineering Science,1991,205(C4),245–250.
    [18] Blair, G. P. An alternative method for the prediction of unsteady gas flow through the internalcombustion engine[C].SAE paper911850,1991.
    [19] Blair, G. P. and Magee, S. J. Non-isentropic analysis of varying area flow in engine ducting[C].SAE paper932399,1993.
    [20] Gabriele Engl. The modeling and numerical simulation of gas flow networks[J]. Numer Math,1996,72:349-366.
    [21] B.Peters and A.D.Gosman. Numerical simulation of unsteady flow in engine intakemanifolds[C]. SAE paper930369,1993.
    [22] Woods, W. A., Brown, P., Panesar, A. and Sogut, O. The use of gas dynamics to linkin-cylinder and exhaust system unburnt hydrocarbon measurements on a spark ignitionengine[C]. SAE paper910559,1991.
    [23] Woods, W. A. and Rutter, C. Application of path line streams to the exhaust system of aninternal combustion engine[C]. In Proceedings of IMechE International Conference onComputers in Technology,1991, paper C430:001, pp101–110.
    [24] Zhang, H. and Widener, S. K. An integrated engine cycle simulation model with speciestracking in piping system[C]. SAE paper960077,1996.
    [25] Winterbone, D. E. and Pearson, R. J. A solution of the wave equations using real gases[J]. Int.J. Mech. Sci.,1992,34(12),917–932.
    [26] Winterbone, D. E., Pearson, R. J. and Zhao, Y. Numerical simulation of intake and exhaustflows in a high-speed multi-cylinder petrol engine using the Lax–Wendroff method[C]. InProceedings of IMechE International Conference on Computers in Technology, paperC430:038,1991.
    [27] Pearson, R. J. and Winterbone, D. E. Calculating the effects of variations in composition onwave propagation in gases[J]. Int. J. Mech. Sci.,1993,35(6),517–537.
    [28] Winterbone D E, Pearson R J, Design techniques for engine manifolds–Wave action methodsfor IC Engines[M]. Professional Engineering Publications, London,1999.
    [29] Winterbone D E, Pearson R J, Theory of engine manifold design–Wave action methods for ICEngines[M]. Professional Engineering Publications, London,2000.
    [30] Benson, R. S. The Thermodynamics and Gas Dynamics of Internal Combustion EnginesVol.1[M]. Oxford University Press,1986.
    [31] Horlock, J. H. and Winterbone, D. E. The Thermodynamics and Gas Dynamics of InternalCombustion Engines Vol.2[M]. Oxford University Press,1986.
    [32]顾宏中. MIXPC涡轮增压系统研究与优化设计[M].上海交通大学出版社,2006.
    [33]倪何,程刚,孙丰瑞.热工流体网络简易模块化建模方法.系统仿真学报[J].2009,21(12),3536-3541.
    [34]马文通,余南华.容积法建模应用于单相流体网络的动态仿真[J].制冷与空调,2006,6(5),20-22
    [35]倪维斗,苟建兵.热动力系统流体网络及算法处理[J].系统仿真学报,1997,9(3),78-83
    [36]谢茂清,朱文,任挺进.流体网络拓扑分析的研究[J].系统仿真学报,1998,10(5),43-64
    [37]吴靖,孙国基,曾建潮.化工过程流体网络的建模与仿真[J].系统仿真学报,1997,9(3),39-50
    [38]王罡,张光.热力系统流体网络法的研究[J].现代电力,2005,22(2),38-41
    [39]侯升平,陶智,韩树军等.非稳态流体网络方法在发动机空气冷却系统中的应用[J].航空动力学报,2009,24(3),494-498
    [40]侯升平,陶智,韩树军等.非稳态流体网络模拟新方法及其应用[J].航空动力学报,2009,24(6),1253-1257
    [41]贺尚红,李旭宇,钟掘.复杂流体网络动态建模与仿真新方法[J].机械工程学报,2001,37(3),41-45
    [42]张继超,张家余,夏浩等.改进的流体网络节点压力法[J].哈尔滨工业大学学报,1996,28(6),76-84
    [43]蔡瑞忠,王威,吕崇德.基于流体网络模块的模块化建模方法[J].清华大学学报(自然科学版),1999年,39(12),62-64
    [44]马迎辉,李天铎.可压缩流体网络的建模方法[J].系统仿真学报,1992,4(1),15-23
    [45]马广富,王司.可压缩流体网络一种改进的建模方法[J].控制与决策,1996,11(1),93-96
    [46]葛斌.可压缩流体网络技术在电站仿真系统中的应用[J].动力工程,2002,22(6),2119-2122
    [47]蔡瑞忠,余圣方,王健夫等.一种改进的电站流体网络实时仿真算法[J].系统仿真研究专题,2007,25(8),11-14
    [48]李小燕,匡波,张炎等.网络方法在管路流体动态仿真计算中的应用[J].2000,21(3),264-269
    [49]蔡瑞忠,张力,谢茂清等.热工流体网络的实时仿真模型及其算法[J].系统仿真学报,1992,4(4),13-18
    [50] Shuangquan Shao, Hongbo Xu, Changqing Tian. Dynamic simulation of multi-unit airconditioners based on two-phase fluid network model[J]. Applied Thermal Engineering,2012,40,378-388.
    [51] Dong Hou, Meng Lin, Zhihong Xu, Yanhua Yang. Development and application of anextensible engineering simulator for NPP DCS closed-loop test[J]. Annals of Nuclear Energy,2011,38,49-55.
    [52] Yangping Zhou, Kefeng Zhou, Yuanle Ma, Zhe Sui. Thermal hydraulic simulation of reactor ofHTR-PM based on thermal-fluid network and SIMPLE algorithm[J]. Progress in NuclearEnergy,2013,62,83-93.
    [53]蔡瑞忠,王威,眭喆等.图形建模中流体网络拓扑结构的定义与识别[J],清华大学学报(自然科学版),1999,39(6),63-66
    [54]顾宏中,邬静川.柴油机增压及其优化控制[M].上海交通大学出版社,1995.
    [55]朱访君,吴坚.内燃机工作过程数值计算及其优化[M].国防工业出版社,1997.
    [56]顾宏中.涡轮增压柴油机性能研究[M].上海交通大学出版社,1998.
    [57]顾宏中.内燃机中的气体流动及数值分析[M].国防工业出版社,1985.
    [58] S. V. Patankar. Numerical Heat Transfer and Fluid Flow[M]. Hemisphere, Washington, D.C.,1980.
    [59] H.K.Versteeg and W.Malalasekera. An introduction to computational fluid dynamics—thefinite volume method[M]. Springe-verlag,1995.
    [60] Ferziger and Peric.M. Computational methods for fluid dynamics[M]. Springer,2002.
    [61] Claudio Mattiussi. An analysis of finite volume, finite element, finite difference method usingsome concepts from algebraic topology[J]. J Comp Phys,1997,133,289-309.
    [62] Pearson, R. J. and Winterbone, D. E. Calculation of one-dimensional unsteady flow in internalcombustion engines-how long should it take[J]? I MechE,1996, Part C,193~200.
    [63] J. Galindo, A. Tiseira, P. Fajardo, R. Navarro. Analysis of the influence of different real floweffects on computational fluid dynamics boundary conditions based on the method ofcharacteristics[J]. Mathematical and Computer Modeling,2013,57,1957–1964.
    [64] J. Galindo, F.J. Arnau, A. Tiseira, P. Piqueras. Solution of the turbocompressor boundarycondition for one-dimensional gas-dynamic codes[J]. Mathematical and Computer Modelling.2010,52,1288-1297.
    [65] David Chalet, Alexandre Mahe. A frequency modelling of the pressure waves in the inletmanifold of internal combustion engine[J]. Applied Energy,2011,2988–2994.
    [66] Culbert B.Laney. Computational Gasdynamics. Cambridge University Press,1998.
    [67] Eleuterio F.Toro. Riemann solvers and numerical methods for fluid dynamics[M]. Springer,1999.
    [68] ROE.P. L. Approximate Riemann Solvers, Parameter Vectors and Difference Schemes[J]. JComp Phys,1981,43,357-372.
    [69] Harten, A. High Resolution Schemes for Hyperbolic Conservation Laws[J]. J Comp Phys,1983,49,357-393.
    [70] Shiyou Yang,Kangyao Deng and Yi Cui. Simulation and experimental research on a mixedpulse converter turbocharging systems[J]. Automobile Engineering Part D,2007,221(7),215-223.
    [71] Harten, A., Engquist, B., Osher, S. and Charkravarthy, S. Uniformly High Order AccurateEssentially Non-Oscillatory Schemes[J]. J Comp Phys,1987,71,231-303.
    [72] Shu-Chi-Wang and Osher, S. Efficient Implementation of Essentially Non-Oscillatory ShockCapturing Schemes[J]. J Comp Phys,1988,77,439-471.
    [73] Shu-Chi-Wang and Osher, S. Efficient Implementation of Essentially Non-Oscillatory ShockCapturing Schemes II. J Comp Phys[J].1989,83,32-78.
    [74] Harten, A. ENO Schemes with subcell resolution[J]. J Comp Phys,1989,83,148-184
    [75] Giannattasio, P. and Dadone, A. Applications of a high resolution shock-capturing scheme tothe unsteady flow computation in engine ducts[C]. IMechE International Conference onComputers in engine technology,1991,119-126.
    [76]王玉华,赵洪彬.内燃机热力过程分析[J].山东科学,2000,13(4),51-54
    [77]顾宏中.涡轮增压柴油机热力过程模拟计算[M].上海,上海交通大学出版社,1985
    [78]林杰伦.内燃机工作过程数值计算[M].国防工业出版社,1986
    [79]刘永长.内燃机热力过程模拟[M].机械工业出版社,2001
    [80] Benson,R.S. Instantionare Stromung in Verzweigten Systemen (Unsteady flow in branchedsystems)[J]. M.T.Z,1962,23(10).
    [81] Benson,R.S, Garg, R.D. and Wollatt, D. A numerical solution of unsteady flow problems[J].Int. J. Mech. Sci.1964(6),117-144.
    [82] Benson,R.S., Wollatt, D and Woods, W.A. Unsteady flow in simple branch systems[J]. Proc. I.Mech. E.,178,3-28(1963-1964).
    [83] EDSU73022. Pressure losses in three-leg pipe junctions: dividing flows[C].EngineeringSciences Data Unit, London,1973.
    [84] H Fu, M J Tindal, A P Watkins, M Yianneskis, Computation of three-dimensional turbulentflows in a pipe junction with reference to engine inlet manifolds[J]. Proc Instn Mech. Eng1992,285–296
    [85] Miller, D. S. Internal Flow. A Guide to Losses in Pipe and Duct Systems[M].1971(BHRA,Cranfield).
    [86] Winterbone,D.E., Alexander,G.I. Developments in methods of considering action in pipeconnected to I.C.Engines[C]. ASME Syposium on “Flows and Flow Related Phenomena inReciprocating I.C.Engines”,1985.
    [87] A. Christian, A. Selamet, K.D. Miazgowicz, K.V. Tallio. Flow losses at circular T-junctionsrepresentative of intake plenum and primary runner interface[C]. SAE Technical paper series2004,2004-01-1414.
    [88] Bassett M D, Pearson R J, Fleming N P, et al. A Multi-Pipe Junction Model for OneDimensional Gas-Dynamic Simulations[C]. SAE Paper2003-01-0370,2003.
    [89] Bassett M D, Fleming N P, Pearson R J. Calculation of steady flow pressure loss coefficientsfor pipe junctions[J]. Proceedings of the Institution of Mechanical Engineers, Part C,2001(215),861-881.
    [90] Bassett M D, Fleming N P, Pearson R J. Modeling Engines with Pulse Converted ExhaustManifolds Using One-Dimensional Techniques[C]. SAE Paper2000-01-0290,2000.
    [91] Winterbone D E, Pearson R J, Bromnick PA, Sinha S K. Analysis of turbocharged intercooler20-cylinder medium-speed diesel engine,6th International Conference on Turbocharging andAir Management Systems[C]. I Mech.E Paper No C554/020/98, I.Mech.E. HQ, London,3-5November,1998.
    [92] Pearson RJ, Pearson R J, Winterbone D E. Estimation of steady flow loss coefficients forpulse converter junctions in exhaust manifolds[C]. The6th International Conference onTurbocharging and Air Management Systems. I Mech E, Paper NoC554/022/98, I Mech E HQ,London,3-5November,1998.
    [93] Pearson R J, Winterbone D E. The simulation of gas dynamics in engine manifolds usingnon-linear symmetric difference schemes[J]. Proc.I.Mech.E, Vol.211, Part C,601-616.
    [94] Bassett M D, Pearson R J, Winterbone D E. Steady-Flow Loss-Coefficient Estimation forExhaust Manifold Pulse-Converter Type Junctions[C]. SAE Paper1999-01-0213,1999.
    [95] Winterbone D E, Pearson R J, Gas dynamics in engine manifolds[M]. IMechE, ProfessionalEngineering Publications,1998.
    [96] J Paul, A Selamet. Combining Flow Losses at Circular T-Junctions Representative of IntakePlenum and Primary Runner Interface[C]. SAE Paper,2007-01-0649,2007.
    [97] Perez-Garcia, Sanmiguel-Rojas, Hernandez-Grau, et al. Numerical and experimentalinvestigations on internal compressible flow at T-type junctions, Experimental Thermal andFluid Science [J].2006(31),61–74.
    [98] Perez-Garcia, Sanmiguel-Rojas, A Viedma. New coefficient to characterize energy losses incompressible flow at T-junctions[J]. Applied Mathematical Modelling,2010(34),4289–4305.
    [99] Perez-Garcia, Sanmiguel-Rojas. A Viedma, New experimental correlations to characterizecompressible flow losses at90-degree T-junctions[J]. Experimental Thermal and Fluid Science2009(33),261–266.
    [100] Bingham, J.F. and Blair, G. P. An Improved Branched Pipe Model for Multi-cylinderAutomotive Engine Calculation[J]. Proc. Insten. Mech. Engrs, Part D,Journal of AutomobileEngineering,1985,199,65-77.
    [101] T.Morimune, N.Hirayama, T.Maeda. Study of compressible high speed gas flow in pipingsystem[J]. Bulletin of JSME124(198),1981,2082-2089.
    [102] M.Takizawa, T.Uno, T.Oue, et al. A Study of Gas Exchange Process Simulation of anAutomotive Multi-Cylinder Internal Combustion Engine[C].1982, Paper SAE820410.
    [103] Hagar, W. H. An approximate treatment of flow in branches and bends[J]. Proc. Instn Mech.Engrs, Part C, Journal of Mechanical Engineering Science,1984,198,63-69.
    [104] Bassett M D, Fleming N P, Pearson R J. Calculation of steady flow pressure loss coefficientsfor pipe junctions[J]. Proceedings of the Institution of Mechanical Engineers, Part C,2001(215),861-881.
    [105] Fan, Q. CFD Simulation of Pressure Drop in Line Pipe[C]. SAE Technical Paper2006-01-1443,2006, doi:10.4271/2006-01-1443.
    [106] Ashok Kumar M, Kannan Kanniah. Flow and Pressure Drop Characteristics for VariousNon-Circular Curved Ducts Used in Automobile HVAC System with Different BendAngles[C]. SAE Int. J. Passeng. Cars-Mech. Syst.6(2):2013, doi:10.4271/2013-01-1645.
    [107]卓斌,顾宏中. MPC增压系统的模拟计算与分析[C].国际内河航运与柴油机技术交流会,1987.
    [108]卓斌,顾宏中.排气管系中广义一维非定常流动的数值解[J].中国造船,1988,03,17-25.
    [109]蒋灵鹏,高桐生.增压柴油机排气管分支接头边界条件的探讨[J].内燃机学报.1989,7(1):80-86.
    [110]郗大光,邵光日,王荣生.关于内燃机进排气系统三分支通用边界模型的探讨[J].内燃机学报.1990,8(8):217-224.
    [111]孙民,朱铁柱,孟华,等. MPC增压系统三分支流动计算模型研究[J].大连理工大学学报,1996,36(5):625-628.
    [112]李克,汪辅仁,阎惠生.进排气管系中绝热压力损失边界模型的新计算流程[J].内燃机学报,1991,9(4):345-350.
    [113]万本华.基于MPC方式的增压系统设计及其相关理论的研究[D].博士学位论文,1993.
    [114]陆霄露,邓康耀.循环模拟中组件关联关系与计算路径表述[J].车用发动机,2013,206(3):5-9.
    [115] Ellis Horowitz, Sartaj sahni and Susan Anderson-Freed.数据结构(C语言版)[M].机械工业出版社,2006.
    [116] Thmoas H.Cormen, Charles E.Leiserson,Ronald L.Rivest and Clifford Stein.算法导论(第二版影印版)[M].高等教育出版社,2002.
    [117]陆霄露,邓康耀.进排气一维非定常流动的基本无振荡有限体积法的研究[J].内燃机工程,2013,34(2):52-57.
    [118]陆霄露,邓康耀.采用激光诱导荧光法测量油膜厚度的研究[J].内燃机学报,2008,26(1):92-95.
    [119] OpenMP多核编程框架[EB/OL].开源中国社区http://www.oschina.net/p/openmp.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700