多种自组装膜及固体表面选择性吸附的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着固体表面吸附研究理论的深入和界面科学的发展,致力于固体表面选择性吸附的实验研究引起了人们的极大兴趣。尤其是通过多样化的实验手段,如电泳沉积法(electrophoretic deposition)、模具胶体溶液流程法(flow of colloidal solution through a mold with micro drains)、三层技术(a three-layer technique)和紫外线照射方法(UV irradiation)等方法对固体表面进行修饰和改性可以形成具有特殊选择性吸附区域的功能材料。这些功能材料对多种领域如金属表面防腐蚀、生物仿生材料的制备、微触点印制技术、生物传感技术、气相敏感元件的制造等都产生了革命性的影响,推动了相关技术的飞速发展。
     在人们不断改进实验方法制备新型选择性吸附功能固体材料的同时,越来越多的科学工作者致力于采用理论计算的方法研究固体表面选择性吸附。与传统的实验研究手段相比,应用包括量子化学和分子动力学模拟等方法的理论计算可大大减少实验的盲目性和重复试验的耗时性,同时帮助人们全面了解固体材料选择性吸附机理和微观吸附模型,对实验设计和开发新型选择性吸附材料具有重要的指导意义。
     本文围绕实验研究中最新报道的几种具有选择性吸附能力的固体材料进行了系列理论研究工作。一方面借助分子动力学和量子化学相结合的方法研究了以Si和Si02为基底的两种典型自组装单分子膜(SAMs)的选择性吸附,探讨了不同头基与不同烷烃链在基底上的组装密度对SAM选择性吸附的影响,提出了较为合理的选择性吸附机理,为实验设计和改良这两种SAM的选择吸附提供了有价值的信息。另一方面运用分子动力学方法验证了Au(111)表面选择性吸附组氨酸类氨基酸分子的实验报道,从微观层面上给出了吸附模型,揭示了Au(111)面选择性吸附组氨酸类氨基酸分子的本质,总结出组氨酸类分子的构型变化对选择性吸附的影响,为定向设计、合成相关功能生物材料的研究起到了积极的理论指导。
     本文主要研究内容和创新性成果归纳如下:
     (1)修饰SAM的表面头基对SAM内部结构及表面润湿性的影响
     应用分子动力学方法研究了六种不同头基(-CH3,-C=C,-OCH3,-CN,-NH2,-COOH)烷烃链在H-终止Si(111)表面的自组装行为。讨论了不同头基对SAM内部结构与表面平整度的影响,结果发现三种亲水头基(-CN,-NH2,-COOH)通过彼此之间形成的分子间氢键,对SAM内部结构的影响明显大于三种疏水头基(-CH3,-C=C,-OCH3),这主要体现在对烷烃链与Si(111)表面的夹角和SAM膜厚度方面。并且由于亲水头基之间的氢键相互作用,使得含有三种亲水头基(-CN,-NH2,-COOH)的SAM的表面更加光滑、平整。
     借助分子动力学模拟和量子化学相结合的方法研究了上述六种头基修饰的SAM表面的润湿性(对水分子的选择性吸附能力)。所得结果与Faucheuxa N教授等人报道(J. Am. Chem. Soc.120,14,1998)的测定这六种SAMs的表面润湿角的结果完全一致,并从分子层面给出了三种亲水性(-CN,-NH2,-COOH) SAM表面在部分润湿和完全润湿后的水分子的排列构型:在三种亲水SAM表面低度润湿后, CN-与COOH-SAM表面上通过分子间氢键形成了单个水分子与相邻两个碳链头基之间的“桥”式结构;而在表面润湿程度持续增加后, NH2-与COOH-SAM的表面首先会通过分子间H键形成两个水分子的二聚体,然后再与相邻的含有亲水头基的烷烃链通过这个二聚体形成“桥”式结构。通过量子化学的计算与氢键的分析证明了SAM表面选择性吸附水分子能力的强弱取决于表面头基基团与水分子形成氢键的数目、以及氢键的强弱。该模拟工作对实验上设计和制备特殊润湿性表面的生物敏感材料具有重要的指导意义。
     (2)具有不同密度的复合自组装膜选择性吸附荧光有机分子的理论研究
     实验报道通过Langmuir-B lodgett方法可以得到液体扩展相(liquid expanded(LE))和液体压缩相(liquid condensed (LC))交替排列的二棕榈酰磷脂酰胆碱膜(L-a-dipalmitoyl-phosphatidylcholine (DPPC)),这种单分子膜是一种良好的固体模版,具有选择性吸附微小纳米晶体颗粒的能力。我们根据实验现象设计出与之结构相似,疏密相间的条形自组装膜结构,并通过分子动力学方法研究了不同烷烃链疏密相间的自组装膜(SAMs)对有机荧光分子3(5)-(9-葸基)吡唑(3(5)-(9-anthryl) pyrazole (ANP))和苝(perylene)的选择性吸附。我们的模拟结果表明:烷烃链疏密相间排列的SAM对有机荧光分子具有选择性吸附的能力,荧光分子会优先吸附在SAM烷烃链较稀疏的区域,当表面吸附的荧光分子数目逐渐增加至该区域接近饱和时,才会有少量荧光分子吸附在SAM烷烃链较密集区域。
     通过对两种有机荧光分子ANP和perylene在SAM不同烷烃链疏密区间的扩散系数以及与固体基底间的均力势(PMF),从分子尺度上揭示了这类构型的自组装膜选择性吸附有机荧光分子的机理。该项工作对相关领域科研人员设计和研发新型选择性吸附荧光分子的功能材料具有重要的指导意义。
     (3)Au(111)表面对组氨酸类分子的选择性吸附作用
     应用分子动力学方法研究了组氨酸(Histidine(His))以及三种组氨酸衍生的氨基酸分子——甘-组氨酸(glycyl-histidine (Gly-His)),甘-组-甘氨酸(glycyl-histidine-glycine (Gly-His-Gly))和甘-甘-组氨酸(glycyl-glycyl-histidine (Gly-Gly-His))在Au(111)面的吸附行为。该模拟工作基于Feyer等人对组氨酸类分子在Au(111)表面选择性吸附现象的相关实验报道。模拟结果证实了实验结论:Au(111)表面确实对组氨酸类氨基酸分子具有优先吸附作用,通过模拟方法得到的最终吸附构型与Feyer等人推测的构型非常一致。模拟结果从分子层面上证明了组氨酸及其三种衍生的氨基酸分子是通过咪唑环(imidazole (IM) ring)上的亚氨基氮和羧酸基团与Au原子的相互作用而吸附在Au(111)面的。
     此外,我们通过比较四种组氨酸类氨基酸分子在溶液中向Au(111)面的吸附速率和单分子表面吸附能,发现在这四种氨基酸分子中,Au(111)表面优先吸附Gly-His分子;而对于两种含组氨酸的三肽分子(Gly-Gly-His与Gly-His-Gly)而言,残基的排列顺序对两种三肽氨基酸分子在Au(111)表面的最终吸附构型有着明显的影响,而对于二者的吸附速率几乎没有影响。我们的模拟结论不但从微观层面上印证了实验结果,同时给出了实验上通过宏观观测手段难以获得的信息,更加完善了该领域的研究工作,这对通过Au表面定点选择性吸附生物小分子而设计新型功能生物材料具有重要的指导意义。
With the development of the theory on solid surface adsorption and the interfacial science, it has aroused people's enormous interest in the experimental study of the selective adsorption of solid surface. Especially through diverse experimental methods, such as electrophoretic deposition, flow of colloidal solution through a mold with micro drains, a three-layer technique and UV irradiation, some functional materials are modified to form special selective region on the surface. These functional materials are widely used in many fields, such as corrosion preventing of metal surface, preparation of bio-materials, micro electronic contact print technology, biological sensing technology, and gas phase sensitive unit. It has promoted the development of the correlation technique.
     Recent years, more and more scientific workers devote in the research to the solid surface selectivity adsorption through theoretical calculation, as well as improving the experimental technique of new functional solid materials of selective adsorption. Compared with the traditional experimental study method, the application of theoretical calculations, including quantum chemistry and molecular dynamics simulation, may reduce the blindness of experiments and revision test time-consuming greatly. Simultaneously, the theoretical calculations can provide a detailed, atomistic level insight into the three-dimensional structure of the studied model system. These kinds of studies allow us to extract information about dynamic and structural properties at a microscopic level which is not easy to get from experiments.
     In this dissertation, a series of theoretical studies have been carried out for several kinds of several kinds of solid state materials newly reported in experiments. On the one hand, by performing density functional theory (DFT) calculations and MD simulations, we have studied the ability of selective adsorption of two typical self-assembled monolayers (SAMs) forming in Si or SiO2 substrate, and focused on the influence of different end groups and different alkyl chains in packing density to the selectivity adsorptive capacity of SAMs, meanwhile a reasonable selective adsorption mechanism was proposed. These theoretical research results supply some valuable information for designing and improving the selective adsorption ability of the two kinds of SAM. On the other hand, we have studied the selective adsorption behavior of Histidine (His) and three His-derived peptides on Au(111) reported recently in the experiments through MD simulations. We have given the adsorption configuration from the microscopic level, and gave a possible mechanism of the histidine selective adsorption onto Au(111). We have summarized the influence of configuration changing of the histidine class amino to their capacity of selective adsorption onto Au(111).
     The important and valuable results in this dissertation can be summarized as follows:
     (1) The influence of changing SAM with different end groups to the internal structure and superficial wettability of SAM.
     The morphology of alkyl monolayers with different end groups (-CH3,-C=C,-OCH3,-CN,-NH2,-COOH) on the H-terminated Si(111) surface was investigated by molecular simulation method. We focus on the influence of different end groups on the internal structure and superficial smoothness of SAM. We have found that three hydrophilic end groups (-CN,-NH2,-COOH) has the huge influence to the internal structure of SAM, and make the surface smoother, mainly due to the interaction of hydrogen bonds in the hydrophilic SAM surface.
     We have studied the wetting ability of SAMs with the different end groups (-CH3,-C=C,-OCH3,-CN,-NH2,-COOH) through a combined molecular dynamics and quantum mechanics method. The obtained results is constant with the contact angle of the six SAMs after surface wetted reported by Faucheuxa N. in experiments. We have shown the hydrogen bonding patterns between adsorbed water molecules and the three hydrophilic (-CN,-NH2,-COOH) surface groups:at a very low level of hydration, the structure of one water molecule "bridging" between two hydrophilic group-terminated chains was formed in the surfaces of CN- and COOH-SAM; As the level of hydration increases, the predominant pattern is "bridging" two chains by water dimer in the surfaces of CN2- and COOH-SAM. Through hydrogen bonding analysis and QM calculation, our data suggests that the wetting ability of a SAM surface depends mainly on the type, quantity and strength of hydrogen bonds formed between polar head groups and water molecules. The results of this investigation provide a microscopic perspective on the wetting properties of different organic surfaces (from hydrophobic to hydrophilic) that could be helpful in developing models to describe the wetting behavior of organic materials in a biological environment.
     (2) Selective Deposition of Organic Molecules onto Different Densely Packed Self-Assembled Monolayers
     A series of MD simulations were conducted towards the selective deposition of organic luminescent molecules 3(5)-(9-anthryl) pyrazole (ANP) and perylene onto different densely packed organosilane self-assembled monolayers (SAMs). Our simulations indicated that the packing density of alkyl chains on SAM may directly control the site-selective deposition of organic molecules. Additionally we propose a possible mechanism for this phenomenon, which can also explain the experimental findings of the selective deposition of organic molecules onto template structures, made of L-a-dipalmitoyl-phosphatidylcholine (DPPC) in alternating liquid expanded (LE) and liquid condensed (LC) states. As expected, the organic molecules firstly deposit exclusively onto the less alkyl chains densely packed area of SAM.
     The difference in diffusion as well as the different interfacial energy can reasonably explain preferred deposition of organic molecules onto the alkyl chains expanded area of SAM, and it is certainly guiding and helpful to the synthesis of new functional materials in experiments.
     (3) The selective adsorption of Histidine and Histidine-Containing Peptides on Au(111)
     The adsorption behavior of Histidine (His) and three His-derived peptides, glycyl-histidine (Gly-His), glycyl-histidine-glycine (Gly-His-Gly), and glycyl-glycyl-histidine (Gly-Gly-His) on the Au(111) surface (reported by Feyer et al.) has been studied using molecular dynamics simulations. Our results have proven that His and His-derived peptides adsorbed on Au(111) via the imino nitrogen in the imidazole (IM) ring and the carboxylic acid group at the molecular level, and it agrees well with available experimental data.
     In additional, many statistical properties of His and His-derived peptides, like the interaction energy of adsorption, were analyzed after the systems reaching equilibrium. We conclude that:(ⅰ) Au(111) surface first adsorb the dipeptide Gly-His among the four amino acids. (ⅱ) The sequence of residues in a peptide can significantly influence adsorption geometry of amino acids rather than the adsorption rate. Our work agrees well with available experimental data and shows a clear insight into the interaction between His-containing amino acids and Au(111) surface at a microscopic level, which is helpful to future rational design efforts of gold-binding polypeptides.
引文
[1]赵振国,吸附作用应用原理,北京:化学工业出版社,2006
    [2]Brunauer, S. The physical adsorption of gases and vapors. London:Oxford Univ. Press,1945
    [3]Gregg, S. J.; Sing, K. S. W. Adsorption, surface area and porosity. London: Academic Press,1982
    [4]章燕豪吸附作用上海:上海科学技术文献出版社,1989
    [5]Bancroft, W. D. Applied Colloid Chemistry. New York,1926 Huckel, E. Adsorption and Kapillarkondensation. Leipzig,1928 Freundlich, H. Kapillarchemie. Leipzig,1930 Rideal, E. K. An Introduction to Surface Chemistry. Cambridge,1930 McBain, J. W. The Sorption of Gases and Vapours by Solids. London,1930 Adam, N. K. The Physics and Chemistry of Surfaces. Oxford,1938
    [6]侯万国等,应用胶体化学.北京:科学技术出版社,1998
    [7]Baas, T.; Gamble, L.; Hauch, K. D.; Castner, D. G.; Sasaki, T; Characterization of a cysteine-containing peptide tether immobilized onto a gold surface. Langmuir 2002,18,4898.
    [8]Chow, E.; Wong, E. L. S.; Bocking, T.; Nguyen, Q. T.; Hibbert, D. B.; Gooding, J. J.; Analytical performance and characterization of MPA-Gly-. Gly-His modified sensors. Sens. Actuators B 2005,111,540.
    [9]Cho, Y.; Ivanisevic, A.; TAT peptide immobilization on gold surfaces:a comparison study with a thiolated peptide and alkylthiols using AFM, XPS, and FT-IRRAS. J. Phys. Chem. B 2005,109,6225.
    [10]Monti, S.; Carravetta, V.; Battocchio, C.; Iucci, G.; Polzonetti, G.; Peptide/TiO2 surface interaction:a theoretical and experimental study on the structure of adsorbed ALA-GLU and ALA-LYS. Langmuir 2008,24,3205.
    [11]Polzonetti, G.; Battocchio, C.; Dettin, M.; Gambaretto, R.; DiBello, C.; Carravetta, V.; Monti, S.; Iucci, G. Self-assembling peptides:a combined XPS and NEXAFS investigation on the structure of two dipeptides Ala-Glu, Ala-Lys. Mater. Sci. Eng. C.2008,28,309.
    [12]Barlow, S. M.; Haq, S.; Raval, R.; Bonding, organization, and dynamical growth behavior of tripeptides on a defined metal surface:tri-1-alanine and tri-1-leucine on Cu{110}. Langmuir 2001,17,3292.
    [13]Vallee, A.; Humblot, V.; Methivier, C.; Pradier, C. M. Adsorption of a tripeptide, GSH, on Au(111) under UHV conditions; PM-RAIRS and low T-XPS characterization. Surf. Sci.2008,602,2256.
    [14]Vallee, A.; Humblot, V.; Methivier, C.; Pradier, C. M. Adsorption of di- and tripeptides on Au(110) under ultrahigh vacuum conditions.1. Polarization modulation reflection-absorption infrared spectroscopy and X-ray photoelectron spectroscopy characterization.J.Phys. Chem. C 2009,113,9336.
    [15]Xue, G.; Dong, J.; Sun, Y.; Complex-induced activating effect on surface species: reactions of imidazole on zero oxidation state metal surfaces. Langmuir 1994,10, 1477.
    [16]Liedberg, B.; Carlsson, C.; LundstrOm, I.; An infrared reflection--absorption study of amino acids adsorbed on metal surfaces:-histidine and-phenylalanine on gold and copper. J. Colloid Interface Sci.1987,120,64.
    [17]Hasselstrom, J.; Karis, O.; Weinelt, M.; Wassdahl, N.; Nilsson, A.; Nyberg, M.; Pettersson, L. G. M.; Samant, M. G The adsorption structure of glycine adsorbed on Cu (110); comparison with formate and acetate/Cu (110). J. Surf. Sci.1998, 407,221.
    [18]Nyberg, M.; Hasselstrom, J.; Karis, O.; Wassdahl, N.; Weinelt, M.; Nilsson, A.; Pettersson, L. G. M. The electronic structure and surface chemistry of glycine adsorbed on Cu(110). J. Chem. Phys.2000,112,5420.
    [19]Dodero, G.; De Michieli, L.; Cavalleri, O.; Rolandi, R.; Oliveri, L.; Dacca, A.; Parodi, R. High resolution X-ray photoelectron spectroscopy of 1-cysteine self-assembled films. Colloids Surf. A 2000,175,121.
    [20]Barlow, S. M.; Raval, R. Supramolecular assembly of strongly chemisorbed size-and shape-defined chiral clusters:S-and R-alanine on Cu (110). Surf. Sci. Rep.2003,50,201.
    [21]Marti, M. E.; Methivier, C.; Dubot, P.; Pradier, C. M. Adsorption of (S)-histidine on Cu(110) and oxygen-covered Cu(110), a combined fourier transform reflection absorption infrared spectroscopy and force field calculation study, J. Phys. Chem.B 2003,107,10785.
    [22]Marti, M. E.; Methivier, C.; Dubot, P.; Pradier, C. M. Interaction of s-histidine, an amino acid, with copper and gold surfaces, a comparison based on rairs analysis. Colloids Surf. A 2004,249,85.
    [23]Zubavichus, Y.; Zharnikov, M.; Yang, Y.; Fuchs, O.; Heske, C.; Umbach, E.; Tzvetkov, G.; Netzer, F. P.; Grunze, M. Surface chemistry of ultrathin films of histidine on gold as probed by high-resolution synchrotron photoemission. J. Phys. Chem. B 2005,109,884.
    [24]Jones, J.; Jones, L. B.; Thibault-Starzyk, F.; Seddon, E. A.; Raval, R.; Jenkins, S. J.; Held, G. The local adsorption geometry and electronic structure of alanine on Cu{110}. Surf. Sci.2006,600,1924.
    [25]Iori, F.; Corni, S.; Di Felice, R. Unraveling the interaction between histidine side chain and the Au (111) surface:a DFT study. J. Phys. Chem. C 2008,112,13540.
    [26]Feyer, V.; Plekan, O.; Skala, T.; Chdb, V.; Matoln, V.; Prince, K. C. The electronic structure and adsorption geometry of L-Histidine on Cu (110). J. Phys. Chem. B 2008,112,13655.
    [27]Gray, J. J. The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol. 2004,14,110.
    [28]Addadi, L.; Weiner, S. Control and design principles in biomineralization, Angew. Chem. Int. Ed. Engl.1992,31,153.
    [29]Iuliano, D. J.; Saavedera, S. S.; Truskey, G. A. Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion. J. Biomed. Mater. Res.1993,27,1103.
    [30]Feyer, V.; Plekan, O.; Tsud, N.; Chdb, V.; Matoln, V.; Prince, K. C. Adsorption of histidine and histidine-containing peptides on Au(111). Langmuir 2010,26, 8606.
    [31]Ulman, A. Introduction to Thin Organic Films:From Langmuir-Blodgett to Self-Assembly. (Academic, Boston,1991).
    [32]Nuzzo, R. G.; Dubois, L. H.; Allara, D. L. Fundamental studies of microscopic wetting on organic surfaces.1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers. J. Am. Chem. Soc. 1990,112,558.
    [33]Laibinis, P. E. et al. A comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces Cu, Ag,Au.J. Am. Chem. Soc.1991,113,7152.
    [34]Gleiche, M.; Chi, L. F.; Fuchs, H. Nanoscopic channel lattices with controlled anisotropic wetting. Nature 2000,403,173.
    [35]Lu, N.; Chen, X. D.; Molenda, D.; Naber, A.; Fuchs, H.; Talapin, D. V.; Weller, H.; Muller, J.; Lupton, J. M.; Feldmann, J.; Rogach, A. L.; Chi, L. F. Lateral Patterning of Luminescent CdSe Nanocrystals by Selective Dewetting from Self-Assembled Organic Templates. Nano Lett.2004,4,885.
    [36]Chen, X. D.; Hirtz, M.; Rogach, A. L.; Talapin, D. V.; Fuchs, H.; Chi, L. F. Correlating dynamics and selectivity in adsorption of semiconductor nanocrystals onto a self-organized pattern. Nano Lett.2007,7,3483.
    [37]Chen, X. D.; Rogach, A. L.; Talapin, D. V.; Fuchs, H.; Chi, L. F. Hierarchical Luminescence Patterning Based on Multiscaled Self-Assembly. J. Am. Chem. Soc.2006,128,9592.
    [38]Nan, J.; Dong, X.; Wang, W.; Jin, W.; Xu, N. Step-by-Step Seeding Procedure for Preparing HKUST-1 Membrane on Porous r-Alumina Support. Langmuir (in press)
    [39]Bigelow, W. C.; Pickett, D. L.; Zisman, W.; A. Oleophobic monolayers Films adsorbed from solution in non-polar liquids. J. Colloid Interface.Sci.1946,1, 513.
    [40]Nuzzo, R. G.; Allara, D. L. Ralph, G. N.; et al. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc.1983,105,4481.
    [41]Rudich, Y. Laboratory Perspectives on the Chemical Transformations of Organic Matter in Atmospheric Particles. Chem. Rev.2003,103,5097.
    [42]Yu, T. T. Structural comparison of self-assembled monolayers of nalkanoic acids on the surfaces of silver,copper and aluminum. J. Am. Chem. Soc.1993,115, 4350.
    [43]Yuan, S. L.; Cai, Z. T.; Jiang, Y. S.; Molecular simulation study of alkyl monolayers on the Si(111) surface. New J. Chem.2003,27,626.
    [44]Yuan, S. L.; Zhang, Y.; Li, Y. Molecular simulation study of alkyl-modified silicon crystal under the external electric field. Chem. Phys. Lett.2004,389,155.
    [45]Yuan, S. L.; Zhang, Y.; Li, Y.; Xu, G. Y. Molecular simulation study of different monolayers on Si (111) surface. Colloid Surf. A 2004,242,129.
    [46]Hai, W. L.; Larry, J. K.; Hun, G. H. et al. Inorganic analogs of Langmuir-Blodgett films:adsorption of ordered zirconium 1,10-de-canebisphosphonate multilayers on silicon surfaces. J. Am. Chem. Soc.1988,110,618.
    [47]Sunder, R.; Bao, L. T.; Mario, B. et al. Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines. Langmuir 1996,12,6419.
    [48]Holgado, M.; Santamaria, F. G.; Blanco, A.; Ibisate, M.; Cintas, A.; Miguez, H.; Serna, C. J.; Molpeceres, C.; Requena, J.; Mifsud, A.; Meseguer, F.; Lopez, C. Electrophoretic deposition to control artificial opal growth. Langmuir 1999,15, 4701.
    [49]Park, S. H.; Xia, Y. Assembly of nesoscale particles over large areas and its application in fabricating tunable optical filters. Langmuir 1999,15,266.
    [50]Shevchenko, E.; Talapin, D.; Kornowski, A.; Wiekhorst, F.; Kotzler, J.; Haase, M.; Rogach, A.; Weller, H. Colloidal crystals of monodisperse FePt nanoparticles grown by a three-layer technique of controlled oversaturation. Adv. Mater.2002, 14,287.
    [51]Cardoso, A. H.; Leite, C. A. P.; Galembeck, F. Latex macrocrystal self-assembly dependence on particle chemical heterogeneity. Colloids Surf. A 2001,181,49.
    [52]Velev, O. D.; Furusawa, K.; Nagayama, K. Assembly of latex particles by using emulsion droplets as templates.1. Microstructured hollow spheres. Langmuir 1996,12,2374.
    [53]Lvov, Y M.; Price, R. R. Synthesis and Encapsulation of N,N,N', N'-Tetrakis[p-Di(n-Butyl)aminophenyl]-p-benzoquinone-bis(Imonium Hexafluoroantimonate) Colloids Surf. B 2002,23,251.
    [54]Pileni, M. P. Nanosized particles made in colloidal assemblies. Langmuir 1997, 13,3266.
    [55]Sawitowski, T.; Miquel. Y.; Heilmann, A.; Schmid, G. Low-dimensional chainlike assemblies of TiO2 nanorod-stabilized Au nanoparticles. Adv. Funct. Mater.2001, 11,435.
    [56]Masuda, Y.; Tomimoto, K.; Koumoto, K. Two-dimensional self-assembly of spherical particles using a liquid mold and its drying process. Langmuir 2003,19, 13
    [57]Mirsky, V. M. Trends in Analytical Chemistry.2002,21,439.
    [58]李景虹(Li J H),程广金(Cheng G J),董绍俊(Dong S J).化学传感器(Chemical Sensors).1996,16,247.
    [59]Aslam, M.; Chaki, N. K.; Sharma, J.; et al. Device applications of self-assembled monolayers and monolayer-protected nanoclusters. Current Applied Physics. 2003,3,115.
    [60]Zhang, Q.; Archer, L. A. Boundary lubrication and surface mobility of mixed alkylsilane self-assembled monolayers. J. Phys. Chem. B 2003,107,13123.
    [61]Frink, S.; VanVeggel, F. C.; Reinhoudt, D. N. Sensor functionalities in self-assembled monolayers. Adv. Mater.2000,12,1315.
    [62]潘力佳(Pan L J),何平笙(He P S).化学通报(Chemistry).2000,12,12.
    [63]Kumar, A.; Abbott, N. A.; Kim, E.; et al. Patterned self-assembled monolayers and meso-scale phenomena. Acc. Chem. Res.1995,28,219.
    [64]Vijayamohanan, K.; Aslam, M. Self assembled monolayers and their applications. Appl. Biochem. Biotech.2001,96,25.
    [65]Nirmalya, K.; Chaki, K.; Vijayamohanan, K.; Biosensors & Bioelectronics 2002, 17,1.
    [66]Gooding, J. J.; Hibbert, D. B. Trends in Analytical Chemistry 1999,18,525.
    [67]Szori, M.; Tobias, D. J.; Roeselova, M. Experimental and theoretical characterization of adsorbed water on self-Assembled monolayers: understanding the interaction of water with atmospherically relevant surfaces. J. Phys. Chem. A.2009,113,2060.
    [68]Szori, M.; Tobias, D. J.; Roeselova, M. Microscopic wetting of mixed self-assembled monolayers:a molecular dynamics study. J. Phys. Chem. B. 2009,113,4161.
    [69]Masuda, Y.; Sugiyama, T.; Lin, H.; Seo, W.S.; Koumoto, K. Selective deposition and micropatterning of titanium dioxide thin film on self-assembled monolayers. Thin. Solid. Films 2001,382,153.
    [70]Rudich, Y. Laboratory perspectives on the chemical transformations of organic matter in atmospheric particles. Chem. Rev.2003,103,5097.
    [71]Gleiche, M.; Chi, L. F.; Fuchs, H. Nanoscopic channel lattices with controlled anisotropic wetting. Nature 2000,403,173.
    [72]Lu, N.; Chen, X. D.; Molenda, D.; Naber, A.; Fuchs, H.; Talapin, D. V.; Weller, H.; Muller, J.; Lupton, J. M.; Feldmann, J.; Rogach, A. L.; Chi, L. F. Lateral patterning of luminescent CdSe nanocrystals by selective dewetting from self-assembled organic templates. Nano Lett.2004,4,885.
    [73]Chen, X. D.; Hirtz, M.; Rogach, A. L.; Talapin, D. V.; Fuchs, H.; Chi, L. F. Correlating dynamics and selectivity in adsorption of semiconductor nanocrystals onto a self-organized pattern. Nano Lett.2007,7,3483.
    [74]Chen, X. D.; Rogach, A. L.; Talapin, D. V.; Fuchs, H.; Chi, L. F. Hierarchical luminescence patterning based on multiscaled self-assembly. J. Am. Chem. Soc. 2006,128,9592.
    [75]Chen, X. D.; Lenhert, S.; Hirtz, M.; Lu, N.; Fuchs, H.; Chi, L. F. Langmuir-Blodgett patterning:a bottom-up way to build mesostructures over large areas. Acc. Chem. Res.2007,40,393.
    [76]Lu, N.; Chen, X.; Molenda, D.; Naber, A.; Fuchs, H.; Talapin, D. V.; Weller, H.; Muller, J.; Lupton, J. M.; Feldmann, J.; Rogach, A. L.; Chi, L. Lateral patterning of luminescent CdSe nanocrystals by selective dewetting from self-assembled organic templates. Nano Lett.2004,4,885.
    [77]Moraille, P.; Badia, A. Spatially directed protein adsorption by using a novel, nanoscale surface template. Angew. Chem. Int. Ed.2002,41,4303.
    [78]Hao, J.; Lu, N.; Wu, Q.; Hu, W.; Chen, X.; Zhang, H.; Wu, Y.; Wang, Y.; Chi, L. Site-selective patterning of organic luminescent molecules via gas phase deposition. Langmuir 2008,24,5315.
    [79]Kaumar, A.; Whitesides, G M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol "ink" followed by chemical etching. Appl. Phys. Lett.1993,63,2002.
    [80]Marion, K. B.; Hirtz, M.; Chi, L.; Fuchs, H.; Studer, A. Site-selective surface-initiated polymerization by Langmuir-Blodgett lithography. Angew. Chem. Int. Ed.2007,46,5231.
    [81]Hirtz, M.; Fuchs, H.; Chi, L. Influence of substrate treatment on self-organized pattern formation by Langmuir-Blodgett transfer. J. Phys. Chem. B 2008,112, 824.
    [82]朱宇,陆小华,丁皓,等.分子模拟在化工应用中的若干问题及思考.化工学报2004,55,1213.
    [83]钟璟,黄维秋,殷开梁.分子模拟计算在气体膜分离研究中的应用.现代化工 2005,24,74.
    [84]曾勇平,闵元增,居沈贵.分子模拟在脱硫机理研究中的应用.现代化工2006,4,66.
    [85]王臣,徐明厚,刘晶,等.基于量子化学的燃煤过程痕量元素反应机理研究及其进展.热力发电2005,34,15.
    [86]Ning, C.; Yang, R. T. Ab initiomolecular orbital calculation on graphite:selection ofmolecular system andmodel chemistry. Carbon 1998,36,1061.
    [87]Padak, B.; Wilcox, J. Understandingmercury binding on activated carbon. Carbon 2009,47,2855.
    [88]Montoya, T. T. N.; Sarofim, A. F. Application ofdensity functional theory to the study of the reaction ofNO with char-bound nitrogen during combustion. J. Phys. Chem. A 2000,104,8409.
    [89]Yohta, K. Firstprinciple study of adsorption of atomic hydrogen on cluster-model surfaces. Synthetic Metals.2005,152,1.
    [90]李猛,刘晶,郑楚光.未燃尽炭表面吸附汞的机理研究.工程热物理学报2007,28,882.
    [91]L. I. X. A density functional theory study ofmercury adsorption on paperwaste derived sorbents. Tucson:The University of Arizona.2006,25.
    [92]Xin, G.; Zhao, P.; Zheng, C. Theoretical study of different speciation of mercury adsorption on CaO (001) surface. Pro. Com. Ins.2009,2,2693.
    [93]刘蓓,张现仁.MCM-41中混合势模型及简单流体吸附的巨正则MonteCarlo模拟.计算机与应用化学.2004,21,685.
    [94]印友法,朱卫华.巨正则系统蒙特卡洛法研究活性炭吸附.炭素技术.1998.
    [95]Aoshima, M.; Suzuki, T.; Kaneko, K. Molecular association-mediated micropore filling of supercritical xe in graphite slitpore by grand canonical monte carlos simulation. Chem. Phys. Lett.1999,310,1.
    [96]何科荣,李县法,李华.活性炭孔吸附过程的巨正则系综Monte Carlo模拟.新疆大学学报:自然科学版.2007,24,184.
    [97]Piotr, K.; Hidekit, R. et. al. Storage of hydrogen at 303K in graphite slit like pores from grand canonical monte carlo simulation. J. Phys. Chem. B.2005,109, 17174.
    [98]Matranga, K. R.; Stello, A. Myersa, L. Molecular simulation of adsorbed natural gas. Separa. Sci. Tech.1992,27,1825.
    [99]Shao, Y.; Rhykerd, C. L.; Gubbinsk, E. Layering, freezing transitions, capillary condensation and diffusion of methane in slit carbon pores. Mol. Phys.1993,79, 373.
    [100]曹达鹏,高广图,汪文川.巨正则系统Monte Carlo方法模拟甲烷在活性炭孔中的吸附存储.化工学报.2000,51,23.
    [101]曹达鹏,汪文川.巨正则系综Monte Carlo模拟方法确定活性炭的微孔尺寸.高等学校化学学报.2002,23,910.
    [102]张现仁,汪文川.甲烷在中孔分子筛MCM-41中吸附的计算机模拟.物理 化学学报.2002,18,680.
    [103]李以圭,刘金晨.分子模拟与化学工程.现代化工.2001,21,10.
    [104]Miyaharam, Y.; Okazakim, Y. Determination of adsorption equilibra in pores by molecular dynamics in a unit cell with imaginary. J. Phys. Chem. B 1997,106, 1063.
    [105]方霞,徐靖中,梁世强,等.MD模拟方法研究圆柱形纳米微孔的吸附平衡.工程热物理学报.2002,23,718.
    [106]Bojanm, J.; Slooten, R. V. S. Computer simulation studies of the storage of methane in micro porous. Carbons.1992,14,1837.
    [107]Michael, H.; Kumar, N.; Hao, J.; Lu, N.; Fuchs, H.; Chi, L. Selective deposition of organic molecules onto DPPC templates-a molecular dynamics study. (In press)
    [108]Vieira-Linhares, A. M. Non-equilibrium molecular dynamics simulation of gas separation in a microporous carbon. Chem. Eng. Sci.2003,18,4129.
    [109]Xu, L.; Menran G. S. None quilibrium molecular dynamics simulation of transport and separation of gases in carbon nanopores Ⅱ. Binary and ternary mixtures and comparison with the exporimental data. J. phys. Chem. A.2000,2, 6942.
    [1]Schrodinger, E.Ann.der. Phys.1926,79,36.
    [2]Thomas, L. S. Proc. Cambridge Philos. Soc.1927,23,542.
    [3]Fermi, E. Z. Phys.1928,48,73.
    [4]Hohenberg, P.; Kohn, W. Phys. Rev. B 1964,136,864.
    [5]Kohn, W.; Sham, L. J. Phys. Rev. A 1965,140,1133.
    [6]Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988,38,3098.
    [7]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992,46,6671.
    [8]Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1993,48, 16533.
    [9]Lee, C.; Yang, W.; Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988,37,785.
    [10]Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy densiy functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett.1989,157,200.
    [11]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03, revision D.01; Gaussian, Inc.:Wallingford, CT,2004.
    [12]Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985,82,270.
    [13]Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for potassium to gold including the outermost core orbitals. J. Chem. Phys.1985,82,299.
    [14]Schlegel, H. B. Optimization of Equilibrium Geometries and Transition Structures. J. Comp. Chem.1982,3,214-218.
    [15]Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J. Comp. Chem.1996,17,49.
    [16]Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev.1988,88,899.
    [17]Jensen, F. Introduction to computational chemistry. Johnwiley & Sons,1999.
    [18]Reed, A.E.; Weinhold, F. Natural bond orbital analysis of Near-Hartree-Fock water dimmer. J. Chem. Phys.1983,78,4066.
    [19]Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural population analysis. J. Chem. Phys.1985,83,735.
    [20]Carpenter, J. E.; Weinhold, F. Analysis of the geometry of the hydroxymethyl radical by the "different hybrids for different spins" natural bond orbital procedure. J. Mol. Struct. (Theochem) 1988,169,41.
    [21]杨小震,分子模拟与高分子材料,科学出版社,2002
    [22]Weiner, S. J.; Kollman, P. A. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc.1984,106,765.
    [23]Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc.1992,144,10024.
    [24]Dinur, U. The representation of van der Waals (vdW) interactions in molecular mechanics force fields:potential form, combination rules, and vdW parameters. J. Phys. Chem.1991,12,469.
    [25]Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc.1996,118,11225.
    [26]Rizzo, R. C.; Jorgensen, W. L. OPLS all-atom model for amines:resolution of the amine hydration problem. J. Am. Chem. Soc.1999,121,4827.
    [27]Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B. 2001,105,6474.
    [28]Lopes, J. N. C.; Deschamaps, J.; Padua, A. A. H. Modeling ionic liquids using a dystematic all-atom force field. J. Phys. Chem. B.2004,108,2038.
    [29]Lopes, J. N. C.; Deschamaps, J.; Padua, A. A. H. Modeling ionic liquids using a systematic all-atom force field (additions and corrections). J. Phys. Chem. B 2004,108,11250.
    [30]Lopes, J. N. C.; Padua, A. A. H. Molecular force field for ionic liquids composed of triflate of bistriflylimide anions. J. Phys. Chem.B 2004,108,16893.
    [31]Lopes, J. N. C.; Padua, A. A. H. Using spectroscopic data on imidazolium cation conformations to test a molecular force field for ionic liquids. J. Phys. Chem. B 2006,110,7485.
    [32]Lopes, J. N. C.; Padua, A. A. H. Molecular force field for ionic liquids III: imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions. J. Phys. Chem.B 2006,110,19586.
    [33]Sun, H.; Ren, P.; libai, J. R. A.; Simmons, J. G. The compass force field: parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998,8,229.
    [34]Van Gunsteren, W. F.; Berendsen, H. J. C. A leap-frog algorithm for stochastic dynamics. Mol. Sim.1988,1,173.
    [1]Ulman, A. Structure and growth of self-assembling monolayers. Chem. Rev.1996, 96,1533.
    [2]Schreiber, F., Prog. Surf. Sci.2000,65,151.
    [3]Masuda, Y.; Sugiyama, T.; Lin, H.; Seo, W.S.; Koumoto, K. Selective deposition and micropatterning of titanium dioxide thin film on self-assembled monolayers. Thin. Solid. Films 2001,382,153.
    [4]Ball, P. Protein denaturation by ionic liquids and the hofmeister series. Chem. Rev. 2008,108,74.
    [5]Ellison, G. B.; Tuck, A. F.; Vaida, V. J. Computational study of isoprene hydroxyalkyl peroxy radical-water complexes (C5H8(OH)O2-H2O). Geophys. Res.1999,104,11633.
    [6]Rudich, Y. Laboratory perspectives on the chemical transformations of organic matter in atmospheric particles. Chem. Rev.2003,103,5097.
    [7]Rudich, Y.; Donahue, N. M.; Mentel, T. F. Annu. Aging of organic aerosol: bridging the gap between laboratory and field studies. Rev. Phys. Chem.2007,58, 321.
    [8]Cooper, M. A. Optical biosensors in drug discovery. Nature Rev. Drug Disc.2002, 1,515.
    [9]Mrksich, M.; Whitesides, G. M. Extending the Recognition Site of Designed Minor Groove Binding Molecules. Annu Rev Biophys Biomol Struct 1996,25,55.
    [10]Schreiber, F. Structure and growth of self-assembling monolayers. Prog Surf Sci 2000,65,151.
    [11]Chan, W. C.W.; Nie, S. M. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 1998,281,2016.
    [12]Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. Self-Assembly of CdSe-ZnS Quantum dot bioconjugates using an engineered recombinant protein J. Am. Chem. Soc.2000, 122,12142.
    [13]Chirakul, P.; Perez-Luna, V. H.; Owen, H.; Lopez, G. P. Regulation of the Surface potential of silicon substrates in micrometer scale with organosilane self-assembled monolayers. Langmuir 2002,18,4234.
    [14]Sastry, M.; Patil, V.; Mayya, K. S. Selective binding of divalent cations at the surface of self-assembled monolayers of an aromatic bifunctionalmolecule studied on a quartz crystal microbalance. J. Phys. Chem. B 1997,101,1167.
    [15]Li, J.; Liang, K. S.; Scoles, G.; Ulman, A. The counterion overlayers on self-assembled monolayer of HOOC(CH2)15SH on Au(111):an in situ X-Ray reflectivity study. Langmuir 1995,11,4418.
    [16]Szori, M.; Tobias, D. J.; Roeselova, M. Microscopic wetting of mixed self-assembled monolayers:a molecular dynamics study. J. Phys. Chem. B.2009, 113,4161.
    [17]Sigal, G. B.; Mrksich, M.; Whitesides, G. M. Effect of surface wettability on the adsorption of proteins and detergents. J. Am. Chem. Soc.1998,120,3464.
    [18]Kane, R. S.; Deschatelets, P.; Whitesides, G. M. Kosmotropes form the basis of protein-resistant surfaces. Langmuir 2003,19,2388.
    [19]Sethuraman, A. et al., Mixed self-assembly of polydiacetylenes for highly specific and sensitive strip biosensors. Langmuir 2004,20,7779.
    [20]Paul, R.; David, E.; Kirsty, R.; Carole. C. P. Modern biomaterials:a review-bulk properties and implications of surface modifications. J. Mater. Sci:Mater. Med 2007,18,1263
    [21]Ito, Y. Surface micropatterning to regulate cell functions. Biomaterials 1999,20, 2333.
    [22]Webb, K.; Hlady, V.; Tresco, P. A. Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. J. Biomed. Mater. Res.2000,49,362.
    [23]Kapur, R.; Rudolph, A. S. Study of two grafting methods for obtaining a 3-aminopropyltriethoxysilane monolayer on silica surface. ExpCell. Res.1998, 244,275.
    [24]Jenney, C. R.; Defife, K. M.; Colton, E. Tissue reactions to bacteria-challenged implantable leads with enhanced infection resistance. J. Biomed. Mater. Res. 1998,41,171.
    [25]Sumanth, N.; Jamadagni, R. G.; Shekhar G How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces. Langmuir 2009,25,13092.
    [26]Douglas, L.; Irving; Donald, W.; Brenner. Diffusion on a self-assembled monolayer:molecular modeling of a bound+mobile lubricant. J. Phys. Chem. B.2006,110,15426.
    [27]Wang, H.; Buddy, D.; Ratner, E.; Helene. S.; Jiang, S. Y. Stepwise assembly of fibrin bilayers on self-assembled monolayers of alkanethiolates:influence of surface chemistry. J. Phys. Chem. C.2007,111,8504
    [28]Ruan, C. Y.; Lobatsov, V. A.; Vigliotti, F.; Chen, S. Y.; Zewail, A. H. Ultrafast electron crystallography of interfacial water. Science 2004,304,80.
    [29]Raviv, U.; Laurat, P.; Klein, J. Fluidity of water confined to subnanometre films. Nature 2001,413,51.
    [30]Raviv, U.; Klein, J. Fluidity of bound hydration layers. Nature 2002,297,1540.
    [31]Gallo, P.; Rovere, M.; Ricci, M. A.; Hartnig, C.; Spohr, E. Non-exponential kinetic behavior of confined water. Europhys. Lett.1999,49,183.
    [32]Lu, L.; Berkowitz, M. L. Hydration force between model hydrophilic surfaces: computer simulations. J. Chem. Phys.2006,124,101101.
    [33]Leng, Y. S.; Cummings, P. T. Fluidity of hydration layers nanoconfined between mica surfaces. Phys. Rev. Lett.2005,94,026101.
    [34]Leng, Y. S.; Cummings, P. T. Hydration structure of water confined between mica surfaces. J. Chem. Phys.2006,124,074711.
    [35]Szori, M.; Tobias, D. J.; Roeselova, M. Experimental and theoretical characterization of adsorbed water on self-assembled monolayers:understanding the interaction of water with atmospherically relevant surfaces. J. Phys. Chem. A. 2009,113,2060.
    [36]Natalia, S.; Rahul, G.; Pawel, K.; Shekhar, G. How wetting and adhesion affect thermal conductance of a range of hydrophobic to hydrophilic aqueous interfaces. Phys. Rev. Lett.2009,102,156101.
    [37]Srivastava, P.; Chapman, W. G.; Laibinis, P. E. Molecular dynamics simulation of oxygen transport through n-alkanethiolate self-assembled monolayers on gold and copper. Langmuir 2009,25,2689.
    [38]Srivastava, P.; Chapman, W. G.; Laibinis, P. E. Odd-Even variations in the wettability of n-alkanethiolate monolayers on gold by water and hexadecane:a molecular dynamics simulation study. Langmuir 2005,26,12171.
    [39]Linford, M. R.; Fenter, P.; Eisenberger, P. M.; Chidsey, C. E. D. Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. J. Am. Chem. Soc.1995,117,3145.
    [40]Wagner, P.; Nock, S.; Spudich, J. A.; Volkmuth, W. D.; Chu, S.; Ciccro, R. L.; Wade, C. P.; Linford, M. R.; Chidsey, C. E. D. Submicron patterning of DNA oligonucleotides on silicon. J. Struct, Biol.1997,119,189.
    [41]Sung, M. M.; Kluth, G. J.; Yauw, O. W.; Maboudian, R. Thermal behavior of alkyl monolayers on the Si (100) surface. Langmuir 1997,13,6164.
    [42]Saito, N.; Youda, S.; Hayashi, K.; Sugimura, H.; Takai, O. Site-selective growth of highly oriented ZnO rod arrays on patterned functionalized Si substrates from aqueous solution. Surf. Sci.2003,532,970
    [43]Sieval, A. B.; Linke, R.; Zuilhof, H.; Sudholter, E. J. R. High-quality alkyl monolayers on silicon surfaces. Adv. Mater.2000,12,1457.
    [44]Wayner, D. D. M.; Wolkow, R. A. Organic modification of hydrogen terminated silicon surfaces. J. Chem. Soc. Perkin Trans.2002,2,23.
    [45]Buriak, J. M. Organometallic chemistry on silicon and germanium surfaces. Chem. Rev.2002,102,1271.
    [46]Mitsuya, M. Velocity-dependent forces in atomic force microscopy imaging of lipid films. Langmuir 1994,10,3111.
    [47]Mitsuya, M. Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm. Appl. Phys. Lett.1997,70,961.
    [48]Mitsuya, M.; Sugita, N. Chemisorption of Dicarboxylic Acids on an Si(111) Surface and Subsequent Chemical Reactions at the Surface of Adsorbed Molecular Layers. Langmuir 1997,13,7075.
    [49]Mitsuya, M.; Sato, N. Energy shift for core electron levels of chemisorbed molecules observed by X-ray photoelectron spectroscopy in the course of monolayer growth on a Si(111) surface. Langmuir 1999,15,2099.
    [50]Cao, X.; Hamers, R. J. Silicon surfaces as electron acceptors:dative bonding of amines with Si(001) and Si(111) surfaces. J. Am. Chem. Soc.2001,123, 10988.
    [51]Boukherroub, R.; Wayner, D. D. M. Controlled functionalization and multistep chemical manipulation of covalently modified Si(111) surfaces. J. Am. Chem. Soc.1999,121,11513.
    [52]Juang, A.; Scherman, O. A.; Grubbs, R. H.; Lewis, N. S. Formation of covalently attached polymer overlayers on Si(111) surfaces using ring-opening metathesis polymerization methods. Langmuir 2001,17,1321.
    [53]Boukherroub, R.; Morin, S.; Bensebaa, F.; Wayner, D. D. M. New synthetic routes to alkyl monolayers on the Si(111) surface. Langmuir 1999,15,3831.
    [54]Yu, H. Z.; Morin, S.; Wayner, D. D. M. Molecular simulation of alkyl monolayers on the Si(111) surface. J. Phys. Chem.B 2000,104,11157.
    [55]Bansal, A.; Li, X.; Yi, S. I.; Weinberg W. H.; Lewis, N. S. Theoretical calculation on the reaction of alkene molecules on H-terminated Si(100)-3×1 surface. J. Phys. Chem. B 2001,105,10266.
    [56]Gorelik, D.; Haase, G. Effect of illumination on the preferred oxygen initial adsorption sites at a Si(111)7×7 surface. J. Phys. Chem. B 2000,104,2575.
    [57]Rezaei, M. A.; Stipe, B. C.; Ho,W. Inducing and observing the abstraction of a single hydrogen atom in bimolecular reactions with a scanning tunneling microscope. J. Phys. Chem. B 1998,102,10941.
    [58]Homma, T.; Wade, C. P.; Chidsey, C. E. D. Nucleation of trace copper on the H-Si(111) surface in aqueous fluoride solutions. J. Phys. Chem. B 1998,102, 7919.
    [59]Yuan, S.; Zhang, Y.; Li, Y.; Xu, G. Molecular simulation study of different monolayers on Si(111) surface. Colloids Surf. A 2004,242,129.
    [60]Yuan, S. L.; Ma, L. X.; Zhang, X. Q.; Zheng, L. Q. Water-dispersible carbon nanotubes from a mixture of an ethoxy-modified trisiloxane and pluronic block copolymer F127. Colloids Surf. A 2006,289,1.
    [61]Berendsen, H. J. C.;Grigera, J. R.; Straatsma, J. P. The missing term in effective pair potentials. J. Phys. Chem.1987,91,6269.
    [62]Sun, H.; Ren, P.; Fried, J. R. The compass force field:parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci.1998,8,229.
    [63]Ewald, P. D. Berechnung optischer and elektrostatischer gitterpotentiale. Ann. Phys.1921,369,253.
    [64]Sun, H. An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102,7338.
    [65]Faucheuxa, N.; Schweiss, R.; Utzowa, K. L.; Werner, C.; Grotha, T. Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 2004,25,2721.
    [66]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian03,; Gaussian, Inc.:Pittsburgh, PA,2004.
    [1]Gaal, M.; Gadermaier, C.; Plank, H.; Moderegger, E.; Pogantsch, A.; Leising, G.; List, E. J. W. Imprinted Conjugated Polymer Laser. Adv. Mater.2003,15,1165.
    [2]Kallinger, C.; Hilmer, M.; Haugeneder, A.; Perner, M.; Spirkl, W.; Lemmer, U.; Feldmann, J.; Scherf, U.; Mullen, K.; Gombert, A.; Wittwer, V. The chemistry of conducting polythiophenes. Adv. Mater.1998,10,920.
    [3]Kim, C.; Burrows, P. E.; Forrest, S. R. Micropatterning of organic electronic devices by cold-welding. Science 2000,288,831.
    [4]Koide, Y.; Wang, Q. W.; Cui, J.; Benson, D. D.; Marks, T. Ligand substituent, anion, and solvation effects on ion-paired structure, thermodynamic stability, and structural mobility in "constrained geometry" olefin polymerization catalysts. An ab initio quantum chemical investigation. J. Am. Chem. Soc.2000,122,11266.
    [5]Lee, T. W.; Zaumseil, J.; Bao, Z. N.; Hsu, J. W. P.; Rogers, J. A. Organic light-emitting diodes formed by soft contact lamination. Proc. Natl. Acad. Sci. U.S.A.2004,101,429.
    [6]Veinot, J. G. C.; Yan, H.; Smith, S. M.; Cui, J.; Huang, Q. L.; Marks, T. J. Fabrication and properties of organic light-emitting "nanodiode" arrays. Nano Lett. 2002,2,333.
    [7]Cheek, B. J.; Steel, A. B.; Torres, M. P.; Yu, Y. Y.; Yang, H. J.; Chemiluminescence detection for hybridization assays on the flow-thru chip, a three-dimensional microchannel biochip. Anal. Chem.2001,73,5777.
    [8]Lingerfelt, B. M.; Mattoussi, H.; Goldman, E. R.; Mauro, J. M.; Anderson, G. P. Preparation of quantum dot-biotin conjugates and their use in immunochromatography assays. Anal. Chem.2003,75,4043.
    [9]Briseno, A. L.; Mansfeld, S. C. B.; Ling, M. M.; Liu, S. H.; Tseng, R. J.; Reese, C.; Roberts, M. E.; Yang, Y.; Wudl, F.; Bao, Z. N. Global variation in copy number in the human genome. Nature 2006,444,913.
    [10]Plain, J.; Pallandre, A.; Nysten, B.; Joans, A. M. Efficacy of siRNA nanocapsules targeted against the EWS-Flil oncogene in Ewing sarcoma. Small 2006,2,892.
    [11]Wang, W. C.; Zhong, D. Y.; Zhu, J.; Kalischewski, F.; Dou, R. F.; Wedeking, K.; Wang, Y.; Heuer, A.; Fuchs, H.; Erker, G.; Chi, L. F.; Patterned nucleation control in vacuum deposition of organic molecules. Phys. Rev. Lett.2007,98,225504.
    [12]Gleiche, M.; Chi, L. F.; Fuchs, H. Nanoscopic channel lattices with controlled anisotropic wetting. Nature 2000,403,173.
    [13]Lu, N.; Chen, X. D.; Molenda, D.; Naber, A.; Fuchs, H.; Talapin, D. V.; Weller, H.; Muller, J.; Lupton, J. M.; Feldmann, J.; Rogach, A. L.; Chi, L. F. Lateral patterning of luminescent CdSe nanocrystals by selective dewetting from self-assembled organic templates. Nano Lett.2004,4,885.
    [14]Chen, X. D.; Hirtz, M.; Rogach, A. L.; Talapin, D. V.; Fuchs, H.; Chi, L. F. Correlating dynamics and selectivity in adsorption of semiconductor nanocrystals onto a self-organized pattern. Nano Lett.2007,7,3483.
    [15]Chen, X. D.; Rogach, A. L.; Talapin, D. V.; Fuchs, H.; Chi, L. F. Hierarchical luminescence patterning based on multiscaled self-assembly. J. Am. Chem. Soc. 2006,128,9592.
    [16]Chen, X. D.; Lenhert, S.; Hirtz, M.; Lu, N.; Fuchs, H.; Chi, L. F. Langmuir-Blodgett patterning:a bottom-up way to build mesostructures over large areas. Acc. Chem. Res.2007,40,393.
    [17]Lu, N.; Chen, X.; Molenda, D.; Naber, A.; Fuchs, H.; Talapin, D. V.; Weller, H.; Muller, J.; Lupton, J. M.; Feldmann, J.; Rogach, A. L.; Chi, L. Lateral patterning of luminescent CdSe nanocrystals by selective dewetting from self-assembled organic templates. Nano Lett.2004,4,885.
    [18]Moraille, P.; Badia, A. Spatially directed protein adsorption by using a novel, nanoscale surface template. Angew. Chem. Int. Ed.2002,41,4303.
    [19]Hao, J.; Lu, N.; Wu, Q.; Hu, W.; Chen, X.; Zhang, H.; Wu, Y.; Wang, Y.; Chi, L. Site-selective patterning of organic luminescent molecules via gas phase deposition. langmuir 2008,24,5315.
    [20]Kaumar, A.; Whitesides, G. M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching. Appl. Phys. Lett.1993, 63,2002.
    [21]Dulcey, C. S.; Georger, J. H.; Krauthamer, J. V.; Stenger, D. A.; Fare, T. L. Calvert, J. M. Deep UV photochemistry of chemisorbed monolayers:patterned coplanar molecular assemblies. Science 1991,252,551.
    [22]Lercel, M. J.; Tiberio, R. C.; Chapman, P. F.; Craighead, H. G.; Sheen, C. W.; Parkin, A. N.; Allara, D. L. J. Directed immobilization of protein-coated nanospheres to nanometer-Scale patterns fabricated by electron beam lithography of poly(ethylene glycol) self-assembled monolayers. Vac. Sci. Technol. B 1993,11, 2823.
    [23]Kim, Y. T.; Bard, A. J. Imaging and etching of self-assembled n-octadecanethiol layers on gold with the scanning tunneling microscope. Langmuir 1992,8,1096.
    [24]Lercel, M. J.; Redinbo, G. F.; Craighead, H. G.; Sheen, C. W.; Allara, D. L. Scanning tunneling microscopy based lithography of octadecanethiol on Au and GaAs. Appl. Phys. Lett.1994,65,974.
    [25]Blawas, A. S.; Reichert, W. M. Protein patterning. Biomaterials 1998,19,595.
    [26]Faucheux, N.; Schweiss, R.; Lutzow, K.; Werner, C.; Groth, T. Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 2004,25,2721.
    [27]Sumanth, N.; Jamadagni, R. G.; Shekhar, G. How surface wettability affects the binding, folding, and dynamics of hydrophobic polymers at interfaces. Langmuir 2009,25,13092.
    [28]Douglas, L.; Irving.; Donald, W.; Brenner, D. T. Gas sensor array based on metal-decorated carbon nanotubes. J. Phys. Chem. B.2006,110,15426.
    [29]Wang, H.; Buddy, D.; Ratner, E.; Helene, S.; Jiang, S. Y. Bi-layers on self-assembled monolayers (SAMs) of alkanethiolates:influence of surface chemistry. J. Phys. Chem. C.2007,111,8504.
    [30]Hozumi, A.; Asakura, S.; Fuwa, A.; Shirahata, N.; Kameyama, T. Preparation of a well-defined amino-terminated self-assembled monolayer and copper microlines on a polyimide substrate covered with an oxide nanoskin. Langmuir 2005,21, 8234.
    [31]Janssen, D.; DePalma, R.; Verlaak, S.; Heremans, P.; Dehaen, W. Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films 2006,515, 1433.
    [32]Yuan, S. L.; Ma, L. X.; Zhang, X. Q.; Zheng, L. Q. Molecular dynamics studies on octadecylammonium chloride at the air/liquid interface. Colloids Surf. A 2006, 289,1.
    [33]Sun, H.; Ren, P.; libai, J. R. A.; Simmons, J. G. The compass force field: parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998,8,229.
    [34]Sun, H. COMPASS:an ab initio force-field optimized for condensed-phase applicationsoverview with details on alkane and benzene compounds. J. Phys. Chem. B 1998,102,7338.
    [35]Allen, M. P.; Tildesley, D. J. Computer Simulations of Liquid, Oxford Science Publications:Oxford.1987
    [36]Ghosh, T.; Garcia, A. E.; Garde, S. Molecular dynamics simulations of pressure effects on hydrophobic interactions. J. Am. Chem. Soc.2001,123,10997.
    [37]Ghosh, T.; Garcia, A.; Garde, E. S. Water-mediated three-particle interactions between hydrophobic solutes:size, pressure, and salt effects. J. Phys. Chem. B 2003,107,612.
    [1]Gray, J. J. The interaction of proteins with solid surfaces. Curr. Opin. Struct. Biol. 2004,14,110.
    [2]Addadi, L.; Weiner, S. Control and design principles in biomineralization. Angew. Chem. Int. Ed. Engl.1992,31,153.
    [3]Iuliano, D. J.; Saavedera, S. S.; Truskey, G. A. Effect of the conformation and orientation of adsorbed fibronectin on endothelial cell spreading and the strength of adhesion. J. Biomed. Mater. Res.1993,27,1103.
    [4]Yeh, Y.; Feeney, R. E. Antifreeze proteins:structures and mechanisms of function, Chem. Rev.1996,96,601.
    [5]Baas, T.; Gamble, L.; Hauch, K. D.; Castner, D. G.; Sasaki, T. Characterization of a cysteine-containing peptide tether immobilized onto a gold surface. Langmuir 2002,18,4898.
    [6]Chow, E.; Wong, E. L. S.; Bocking, T.; Nguyen, Q. T.; Hibbert, D. B.; Gooding, J. J. Analytical performance and characterization of MPA-Gly-. Gly-His modified sensors. Sens. Actuators B 2005,111,540.
    [7]Cho, Y.; Ivanisevic, A.; TAT peptide immobilization on gold surfaces:a comparison study with a thiolated peptide and alkylthiols using AFM, XPS, and FT-IRRAS. J. Phys. Chem. B 2005,109,6225.
    [8]Monti, S.; Carravetta, V.; Battocchio, C.; Iucci, G.; Polzonetti, G. Peptide/TiO2 surface interaction:a theoretical and experimental study on the structure of adsorbed ALA-GLU and ALA-LYS. Langmuir 2008,24,3205.
    [9]Polzonetti, G.; Battocchio, C.; Dettin, M.; Gambaretto, R.; Di Bello, C.; Carravetta, V.; Monti, S.; Iucci, G. Self-assembling peptides:a combined XPS and NEXAFS investigation on the structure of two dipeptides Ala-Glu, Ala-Lys. Mater. Sci. Eng. C 2008,28,309.
    [10]Barlow, S. M.; Haq, S.; Raval, R. Bonding, organization, and dynamical growth behavior of tripeptides on a defined metal surface:tri-1-alanine and tri-1-leucine on Cu{110}. Langmuir 2001,17,3292.
    [11]Vallee, A.; Humblot, V.; Methivier, C.; Pradier, C. M. Adsorption of a tripeptide, GSH, on Au(111) under UHV conditions; PM-RAIRS and low T-XPS characterization. Surf. Sci.2008,602,2256.
    [12]Vallee, A.; Humblot, V.; Methivier, C.; Pradier, C. M. Adsorption of di- and tripeptides on Au(110) under ultrahigh vacuum conditions.1. Polarization modulation reflection-absorption infrared spectroscopy and X-ray photoelectron spectroscopy characterization. J. Phys. Chem. C 2009,113,9336.
    [13]Xue, G.; Dong, J.; Sun, Y. Complex-induced activating effect on surface species: reactions of imidazole on zero oxidation state metal surfaces. Langmuir 1994,10, 1477.
    [14]Liedberg, B.; Carlsson, C.; LundstrOm, I. An infrared reflection--absorption study of amino acids adsorbed on metal surfaces:-histidine and-phenylalanine on gold and copper. J. Colloid Interface Sci.1987,120,64.
    [15]Hasselstrom, J.; Karis, O.; Weinelt, M.; Wassdahl, N. A. Nilsson, M. Nyberg, L.G.M. Pettersson, M.G. Samant, Stohr, The adsorption structure of glycine adsorbed on Cu (110); comparison with formate and acetate/Cu (110). J. Surf. Sci. 1998,407,221.
    [16]Nyberg, M.; Hasselstrom, J.; Karis, O.; Wassdahl, N.; Weinelt, M.; Nilsson, A. Pettersson, L. G.M. The electronic structure and surface chemistry of glycine adsorbed on Cu(110). J. Chem. Phys.2000,112,5420.
    [17]Dodero, G.; De Michieli, L.; Cavalleri, O.; Rolandi, R.; Oliveri, L.; Dacca, A.; Parodi, R. High resolution X-ray photoelectron spectroscopy of 1-cysteine self-assembled films. Colloids Surf. A 2000,175,121.
    [18]Barlow, S. M.; Raval, R. Supramolecular assembly of strongly chemisorbed size-and shape-defined chiral clusters:S-and R-alanine on Cu (110). Surf. Sci. Rep. 2003,50,201.
    [19]Marti, M. E.; Methivier, Ch.; Dubot, P.; Pradier, C. M. Adsorption of (S)-Histidine on Cu(110) and Oxygen-Covered Cu(110), a Combined Fourier Transform Reflection Absorption Infrared Spectroscopy and Force Field Calculation Study. J. Phys. Chem. B 2003,107,10785.
    [20]Marti, M. E.; Quash, A.; Methivier, Ch.; Dubot, P.; Pradier, C. M. Interaction of s-histidine, an amino acid, with copper and gold surfaces, a comparison based on rairs analysis. Colloids Surf. A 2004,249,85.
    [21]Zubavichus, Y.; Zharnikov, M.; Yang, Y.; Fuchs, O.; Heske, C.; Umbach, E.; Tzvetkov, G.; Netzer, F. P.; Grunze, M. Surface chemistry of ultrathin films of histidine on gold as probed by high-resolution synchrotron photoemission. J. Phys. Chem. B 2005,109,884.
    [22]Jones, J.; Jones, L. B.; Thibault-Starzyk, F.; Seddon, E. A.; Raval, R.; Jenkins, S. J.; Held, G. The local adsorption geometry and electronic structure of alanine on Cu{110}. Surf. Sci.2006,600,1924.
    [23]Iori, F.; Corni, S.; Di Felice, R. Unraveling the interaction between histidine side chain and the Au (111) surface:a DFT study. J. Phys. Chem. C 2008,112,13540.
    [24]Feyer, V.; Plekan, O.; Skala, T.; Chab, V.; Matoln, V.; Prince, K. C. The electronic structure and adsorption geometry of L-Histidine on Cu (110). J. Phys. Chem.B 2008,112,13655.
    [25]Hammer, B.; Nφrskov, J. K. Why gold is the noblest of all the metals. Nature 1995,376,238.
    [26]Yang, W.; Jaramillo, D.; Gooding, J. J.; Hibbert, D. B.; Zhang, R.; Willett, G. D.; Fisher, K. J. Sub-ppt detection limits for copper ions with Gly-Gly-His modified electrodes. Chem. Commun.2001,19,1982.
    [27]Feyer, V.; Plekan, O.; Tsud, N.; Chab, V.; Matoln, V.; Prince, K. C. Adsorption of histidine and histidine-containing peptides on Au(111). Langmuir 2010,26,8606.
    [28]Harding, J. H.; Duffy, D. M.; Sushko, M. L.; Rodger, P. M.; Quigley, D.; Elliott, J. A. Computational techniques at the organic-inorganic interface in biomineralization. Chem. Rev.2008,108,4823.
    [29]Hoefling, M.; Iori, F.; Corni, S. Gottschalk, K. E. Interaction of amino acids with the Au(111) surface:adsorption free energies from molecular dynamics simulations. Langmuir 2010,26,8347.
    [30]Ghiringhelli, L. M.; Delle Site, L. Phenylalanine near inorganic surfaces: conformational statistics vs specific chemistry. J. Am. Chem. Soc.2008,130, 2634.
    [31]Hong, G. Y.; Heinz, H.; Naik, R. R.; Farmer, B. L.; Pachter, R. Toward understanding amino acid adsorption at metallic interfaces:a density functional theory study. Appl. Mater. Interfaces 2009,1,388.
    [32]Rimola, A.; Corno, M.; Zicovich-Wilson, C. M.; Ugliengo, P. Ab initio modeling of protein/biomaterial interactions:glycine adsorption at hydroxyapatite surfaces, J. Am. Chem. Soc.2008,130,16181.
    [33]Rimola, A.; Corno, M.; Zicovich-Wilson, C. M.; Ugliengo, P. Ab initio modeling of protein/biomaterial interactions:competitive adsorption between glycine and water onto hydroxyapatite surfaces. Phys. Chem. Chem. Phys.2009,11,11662.
    [34]Braun, R.; Sarikaya, M.; Schulten, K. J. Genetically engineered gold-binding polypeptides:Structure prediction and molecular dynamics. Biomater. Sci.2002, 13,747.
    [35]Ghiringhelli, L. M.; Hess, B.; van der Vegt, N. F. A.; Delle Site, L. Competing adsorption between hydrated peptides and water onto metal surfaces:from electronic to conformational properties. J. Am. Chem. Soc.2008,130,13460.
    [36]Heinz, H.; Farmer, B. L.; Pandey, R. B.; Slocik, J. M.; Patnaik, S. S.; Pachter, R.; Naik, R. R. Nature of molecular interactions of peptides with gold, palladium, and Pd-Au bimetal surfaces in aqueous solution. J. Am. Chem. Soc.2009,131,9704.
    [37]Schravendijk, P.; Ghiringhelli, L. M.; Delle Site, L.; van der Vegt, N. F. A. Interaction of hydrated amino acids with metal surfaces:A multiscale modeling description. J. Phys. Chem. C 2007,111,2631.
    [38]Verde, A. V.; Acres, J. M.; Maranas, J. K. Investigating the specificity of peptide adsorption on gold using molecular dynamics simulations. Biomacromolecules 2009,10,2118.
    [39]Shaytan, A. K.; Ivanov, V. A.; Shaitan, K. V.; Khokhlov, A. R. Free energy profiles of amino acid side chain analogs near water-vapor interface obtained via MD simulations. J. Comput. Chem.2010,31,204.
    [40]Wu, C. Y.; Chen, M. J.; Guo, C. Q. Peptide-TiO2 interaction in aqueous solution: conformational dynamics of RGD using different water models. J. Phys. Chem. B 2010,114,4692.
    [41]Pang, J. Y.; Xu, G. Y.; Yuan, S. L.; Tan, Y. B. dispersing carbon nanotubes in aqueous solutions by a silicon surfactant:experimental and molecular dynamics simulation study. Colloids Surf. A 2006,350,101.
    [42]Sun, H.; Ren, P.; libai, J. R. A.; simmons, J. G. The compass force field: parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998,8,229.
    [43]Sun, H. COMPASS:an ab initio force-field optimized for condensed-phase applicationsoverview with details on alkane and benzene compounds. J. Phys. Chem. B 1998,102,7338.
    [44]Danov, K. D.; Kralchevska, S. D.; Kralchevsky, P. A. Ananthapadmanabhan, KP; Lips, A mixed solutions of anionic and zwitterionic surfactant (Betaine): surface-tension isotherms, adsorption, and relaxation kinetics. Langmuir 2004,20, 5445.
    [45]Peelle, B. R.; Krauland, E. M.; Wittrup, K. D.; Belcher, A. M. Design criteria for engineering inorganic material-specific peptides. Langmuir 2005,21,6929.
    [46]Serr, A.; Horinek, D.; Netz, R. R. J. Polypeptide friction and adhesion on hydrophobic and hydrophilic surfaces:a molecular dynamics case study. J. Am. Chem. Soc.2008,130,12408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700