深过冷液态金属比热的分子动力学模拟及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深过冷液态金属的快速凝固是制备高效金属材料的一种有效手段。但是由于对深过冷条件下的凝固机制和深过冷液态金属的物理化学性质(比热,表面张力等)的认识不足,人们尚不能准确地控制这类制备过程。液态金属的物理化学性质的测量和计算因此成为研究者十分关注的问题。
     本文采取分子动力学方法对有广泛应用背景的两种纯金属以及三种二元合金的比热进行了计算和分析,并以铜镍合金为对象进行了实验研究,将实验结果与模拟结果进行相互验证。
     采用熔融玻璃净化法得到四种铜镍系合金的过冷度与凝固平台的关系并研究了其结构随过冷度的变化。通过传热分析得到了凝固平台时间长度与过冷度成线性关系。在此基础上求得这四种成分合金的超过冷临界温度及其熔点以下液态的平均比热。在实验中获得的四种组分合金的最大过冷度分别达到0.83△T_h,0.83△T_h,0.78△T_h,0.82△T_h,超过了经典形核理论预言的均质形核临界过冷度0.2T_l。
     以简单流体为研究对象,对汽液界面的密度、压力以及温度分布进行了模拟。模拟得到了与前人研究一致的界面密度和压力的分布,但同时发现界面中的温度分布呈非单调变化。
     模拟了两种纯金属及三种合金在800K-2000K范围内的比热,以及其随温度的变化趋势,最大过冷度可达到500K,这是目前实验方法尚难以达到的温度范围。
     模拟得到的液态铜、银以及铜镍合金的比热的模拟结果与实验数据的差别均在20%以内。其中铜、铜银合金以及铁镍合金的比热在较大的温度范围内维持在一个比较固定的数值上,相反,银以及铜镍合金的比热随温度的变化是非单调的。在700-900K区域内,液态金属银的比热随着温度的升高而有所升高:而在1000K到2000K范围内,比热随着温度的升高而略有下降。在1400K到2000K之间Cu-25%Ni的比热随温度的升高而略有降低;而在800K-1400K的区域内该合金的比热则随着温度的升高而升高。
As an advanced processing technique for metallic materials, rapid solidification of supercooled liquid metals offer a promising way for preparing bulk amorphous metal, which is not expected for traditional rapid quenching techniques. To control the solidification process, the specific heat capacity of supercooled liquid metal is of particular importance. However, the specific heat capacity of supercooled metallic liquids is difficult to be completely determined by experiment, for the supercooled liquid metals are metastable and inaccessible for direct-contact measurement.Molecular dynamics simulation provides an available way to study the thermal properties of supercooled liquid metals numerically. The main purpose of this thesis is to investigate the heat capacities of two pure metals and three series of binary alloys numerically and experimentally.The average heat capacities of the a series undercooled Cu-Ni melts were derived by using glass fluxing technique. The undercoolings of these alloys were 381, 380, 349 and 431K respectively, which exceed the critical undercooling of the classical nucleation theory. A detailed analysis of the heat transfer condition during the solidification process was carried out, which suggested a linear relationship between the time duration of thermal arrest t_a and the undercooling ΔT. The hypercooling points of the alloys, derived from the relationship between t_a and ΔT, were determined to be 457.7, 461.1,448.4 and 528.3K respectively.Molecular dynamics simulations based on embedded-atom method and an effective pair potential are carried out to predict the specific heat of liquid copper and silver. The relationship between the specific heat of liquid metal and the undercooling are investigated. The simulations predict the specific heat of liquid copper and silver quite well and show that the specific heat of copper decreases slightly with the temperature decreasing linearly above and below the melting point, while the specific heat of silver behaves non-monotonously.A discussion about the influence of interatomic potential on the calculation of specific heat is given. The simulation results show that the bulk module has little influence on the simulation of heat capacity, while the cohesive energy and share stress module influence the heat capacity obviously.The simulation of heat capacities of Cu-25%Ni, Cu-33%Ag and Fe-33%Ni are carried out. The comparison between the predicted heat capacity of Cu-25%Ni alloy and the experiment showed reasonable agreement. The heat capacity of Cu-25%Ni behaves non-monotony, while the heat capacities of Cu-33%Ag and Fe-33%Ni keep constant in a rather large region.
引文
[1] 冯端,冯步云.放眼晶态之外——漫谈凝聚态物理之二.湖南:湖南教育出版社,1994.28-71
    [2] D.R. Nelson, M. Rubinstein and F. Spaepen, Order in two- dimensional binary random arrays, Philos. Mag., A46[1982] 105~126
    [3] D. Turnbull, J. Appi. Phys. 21[1950] 1022
    [4] J.H. Perepezko and J. S. Paik, Thermodynamic properties of undercooled liquid metals, J. Non-cryst. Solids, 1984, 61/62, 113
    [5] M. Barth, F. Joo, B. Wei and D. M. Herlach, Measurement of the enthalpy and specific heat of undercooled nickel and iron melts, J. Non-crystalline Solids, 156-158 [1993] 398
    [6] G. Betz and M. G. Frohberg, ENTHALPY MEASUREMENTS ON SOLID AND LIQUID MOLYBDENUM BY LEVITATION CALORIMETRY, High Temp.-High Press., 12 [1980] 169~178
    [7] G. Betz and M. G. Frohberg, Z. Metall., 71 [1980] 451
    [8] R. Lin and M. G. Grohberg, Z. Metall., 82 [1991] 48
    [9] R. Lin and M. G. Grohberg, High Temp.-High Press., 24 [1992] 537
    [10] R. Lin and M. G. Grohberg, High Temp.-High Press., 20 [1988] 539
    [11] K. Ohsaka, I. R. Gatewood and E. H. Trinh, Scripta Metall. Mater., 25 [6] [1991] 1459
    [12] D. W. Qi, J. Gryko and S. Wang, Specific heats of supercooled metallic liquids, J. Non-Cryst. Solids, 1991, 127: 306~311
    [13] T. Shen, J. T. Wang and S. Wang, Variational thermodynamic calculation for supercooled metallic liquids, J. Non-Cryst. Solids, 1990, 117/118: 559~562
    [14] E. S. Altshuler, D. L. Mills, R. B. Gerber, Solid and liquid-like phases of chemisorbed hydrogen monolayers on bcc metal surfaces: structure, dynamics and order-disorder transition, Surface Science, 1998, 414: 1~16
    [15] P. A. Bopp, A. Kohlmeyer and E. Spohr, Computer simulations of electrochemical systems, Electrochimica ACTA, 1998, 43: 2911-1918
    [16] E. Spohr, Molecular simulation of the electrochemical double layer, Electrochimica Acta, 1999, 44: 1697-1705
    [17] D. M. Duffy, J. A. Blackman, P. A. Mulheran et al., Transition metal clusters on graphite, J. Magnetism and Magnetic Materials, 1998, 177-181: 953~954
    [18] H. Mehrez, A. Ciraci, C. Y. Fong et al., An atomistic study on the streching of nanowires, J. Phys.: Condens. Matter, 1997, 9: 10843-10854
    [19] T. Inamura, N. Takezawa, Atomic-Scale cutting in a computer using crystal models of copper and diamond, Annals of the CIRP 1992,41: 121-124
    [20] Z. Insepov, I. Yamada, M. Sosnowski, Sputtering and smoothing of metal surface with energetic gas cluster beams, Materials Chemistry and Physics, 1998, 54: 234-237
    [21] D. A. Rigney and J. E. Hammerberg, Unlubricated sliding behavior of metals, MRS. Bulletin, 1998: 32-36
    [22] B. N. Singh, Impacts of damage production and accumulation on materials performance in irradiation environment, J. Nuclear Materials, 1998,258-263: 18-29
    [23] Q. H. Tang and T. C. Wang, Deformation twinning and its effect on crack extension, Acta mater., 1998 46:5313-5321
    [24] Metropolis, N. et al, "Equation of State by Fast Computing Machines," J. Chem. Phys., 1953,21, 1087-1092.
    [25] Barker, J. A. et al., "Liquid Argon: Monte Carlo and Molecular Dynamics Calculations," Molecular Physics, 1971, 21, 657-673.
    [26] Boda, D. et al., "The Isochoric, Isobaric and Saturation-Heat Capacities of the Lennard- Jones Fluid from Equation of State and Monte Carlo Simulations," Fluid Phase Equilibria, 1996,119, 1-16.
    [27] Bowers, M. B. and Mudawar, I., "High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks," Int. J. Heat Mass Transfer, 1994, 37(2), 321-332.
    [28] Chambers, A. et al., "Hydrogen Storage in Graphite Nanofibers," Phys. Chem., 1998, B102, 4253-4256.
    [29] Fujikawa, S. et al., "Molecular Study of Phase Transition Phenomena of Fluid," Thermal Science and Engineering, 1995, 3(3), 45-50.
    [30] Lopes, J. N. C. and Tildesley, D. J., "Multiphase Equilibria Using the Gibbs Ensember Monte Carlo Method," Molecular Physics, 1997, 92, 187-195.
    [31] Maddox, M. et al., "Molecular Simulation of Simple Fluids and Water in Porous Carbons," Fluid Phase Equilibria, 1995, 104, 145-158.
    [32] Majumdar, A., "Microscale Heat Conduction in Dielectric Thin Film," J. Heat Transfer, 1993, 115,7-16.
    [33] Matranga, K. R. et al., "Storage of Natural Gas by Adsorption on Activated Carbon," Chem. Eng. Sci., 1992, 47, 1569-1579.
    [34] Megen, W. and Snook, I. K., "Physical Adsorption of Gases at High Pressure," Molecular Physics, 1985, 54, 741-755.
    [35] Panagiotopoulos, A. Z., "Direct Determination of Phase Coexistence Properties of Fluids by Monte Carlo Simulation in a New Ensemble," Molecular Physics, 1987, 61, 813~826.
    [36] Peterson, B. K. and Gubbins K. E., "Phase Transition in a Cylindrical Pore Grand Canonical Monte Carlo, Mean Field Theory and Kelvin Equation," Molecular Physics, 1987, 62, 215~226.
    [37] B. J. Alder, T. E. Wainwright, Phase Transition for a Hard Sphere System, J. Chem. Phys., 1957, 27 1208~1209
    [38] J. B. Gibson, A. N. Goland, M. Milgram, et al., Dynamics of Radiation Damage, Phys. Rev., 1906, 120: 1229~1253
    [39] R. Car and M. Parrinello, Unified Approach for Molecular Dynamics and Density-Functional Theory, Physical review Letters, 1985, 55: 2471~2474
    [40] B. L. Holian and D. J. Evans, Classical Respone Theory in the Heisenberg Picture, J. Chem. Phys., 1985, 83: 3560~3566
    [41] T. Q. Qiu and C. L. Tien, Femtosecond Laser Heating of Multi-Layer Metals: Part Ⅰ- Analysis, International J. of Heat and Mass Transfer, 1944, 31: 2789-2797
    [42] D. H. Li, R. A. Moore and S. Wang, A computer and analytic study of the metallic liquid- glass transition. Ⅱ. Structure and mean square displacements, J. Phys. F: Met. Phys., 13 [1984] 4309~4312
    [43] R. S. Liu, D. W. Qi and S. Wang, Subpeaks of structure factors for rapidly quenched metals, Phy. Rew., B 45 [1992] 451~453
    [44] C. L. Liu, J. M. Cohen, J. B. Adams and A. F. Voter, EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, AI, Ag, Au, Pd, and Pt, Surface Science, 1991, 253 334~344
    [45] 陈魁英,李庆春,陈熙琛,液态过渡金属Pd和Pt的结构微观动力学行为,物理学报,1993,42:283~288
    [46] K. Chen, X. Sha, X. Zhang et. al., Rapid solidification of Cu-25%Ni alloy: molecular dynamcis simulations using embedded atom method, Materials Science and Engineering, 1996, A214: 139~145
    [47] 崔忠圻,金属学与热处理,北京,机械工业出版社,1989,75-80
    [48] Metals handbook/prepared under the direction of the ASM Handbook Committee, 9th, American Society for Metals, 1989, 199
    [49] D. M. Herlach, Mater. Sci. Eng., 12A [4-5] [1994] 180
    [50] K. A. Jackson and J. D. Hunt, Trans. AIME, 236 [1966] 1129
    [51] R. Trivedi, P. G. Magnin and W. Kurz, Acta. Metall., 35 [1987] 971
    [52] A. L. Greer, Mater. Sci. Eng., A178 [1994] 113
    [53] N. D. Evans, W. H. Hofmeister, R. J. Bayuzick, et. al., Metall. Trans. A, 17 [1986] 973
    [54] F. Gillessen and D. M. Herlach, Mater. Sci. Eng. 97 [1988] 147
    [55] A. J. Drehman and D. Turnbuli, Scripta Metall., 15 [1981] 543
    [56] D. S. Shong, J. A, Graves, Y. Ujiie et. al., Mater. Res. Soc, Symp. Proc., 87 [1987] 17
    [57] R. E Cochrane, P. V. Evans and A. L. Greer, Mater. Sci. Eng., 98 [1998] 99
    [58] L. L. Lacy, M. B. Robinson and T. J. Rathz, J. Cryst. Growth, 51 [1981] 47
    [59] Perepezko J H, Paik J S, Thermodynamic properties of undercooled liquid metals, J Non-Cryst. Solids. 1984, 61: 113-118
    [60] Willnecker R, Herlach D M, Feuerbacher B, Containerless undercooling of bulk Fe-Ni melts, Appl Phys Lett, 1986, 49: 1339-1341
    [61] Wei B B, Dong C X, Hypercooling and thermodynamic properties of liquid Ni-Fe Alloys, ACTA METALLURGICA SINICA, 1996, 32: 357-362
    [62] J. P. Holman, Heat Transfer, Kingsport Press, 4th ed., 1976, 54
    [63] 秦克诚,理论物理学中的计算机模拟方法,北京,北京大学出版社,1996 21-50
    [64] Lennard-Jones, J. E., Proc. Roy. Soc., 106A, 463-466, 1924.
    [65] S. M. Thompson, K. E. Gubbins, J. P. R. B. Walton et al., A molecular dynamics study of liquid drops, J. Chem. Phys., 1984, 81: 530-542
    [66] Nicolas, J. J. et al., "Equation of State for the Lennard-Jones Fluid," Molecular Physics, 1979, 37, 1429-1454
    [67] M. W. Finnis and J. E. Sinclair, A simple empirical N-body potential for transition metals, Philos. Mag. A 50 [1984] 45
    [68] M. Igarashi, M. Khantha and V. Vitek, N-body interatomic potentials for hexagonal close-packed metals, Philos. Mag., 1991, B63, 603~627
    [69] G. J. Ackland and R. Thetford, An improved N-body semi-empirical model for body-centred cubic transition metals, Philos. Mag., 1987, 56: 15~30
    [70] T. Inamura, N. Takezawa,Atomic-Scale cutting in a computer using crystal models of copper and diamond, Annals of the CIRP, 1992, 41: 121~124
    [71] K. S. Singwi, Electron correlations at metallic densities. IV, Phys. Rev., 1970 B1: 1044~1053
    [72] P. Vashishta and K. S. Singwi, Electron correlations at metallic densities. V, Phys. Rev., 1972, B6: 875~887
    [73] C. H. Woo, S. Wang and M. Matsuura, Electronic structure of metals: Ⅰ. Energy independent model pseudopotential formalism, J. Phys. F: Metal Phys., 1975, 5: 1836~1848
    [74] M. Matsuura, C. H. Woo and S. Wang, Electronic structure of metals: Ⅱ. Phonon spectra and Fermi surface distortions, J. Phys. F: Metal Phys., 1975, 5: 1849~1859
    [75] C. B. So, Y. Kuroda, K. Takegahara and S. Wang, Electronic structure of metals: Ⅲ. Properties of the lattice and electron transport, J. Phys. F: Metal Phys., 1977, 7: 885~899
    [76] S. Wang and C. B. So, Electronic structure of metals: Ⅳ. Transport coefficients of simple liquid metals, J. Phys. F: Metal Phys., 1977, 7: 1439~1465
    [77] N. Jakse and J. L. Bretonnet, Structure and thermodynamics of liquid tansition metals: intergral-equation study of Fe, Co and Ni, J. Phys.: Condens. Matter, 1995, 7: 3803~3815
    [78] M. Grujicic, P. Dang, Computer simulation of martensitic transformation in Fe-Ni facecentered cubic alloys, Mater. Sci. & Eng., 1995, A201: 194~204
    [79] L. M. Holzman, J. B. Adams, S. M. Foils et al., Properties of the liquid-vapor interface of fcc metals calculated using the embedded atom method, J. Mater. Res., 1991, 6: 298
    [80] G. M. Bhuiyan, M. A. Khaleque, Structure and thermodynamic properties of liquid rare earth metals: an embedded atom method approach, J. Non-Cryst. Solids, 1998, 226: 175
    [81] R. A. Johnson and D. J. Oh, Analytic embedded atom method model for bcc metals, J. Mater. Res., 1989, 4: 1195~1201
    [82] S. S. Pohlong and P. N. Ram, Analytic embedded atom method potentials for face-centered cubic metals, J. Mater. Res., 1998, 13: 1919~1927
    [83] 胡望宇,张邦维,黄伯云,分析型EAM模型的发展现状与展望,稀有金属材料与工程,1999,28:1
    [84] B. Zhang, Y. Qu, F. Yi, Theoretical calculation of thermodynamic data for bcc binary alloys with the embedded-atom method, Phys. Rev., 1993, B 48: 3022~3029
    [85] M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50 [1983] 1285
    [86] M. S. Daw and M. I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev., 1984, B29: 6443~6453
    [87] S. M. Foiles, M. I. Baskes, M. S. Daw, Phys. Rev. B28 [1983] 983
    [88] M. I. Baskes, Phys. Rev. B46 [1992] 2727
    [89] R. A. Johnson, Analytic nearest-neighbor model for fcc metals, Phys. Rev., 1988, B37: 3924~3931
    [90] R. A. Johnson, Stability of tight-packed metals with the embedded-atom method, J. Mater. Res., 1992, 7: 883~887
    [91] A. R. Leach, Molecular Modelling Principles and Applications, Addison Wesley Longman, British, 1996 315-321
    [92] M. E Allen, D. J Tildesley, Computer Simulation of Liquids, First ED. 1989, 51-57.
    [93] 秦克诚,理论物理学中的计算机模拟方法,北京,北京大学出版社,1996 21-50
    [94] W. M. Rohsenow et al., Handbook of Heat Transfer, McGraw-Hill, 1973
    [95] G. Pottlacher, E. Kaschnitz and H. Jager, J. Non-Crystalline Solids 156-158 [1993] 374.
    [96] S. M. Foiles, Application of the embedded-atom method to liquid transition metals, Physical Rev., 1985, B32: 3409~3415.
    [97] Hultgren R et al. Selected Values of the Thermodynamic Properties of the Elements. American Society for Metals, 1973: 17-21
    [98] R. A. Johnson, Alloy models with the embedded-atom method, Phys. Rev., 1989, B39: 12554~12559

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700