粘弹性流体偏心环空非定常流的数值计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物驱油技术可在水驱油的基础上可将原油采收率提高12%以上,在获得巨大经济效益的同时,也出现了诸如抽油杆偏磨加重,检泵周期缩短和抽油杆断杆率增加等问题。抽油杆偏磨已成为油田生产中亟待解决的问题。室内实验表明,聚驱井抽油杆在井筒偏心环空内作周期性往复运动时,由于聚合物水溶液所具有的弹性使抽油杆受到一个垂直于轴线的径向力。这个径向力使抽油杆在下行程运动过程中受压失稳提前,造成聚驱井抽油杆偏磨加重。本文选用共转Oldroyd-Maxwell流体本构方程建立起了粘弹性流体偏心环空内非定常流的流动方程;采用控制体积法对流动方程进行了离散化处理;利用交替方向隐式迭代法求解出了流场的速度分布,详细分析了环空的偏心度和抽油杆的运动参数对速度分布的影响;计算了作用在抽油杆上法向应力和作用在内管上的径向力,分析了流场几何参数、流体的弹性及抽油杆的运动对径向力的影响。结果表明:偏心度和内管运动速度对流动的影响最为明显,偏心度和流体的弹性是产生径向力根本原因,偏心度增大时流量和径向力均增大,内管运动速度增大流量和径向力的峰值也增大;径向力的存在是聚驱井抽油杆偏磨加重的主要原因;预防偏磨应从减小偏心度入手,据此提出了全井抽油杆扶正防偏磨措施,并已应用于大庆油田的6000多口聚驱井,取得了可观的经济效益。
The technique of polymer-flooding can increase oil recovery by more than 12% on the basis of water-flooding, and gain enormous economic benefits, meanwhile, come forth a few problems, such as the eccentric wear of the sucker rods aggravates, the period of examining pumps and the life span of the sucker rods shortens, broken rod increases and so on. So, the eccentric wear of the sucker rods has been a problem that needs to be solved quickly. The experiment proves that the elasticity of polymer solution makes the sucker rods get a radial force perpendicular to its axes when the sucker rods of polymer flooding well does periodical in-and-fro motion in the eccentric annulus, and the radial force makes the sucker rods lose stability earlier when it was pressed down stroke, and aggravate eccentric wear of the sucker rods of polymer flooding well. Adopting common conversion Oldroyd-Maxwell constitutive equation, in this paper, the flow equation of the unsteady flow of viscoelastic fluid in the eccentric annulus was established, and was discretized with control volume method; velocity profile of the flow field was obtained by using ADI (Altering Direction Implicit) iterating method; the influence of eccentricity of annulus and motion parameter of the sucker rods on the velocity profile was discussed detailedly; the normal force acting on the sucker rods and the radial force acting on the inner rods were calculated, geometry parameter of flow field, fluid elasticity and the motion of the sucker rods that have influence on the normal force were analysed. The result shows that eccentricity and motion velocity of the inner rods have the most important influence on the flow field; eccentricity and fluid elasticity are the ultimate causes of radial force, With eccentricity increases, both flow rate and radial force also increase, when motion velocity of the inner rods increases, the peak value of flow rate and radial force increase, too; the existence of radial force is the ultimate cause of eccentric wear of the sucker rods aggravating in the polymer flooding well; preventing eccentric wear should start with reducing eccentricity. According to the above theory, measures of centralizing the sucker rods in whole bore to prevent eccentric wear have been applied to more than 6000 ploymer-flooding wells in the Daqing Oil Field, and bring about increased economic benefits.
引文
[1]Barnes H A,Hutton J F,Walters K.An Introduction to Rhrology[M].Elsever,1989.
    [2]陈文芳.非牛顿流体力学[M].北京:科学出版社,1984.
    [3]范椿,陈文芳.国内非牛顿流体力学进展[J].力学进展,1986,16(2):145-155.
    [4]Tanner R I.Rheology. An Historical Perspective[M]. Amsterdam: Elsevier, 1999.
    [5]江体乾.工业流变学[M]. 北京:化学工业出版社, 1996.
    [6]韩式方.非牛顿流体力学本构方程和计算解析理论[M].北京:科学出版社,2000.
    [7]韩式方.本构关系理论及应用的新进展[R].重庆:重庆大学力学所,1987.
    [8]韩式方.非平衡气体动力论的一中新的模式方程[J].力学学报,1981(1):439-444.
    [9]Wagner M H. A Constitutive analysis of extensinal flows of polyisobutylene [J].J Rheol,1990,36(1):1-26
    [10]Phan-Thien N.Influence of wall slip on exterudate swell: A boundary element investigation[J].J of Non-Newtonian fluid Mech.,1988.26:327-340.
    [11]Fortin A.,Zine A.Computing viscoelastic fluid flow problems at low cost[J]. J.Non-Newtonian Fluid Mech.,1992,45:209-229.
    [11]Baaijens F P T.Numerical analysis of start-up planar and axisymmetric contraction flows using multi-mode differential constitutive models[J]. J.Non-Nwetonian fluid Mech.,1993,48:147-180.
    [12]韩式方.液晶高分子 Maxwell-Oldroyd 型本构理论及流动研究[M].成都:西南交通大学出版社,1998.
    [13]Han S F.Constitutive Equation of Maxwell-Oldroyd Type for Liquid Crystaline [C].Ploymer and Its Fluid Flow,Proc.Of 3rd Int.Conference on Fluid Mech. Bejing:Beijing Institute of Techology Press.1998.
    [14]Han S F.Constitutive Equation of Rate type for Liquid Crystalline Polymer and Fluid Flow
    [15]Bifurcation[C].Pro.of 8th Asian Congress of Fluid Mech. 1999.
    [16]韩式方,五岳庆.管内上随体 Maxwell 流体非定常流动[J].力学学报,1990(5).
    [17]Han S F.Non-steady flow of upper-concexted Maxwell fluid in circular tube[J]. Acta Mechanica,1990(3):17-22
    [18]Han S F.A variational method for research on an unsteady flow of upper -convected Maxwell fluid[J]. Acta Mathematica Scientia, 1992(2):52-62.
    [19]Han S F,Roesner K G.Time dependent flow of upper-convected fluid between two rotating cylinders--Theoretical and Applied Rheology[C].Brussels: Proc.Of XI Intern.congress on Rheology, Elsevier,1992:216-218.
    [20]韩式方.计算机解析方法及在非牛顿流体力学中的应用,计算机应用[J], 1993,13(4):19-21.
    [21]韩式方,拉姆金森.OLDROYD B 流性依时性管内流动的变分解析方法[J].应用数学和力学,1995(2):155-163.
    [22]韩式方.应用计算机符号运算研究流变学和非牛顿流体力学-现代力学与科技进步[M],中国力学会 40 周年,北京大学出版社,1997.
    [23]韩式方.非测粘流动研究进展[C].流办学进展,第二届全国流变学会议文集,1987.
    [24]韩式方.非牛顿流体非定常旋转流动计算机智能解析理论,应用数学和力学,1999,20(11):1149-1160.
    [25]Rajagopalan D,Armstrong R C,Brown R A.comparison of computational efficiency of flow simulations with multimode constitutive equations:integral and differential models[J].J. Non-Newtunnian Fluid Mech,46(1993):243-273.
    [26]Xue S C,Phan-Thien N,Tanner R I.Full three-dimensional time-depandent numerical simulations of Newtonian and viscoelastic swirling flowa in a confined cylinder,Part I.Method and steady flows[J].J. Non-Newtunnian Fluid Mech,87(1999):337-367.
    [27]程昌钧,朱正佑.关于粘弹性力学的一些进展[J]. 自然杂志,2003,25(3):124.
    [28]Schowalter W R.Mechaincs of Non-Newtonian Fluid[M].Pergamon Press,1978.
    [29]Astrita G,Marucci G.Principles of Non-Newtonian Fluid Mechaincs[M], London: McGraw Hill,1974.
    [30]Zahosrski S.Mechaincs of Visco-elastic Fluids[M].Martinus Nijhoff Publishers,1984.
    [31]Bird R B,Hassager O,Armstrong R C.Dynamics of Polymer Liquids[M].New York:Wiley. 1977.
    [32]Han C D.Rheology in Polymer Processing[M].New York:Academic,1976.
    [33]Daniel D J.Fluid Dynamics of Viscoe;astic Liquids[M].New York: Spring-Verlag,1990.
    [34]王德民. 粘弹性流体的特殊性对油藏工程、地面工程及采油工程的影响[J].大庆石油学院学报,2001,25(3):46
    [35]崔海清.幂律流体环形空间层流螺旋流的压降计算[J].石油学报, 1987(3):132.
    [36]崔海清.非牛顿流体偏心环空中的螺旋流动[D].石油大学(北京)博士论文,1993.
    [37]崔海清.石油工程中非牛顿流体管流,北京:石油工业出版社,1994.
    [38]杨树人 , 申家年, 张景富. 幂律流体偏心环空轴向层流流动的速度分布[J]. 大庆石油学院学报,1997,21(1):122.
    [39]杨树人,张景富,申家年.宾汉流体在圆管中螺旋结构流的稳定性参数[J].大庆石油学院学报,1997,21(1):130.
    [40]杨树人,申家年,张景富.幂律流体在偏心环空中流动的数值计算方法[J].大庆石油学院学报,1996,20(2):11.
    [41]杨树人,张景富,陈家琅.幂律流体在偏心环空中流动的数值计算方法[J].大庆石油学院学报,1996,20(2):11-13.
    [42]崔海清,孙智,高涛.非 Newtonian 流体在内管做轴向往复运动的偏心环空中非定常流的速度分布[J].水动力学研究与进展 A 辑,2003,18(6):711.
    [43]杨树人,王春生,杨英.黏弹性流体在内管做轴向运动的偏心环空中的速度分布[J].大庆石油学院学报,2005,29(1):110.
    [44]Yang S R,Wang C S,Cui H Q,et al. Numerical simulation of steady flow for viscoelastic fluid in an eccentric annulus with inner rod moving axially[J].Journal of Hydro- dynamics,Ser.B,2005, 17(4):514-518.
    [45]Luo Y J. Flow of drilling fluids though eccentric annuli[J].SPE16692(1987)
    [46]Iyoho A W.An Accurate slot-flow model for non-Newtunian fluid through eccentric annuli. SPEJ,565-571(Oct.1981)
    [47]Uner,D.Flow of a power-law fluid in an eccentric annulus[J].SPEDE, 1989(9):269-271.
    [48]袁谋,李兆敏,王渊.流体的粘弹性对周期性圆管层流流动规律的影响[J]. 石油大学学报(自然科学版),2000,24(5)32.
    [49]王德民,程杰成,杨清彦. 粘弹性聚合物溶液能够提高岩心的微观驱油效率 [J].石油学报,2000,21(5):45.
    [50]王德民,程杰成,吴军政,等. 聚合物驱油技术在大庆油田的应用[J].石油学报,2005,26(1):74.
    [51]尹红军,付春权,吕延平. An unsteady seepage flow model of visco-elastic polymer solution[J].Journal of Hydrodynamics,Ser.B, 2004, 16(2):209.
    [52]张丽娟,岳湘安,刘中春,侯吉瑞. 粘弹性流体在盲端孔隙中的流场[J].水动力学研究与进展 A辑,2002,17(6):748-755.
    [53]刘合,王秀喜.大庆油田泥岩粘弹性本构方程及套管受力计算[J].中国科学技术大学学报,2005,35(1):118.
    [54]艾池. 套管损坏机理及理论模型与模拟计算[D].黑龙江:大庆石油学院博士论文,2003.
    [55]韩式方,王毓宾.生物流体-魔芋溶液中 TAYLOR 涡不稳定性实验研究[C].广州:第四届全国流变学会议文集,华南理工科大学出版社,1993.
    [56]尹国栋,高淮民,陈少春.聚合物减阻机理研究[J].油气储运,2002,21(7):1-2.
    [57]Yamada,Y.On the flow between eccentric rotating cylnders[J].JSME, 1968.11: 455
    [58]Bittelston S.Flow of viscoelastic fluid in a rotating concentric annulus[J]. J.of Non-Newtunnian Fluid Mechanics,1992,(42):19.
    [59]Brindley,J.Flow of whirling bearing[J].J.of App. Mech..46.767-771(1979).
    [60]Kamel,M.T.Flow of a polar fluid between eccentric rotating cylinders[J].J.of Rheol,29,37.
    [61]陈皓生,陈大融,汪家道.粘弹性非 Newton 介质润滑流变特性的频域分析[J]. 清华大学学报(自然科学版),2005,45(8):1058.
    [62]韩洪升,王德民,国丽萍.粘弹性流体法向应力对抽油杆偏磨的影响机理[J].石油学报 2004, 25(4):925.
    [63]孙智.含聚抽油机井杆管偏磨治理技术研究与应用[D].大庆石油学院博士论文,2004.
    [64]杨元建.粘弹性流体在内管做往复运动的偏心环空中的流动规律[D].大庆石油学院博士论文,2005.
    [65]周光坰,严宗毅,许世雄,等.流体力学(上下册)[M].北京:高等教育出版社,2000 年.
    [66]杨树人,汪志明,何光渝,等.工程流体力学[M].北京:石油工业出版社,2006.
    [67]孔超群,李康先.张量分析及其在连续介质力学中的应用[M].哈尔滨:哈尔滨船舶工程学院出版社,1986.
    [68]程心一.计算流体动力学-偏微分方程的数值解法[M].北京:科学出版社,1984.
    [69]朱家昆.计算流体动力学.北京:科学出版社,1985.
    [70]罗奇 PJ 著. 钟锡昌 刘学宗译:计算流体动力学[M].北京:科学出版社,1983.
    [71]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社,1998 年第 3 版.
    [72]刘西云,赵润祥.流体力学中的有限元法与边界元法[M].上海:上海交通大学出版社, 1993.
    [73]帕坦卡 SV 著,张政译.传热与流体流动的数值计算[M].北京:科学出版社,1989.
    [74]陶文铨著.计算传热学的近代发展[M].北京:科学出版社,2000.
    [75]陶文铨.数值传热学[M],西安:西安交通大学出版社,1995.
    [76]Peacemen D W,Rachford H H.The numerical solution of parabolic and elliptic differential equation[J].J SIAM,1955.3:28-41
    [77]凯斯 W M,克拉福特 M E. 陈熙,翟殿春译.对流传热与传质[M].北京:科学出版社,1986.
    [78]大中逸雄著,许云祥译.计算机传热凝固解析入门[M].北京:机械工业出版社,1988.
    [79]Swanson R C,Radespiel R.Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations[J].AIAA J.,1991,29(5):697
    [80]Fletcher C A. J.Computational techniques forfluid dynamic.VolI[M]. SpringerVarlag,1991,2nded.
    [81]Mathur S R.Murthy J Y.A pressure-based method for unstructured meshes[J].Numer Heat Transfer Part B,1997,(31):195.
    [82]lin C X,Zhang P,Ebadian M A.Laminar forced convection in the entrance region of helica pipe[J].Int J Heat Mass Transfer,1996,40(14):3293.
    [83]谢海波,陈远玲,傅新,等.微型无阀泵的数值仿真与参数设计[J].流体机械,2002,30(1):11.
    [84]Youn B,Mills A F.Flow of supercritical hydrogen in a uniforormly heated tube[J]. Numer Heat Transfer Part A,1993,(24):1.
    [85]孙召璞,陈江平,等.轻型客车空调室内 3 维流场温度场的数值模拟与实验研究[J].哈尔滨工业大学学报,1999,31(增刊):124.
    [86]Ramnefors M.CFD in extenal aerodynamics at Volvo[R].CFX Update,1997(14).
    [87]黄钢,杨其国,李宇峰.CFX-TASCflow 在汽轮机通流设计中的应用[J]. 热力透平,2004,33(2):77.
    [88]Tai C H,MiaoJ M,Kao A F.Numerical Approach to Film Cooling Effectiveness Over a Plate Surface with Coolant Impingement[J].Journal of Thermal Science,2004,13(1):67.
    [89]Chai J,Lee HS,Patankar SV.Treatment of irregular geometries using a Cartesian coordinates finite-volume radiation heat transfer procedure. Numer Heat Transfer,Part B.1994.26:1789-197.
    [90]Nagano A,Satofuka N,Shimomura N.A Cartesian grid approach to compressible viscous flow computations.In:Computational fluid dynamics[M].New York: John Wiley & Sons Ltd,1996:540-546.
    [91]刘继平,聂建虎,严峻杰,陶文铨.复杂区域流动换热问题的一种新的网格处理方法.西安交通大学学报.1999.33(5):34-37.
    [92]Thompson J F,Warsi Z U A,Mastin C W.Body-fitted coordinate systems for numerical solution of partial difference equations:a review[J].J Comput Phys,1982,(47):1-108.
    [93]Steger J L,Chaussee D S.Generation of body - fitted coordinates using hyperbolic partial differential equations[J].SIAM J Sci Stat Comp, 1980,1(4):431-437.
    [94]Thomas P D,Middlecoeff J F.Direct control of the grid point distribution in meshes generated by elliptic equations[J].AIAA J,1980.18:652-656.
    [95]Shyy W,Tong SS,Correa SM.Numerical recirculating flow calculation using a body-fitted coordinate system. Numer Heat Transfer,1985.8:99-113.
    [96]Pemg C Y,Street R L.A coupled-multi-domain-splitting technique for simulating incompressible flows in geometrically complex domain.Int J Numer Methods Fluids,1991.13:269-286.
    [97]Lilik Z,Muzaferija S,Peric M,et al.Computation of unsteady flows using nonmatching blocks of unstructured grid.Numer Heat Transfer ,Part B,1997.32:403-418.
    [98]冯康等编.数值计算方法[M].北京:国防工业出版社,1979.
    [99]Ferziger JH,Peric M.Computational methods for fluid dynamics[M].Berlin: Springer,1996:94-95.
    [100]胡家赣.线性代数方程组的迭代解法[M].北京:科学出版社,1999:173-201.
    [101]张政.双块修正技术[J].工程热物理学报,1984.5:364.
    [102]杨树人.幂律流体偏心环空轴向层流流动的速度分布[C].西安:第七届全国多相流、物理化学流、非牛顿流会议论文集,1993:341.
    [103]大庆石油学院.粘弹性流体对抽油杆的偏磨机理及预防偏磨措施的实验研究[R].大庆:大庆石油学院石油工程系,2002 年 10 月.
    [104]孙智,王研,李德胜,等.含聚抽油机井杆管偏磨治理技术研究与应用[J].油气田地面工程,2004,23(9):1.
    [105]杨树人,杨英,王春生.黏弹性流体作用在聚驱井抽油杆上的径向力[J].大庆石油学院学报, 2005,29(1):112.
    [106]杨晶,杨树人,王春生.聚驱井抽油杆偏磨原因及预防[J].大庆石油学院学报, 2005,29(1):114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700