大跨度组合体系箱梁的计算理论及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨度组合体系箱梁具有型式新颖、造价经济、受力合理等特点,传统简化分析方法已不能适应该类桥型结构设计的要求,必须进行仿真分析研究。本文以宜万铁路线宜昌长江大桥为工程背景,对大跨度组合体系箱梁仿真分析的计算理论及其应用方法进行了深入细致的研究。首先,从约束变分原理出发,采用转动与线位移独立插值的位移模式,首次提出适用于大跨度组合体系箱梁结构分析的板段元能量变分原理,并建立相应的板段元列式。通过数值算例和模型试验,验证板段元法的精度与效率。进一步,利用板段元方法对宜昌长江大桥的静、动力特性进行深入细致的仿真分析。为改善箱形主梁横向受力特性,提出多种改进方案并进行相应的参数研究,从而揭示“刚梁柔拱”组合体系桥梁结构的受力特性。最后,分析研究了宜昌长江大桥的抗震性能。主要研究内容如下:
     1.提出基于平板壳元基本假定的箱梁结构计算理论。
     从平板壳元的基本假定出发,提出与箱梁结构变形特征相适应的应变位移关系,基于能量变分原理建立箱梁顶、底及腹板的刚度方程。为精确模拟横隔板对箱梁结构受力的影响并使横隔板元与顶、底及腹板单元位移模式协调,本文从约束变分原理出发,对横隔板单元部分线位移及角位移沿板宽方向采用独立插值的位移模式,提出一类新的横隔板单元列式方法,从而形成箱梁结构分析的板元解析法。该方法中各类单元位移模式能够保持较好的协调,精度与效率比一般平板壳元更高,且能较好模拟横隔板对箱梁结构受力特性的影响。另外,为使板元解析法与常规有限单元位移模式协调,本文建立了板元解析法与常规单元连接的约束方程,编制了相应计算程序,使板元解析法可应用于一般箱型直梁的静力分析。
     2.提出一类应用于箱梁组合结构体系仿真分析的板段元方法。
     在板元解析计算理论基础上,深入分析单元节点自由度的物理概念以及单元精度和效率提高的实质。基于约束变分原理,利用常规板壳单元节点自由度建立新的板段元位移模式。该位移模式在充分反映箱梁结构受力特征的基础上,对部分单元线位移及角位移采用独立插值函数形式,使得板段元在保持板元解析法精度及效率的基础上,提高了适应性。进一步,通过建立替代剪切应变场,使得板段元刚度矩阵在进行精确数值积分时,避免了剪切自锁和零能模式,从而形成适用于大跨度组合体系箱梁结构分析的板段元能量变分原理及相应的有限元列式。最后,编制板段元计算程序并进行数值算例及模型试验验证。板段元法具有精度及效率较高且与常规单元位移模式协调等优点,可方便地应用于大跨度组合桥梁结构体系的仿真分析。
     3.宜昌长江大桥静力特性仿真分析。
     宜昌长江大桥具有结构型式新颖、受力性能良好等特点。本文采用独立开发的板段元计算程序对该桥成桥阶段的受力状态进行了全桥仿真分析。首先,通过平面施工过程分析得到桥跨结构在成桥状态的总体受力特性。然后,以此为初始状态,对大桥在二期恒载及活载作用下的结构受力行为进行空间仿真分析。仿真分析工作主要包括箱梁腹板传力途径研究、顶底板剪力滞后效应研究、横框弯曲应力研究等。最后,针对箱梁横框应力状态较为不利的特点,提出多种可行的改进方案,对各种方案的优点与不足进行了深入细致的参数研究。揭示横隔板(横梁)的受力机理,分析横隔板对箱形主梁的影响方式和作用效果,同时对比研究横隔板(横梁)对箱梁横框弯曲正应力的影响规律。
     4.宜昌长江大桥的动力特性仿真分析。
     首先,推导了板段元的协调质量矩阵,引入里兹向量叠加法求解大型动力特性方程组的部分特征解问题,提高了求解速度,从而成功地将板段元法应用于结构的动力特性计算。然后,对宜昌长江大桥的动力特性进行深入细致的仿真分析。仿真分析工作包括脊梁模型与板段元模型的对比验证分析,二期恒载对大桥动力特性的影响分析,桩土共同作用的不同模拟方式对结构计算频率及振型顺序的影响分析等。
     5.宜昌长江大桥的抗震性能分析。
     首先,从整体上分析宜昌长江大桥的抗震受力特征。其次,根据桥址处场地土特性合成人工地震波,分析确定大桥的抗震分析参数。然后,采用反应谱和时程分析两类方法对大桥进行地震响应分析。揭示了大质量法的基本原理及实质,并将其应用于宜昌长江大桥非一致激励时程响应分析。在时程分析时根据场地土对应的地震视波速计入行波效应的影响。最后,通过不同计算方法、不同地震作用方向下大桥地震响应的比较分析,深入研究宜昌长江大桥主梁、主拱以及桥墩的抗震性能。
     6.刚梁柔拱组合体系桥梁结构的设计建议。
     通过对宜昌长江大桥深入细致的静、动力仿真分析,掌握该类刚梁柔拱组合体系桥梁的结构受力特征,进一步对结构设计提出合理建议。其主要内容包括箱梁横向弯曲应力改进方案的选择、结构动力特性的计算方法、结构抗震性能的薄弱环节等。本文工作为确保宜昌长江大桥在施工及运营阶段的安全提供了帮助,所提出的板段元方法可应用于大跨度组合体系箱梁的仿真分析,具有较好的实用价值及广阔的应用前景。
Long-span composite box bridges are characterized by their innovative configuration, economical construction and favorable mechanics. As assumptions and simplifications are usually introduced in general analysis methods, for the design of this type of bridges, simulation analysis methods are inevitably needed. This thesis, with Yi-Chang Yangtze Railway Bridge (YCYRB) as an engineering background, is focused deeply on the computational theory and its application with respect to simulation analysis techniques. Firstly, based on the generalized variational method, a new plate displacement model with independent interpolation functions of linear displacement from angular rotation is presented. Accordingly, a Plate Segment Element Variational Method (PSEVM) and Plate Segment Element Method (PSEM) are established for the first time which could be applied in the simulation analysis of composite box bridges. Furthermore, a program for PSEM is developed and its efficiency and precision is verified by a numerical model and a Plexiglas's physical model test. Secondly, by using PSEM, the static and dynamic characteristics of YCYRB are studied thoroughly. Many proposals for the improvement of transverse flexible norm stress in box girder are presented and a corresponding parameters analysis is completed. The mechanics of bridges composed by stiff girder and tender arch are investigated deeply. At last, the anti-seismic properties of YCYRB are discussed generally in this thesis. The main research work is listed as follows:
     1. New computation theories for box girder are presented based on the assumptions of plate element.
     At first, based on the presumptions of plate element, new geometrical equations are proposed in this thesis according to deformation characteristics of box girder. And stiffness matrices for web and top/bottom plate of box girder are derived on the basis of variational method. To simulate accurately the influence of diaphragms on mechanics of box girder and guarantee continuity of displacement models between elements, independent interpolation functions of angular rotation from linear displacement are established and corresponding diaphragm element formulations are developed based on generalized variational method. Thus an Analytic Method based on Plate element (AMP) for box girder is presented. Generally speaking, the precision and efficiency of AMP is better than traditional plate element because of its appropriate and compatible displacement models. Moreover, the influence of diaphragms on mechanics of box girder could be reflected more accurately than existed methods. To guarantee the continuity of displacement models between AMP and other traditional elements, some possible constraint equations are discussed in this thesis.
     2. A new PSEM is proposed which could be applied in the simulation analysis of composite box bridges with box girder.
     Firstly, Degrees Of Freedom (DOF) of AMP along with their essence are analyzed and the choice of these DOFs is made according to their significations. Furthermore, with the application of generalized variational method, a new displacement model for PSEM is built which adopts only the DOFs of traditional plate elements. The PSEM displacement model, besides the more accurate reflection of box girder's mechanics as well as the same precision and efficiency compared to ASM, is characterized by its independent interpolation functions of angular rotation from that of linear displacement. Thus SSEM has better adaptiveness than AMP when applied in simulation analysis of box girder. Moreover, a substitute shear strain model is introduced to avoid shear lock when the exact numerical integration of stiffness matrix is performed. Thus the PSEVM is established and its corresponding PSEM is proposed. Finally the program for SSEM is developed and verified in this thesis. Such advantages as high efficiency and better precision of PSEM make its application in the simulation analysis of long span composite box bridges more convenient than AMP.
     3. A simulation analysis on the static characteristics of YCYRB is preformed.
     For the innovative configuration of YCYRB, an entire simulation model is built and analyzed based on the PSEM program developed in this paper. Firstly, a plane analysis considering the influence of construction phases is performed to achieve the primary properties of YCYRB at the time when the box-girder is closed up. Further, taking it as the initial state of spatial simulation analysis, the behavior and characteristics of YCYRB under deck load as well as live load is investigated thoroughly. These are mainly about the manner of load transmission with respect to webs of the box girder, the shear lag of top/bottom plate of box girder and the rules of transverse normal stress due to flexural deformation. Besides these, to improve the disadvantages of transverse stress state according to design project, several substitute projects are proposed and corresponding design parameters analysis are performed. Thus the mechanics of diaphragm is revealed and the behavior and effect of diaphragm influence on box girder are compared thoroughly.
     4. A simulation analysis on the dynamic characteristics of YCYRB is preformed.
     At fist, the mass matrix for SSEM is derived. And to achieve quickly partial eigenvalues from large-scale characteristic dynamical equations, Ritz-Vector Superposition Method is introduced, thus the application of PSEM in the dynamic properties analysis of composite box bridges is. practical. And then the dynamic characteristics analysis of YCYRB is preformed in this paper. These includes the comparison of results between SSEM and traditional chine-like models, the influence analysis of deck mass and different pile-soil models on dynamic properties of YCYRB.
     5. The anti-seismic properties of YCYRB are investigated.
     Firstly, the preliminary anti-seismic properties of YCYRB are discussed, an artificial earthquake wave is synthesized according to the site-soil properties of YCYRB and the choice of parameters relating to anti-seismic analysis is made. Successively, the earthquake response of YCYRB is calculated separately by response spectrum method and time-history method. When taking into account the influence of multi-excitation due to traveling-wave effect which depends on the velocity of earthquake wave near the site soil, Large Mass Method (LMM) is introduced. Thus the time history analysis of YCYRB under earthquake action is more convenient than others methods. At last, by the comparison of results from different methods as well as different directions of earthquake action, the anti-seismic properties of YCYRB's components such as beams, arches and piers are discussed generally in this thesis.
     6. Some helpful advice for the design of composite box bridges with stiff girder and tender arch is made in this thesis.
     By the simulation analysis of YCYRB, the mechanics of this type of bridges composed by stiff girder and tender arch is revealed generally and some helpful advice for the design is made suitably. These include the choice of improvement projects for transverse bending stress, the computing methods for dynamic properties as well as the unfavorable positions of YCYRB under seismic action. The work in this thesis could be useful for the safety of YCYRB in construction and operation stages. And the proposed PSEM could be applied in the simulation analysis of long span composite box bridges. As a result, Practical merits and wide applications could be achieved in the future.
引文
1 郑凯锋等,桥梁结构仿真分析技术.桥梁建设,1998.No.2
    2 郑凯锋,唐继舜.全桥结构仿真分析技术和对新世纪大跨桥梁的作用.第三届青年学术年会论文集(材料科学与工程科学卷),1998,419-422
    3 郑凯锋,唐继舜.全桥结构仿真分析技术的最新进展,第13届桥梁学术会议论文集.1998,373-378
    4 Fenves S J. Successes and Further Challenges in Computer-Aided Structural Engineering. Computing in civil and Building Engineering, A A Balkema Publishers, 1995
    5 AIT. Computer Aided Tools for Civil and Structural Engineers. ACECOMS Solutions, June 1997
    6 李国豪.桥梁与结构理论研究.上海:上海科技文献出版社,1982
    7 Vlasov, V. Z. Thin-Walled Elastic Beams. Washington, D. C.: National Science Foundation, 1961
    8 程翔云.梁桥理论与计算.北京:人民交通出版社,1990
    9 黄剑源.薄壁结构的扭转分析(上).北京:中国铁道出版社,1983
    10 西野文雄,長谷川彰夫.耩造物弹性解析.技報堂,1986
    11 中川博,北田俊行.鋼橋設計基礎.共立出版株式会社,1992
    12 李明昭,周竞欧.弹性杆结构计算.北京:高等教育出版社,1992
    13 Song, Q., and Scordelis, A. C. Shear Lag Analysis of T-, I-, and Box Beams. Journal of Structural Engineering. Proceedings of ASCE. Vol. 116. No. 5, May, 1990
    14 Reissner. Analysis of Shear Lag in Box Beam by the Principle of Minimum Potential Energy, Quart. Of Appl. Math. No. 4, 1946
    15 A. C. Scordelis, Berkeley Computer programs for the Analysis of Concrete Box Girder Bridges, NATO ASI on Analysis and Design of Bridges, 1984
    16 罗旗帜,俞建立.钢筋混凝土连续箱梁桥翼板横向裂缝问题[J].桥梁建设,1997,(1):41-45.
    17 MOFFATT P J, DOWLING P J. British shear lag rules for composite girders[J]. Journal of the Structural Division, ASCE, 1978, 104(ST7): 1 123-1 130.
    18 KUZMANOVIC B O, GRAHAM H J. Shear lag in box girders[J]. J Struct Div, ASCE, 1981, 107(9): 1 701-1 712.
    19 KARMAR T V. Die mittragende breite, beitrage zur technischen mechanik und technischen physik [M]. Berlin: August Foppl Festschrift, Julius Springer, 1924. 114-127.
    20 LEE J A N. Effective width of Tee-beams[J]. The Structural. Engineer, 1962, 40(1): 21-27.
    21 SONG Q, SCORDELIS A C. Shear lag analysis of T-, I-, and box beams[J]. J Struct Engrg, ASCE, 1990, 116(5): 1 290-1 305.
    22 EVANS H R, AHMAD M K H, KRISTEK V. Shear lag in composite box girders of complex cross section[J]. J Constructional Steal Research, 1993, 24(3): 183-204.
    23 KRISTEK V, STUDNICKA J. Negative Shear lag in flanges of plated structures[J]. J Struct Engrg, ASCE, 1991, 117(12): 3 553-3569.
    24 REISSNER E. On the problem of stress distribution in wide flanged box beam[J]. Journal Aero Sci. 1938, (5): 295-299.
    25 HILDBRAND P B. The exact solution of shear lag problems in flat panels and box beams assumed rigid in the transverse direction[J]. NACA, 1943, (TN894): 90-95.
    26 ABDEL-SAYED G. Effective width of steel deck plate in bridge[J]. J Struct Div, ASCE, 1969, 95(ST7): 1459-1474.
    27 MALCOLM D J, REDWOOD R G. Shear lag in stiffened box girders[J]. J Struct Div, ASCE, 1970, 96(ST7): 1 403-1 415.
    28 GOLDBERG J E, LEVE H L. Theory of prismatic folded plate structures[J]. International Assoc for Bridge and Structural Engineering Publications, 1957, (17): 59-86.
    29 DEFRIES-SKENE A, SCRODELIS A C. Direct stiffens solution for folded plates[J]. J Struct Div, ASCE, 1964, 90(ST4): 15-47.
    30 CHU K H, PJNJARKAR S G. Multiple folded plate structures[J]. J Struct Div, ASCE, 1966, 92(ST2): 297-321.
    31 CHU K H, DUDNIK E. Concrete box girder bridges analyzed as folded plates[J]. Concrete Bridge Desiger ACI, 1969, (SP23): 221-246.
    32 VAN DALEN K, NAASIMHAM S V. Shear lag in shallow wide-flanged box girders[J]. J Struct Div, ASCE, 1976, 102(ST10): 1 969-1 979.
    33 蔡松柏,李存权.箱形梁桥剪力滞效应的精确分析[J].中南公路工程,1989,(3):33-41.
    34 TAHERIAN A R, EVANS H R. The bar simulation method for the calculation of
    ?shear lag in multi-cell and continuous box girder[J]. Proc Instn Civ Engrs, 1977, 2(63): 881-897.
    35 程翔云,汤康恩.计算箱形梁桥剪力滞效应的比拟杆法[J].中南公路工程,1984,(1):65-73.
    36 REISSNER E. Analysis of shear lag in box beam by principle of minimum potential energy [J]. Quarterly of Applied Mathematics, 1946, 5(3): 268-278.
    37 郭金琼,房贞政,罗孝登.箱形梁桥剪滞效应分析[J].土木工程学报,1983,16(1):1-13.
    38 倪元增.槽型宽梁的剪力滞问题[J].土木工程学报,1986,19(4):32-40.
    39 程翔云,罗旗帜.箱梁在压弯荷载共同作用下的剪力滞[J].土木工程学报,52-64.1991,24(1).
    40 CHANG S T. Prestress influence on shear lag effect in continuous box girder bridge[J]. J Struct Engrg, ASCE, 1992, 118(11): 3 113-3 121.
    41 FOVTCH D A, CHANG P C. A shear lag anomaly[J]. J Struct Engrg, ASCE, 1982, 108(7): 1 653-1 658.
    42 SUSHKEWICH K W. Negative shear lag explained[J]. J Struct Engrg, ASCE, 1991, 117(11): 3 543-3 545.
    43 程翔云.悬臂薄壁箱梁的负剪力滞[J].上海力学,1987,(2):52-62.
    44 CHANG S T, ZHENG F Z. Negative shear lag in cantilever box girders with constant depth[J]. J Struct Engrg, ASCE, 1987, 113(1): 20-35.
    45 罗旗帜,余建立.变截面箱梁的负剪力滞[J].重庆交通学院学报,1997,(3):18-25
    46 罗旗帜.薄壁曲箱梁桥剪滞效应分析[J].铁道学报,1999,21(5):88-93.
    47 杨允表.曲线箱梁考虑曲率及剪力滞影响的力学分析[J].土木工程学报,1999,32(1):43-49.
    48 韦成龙,刘小燕.曲箱梁桥考虑翘曲和剪滞效应的弯扭耦合变形分析[J].华东公路,2000,(3):3-6.
    49 吴亚平.复合材料薄壁箱梁的剪滞剪切效应分析[J].土木工程学报,1996,29(4):31-38.
    50 SINGH Y, NAGPAL A K. Negative shear lag in framed-tube buildings[J]. J Struct Engrg, ASCE, 1994,120(11): 3 105-3 121.
    51 MOFFATT K R, DOWLING P J. Shear lag in steel box girder bridges[J]. Structural Engineering, 1975, 53(10): 439-448.
    52 黄剑源,杨元忠.钱塘江二桥变截面箱形连续梁桥剪滞效应的有限元分析[J].桥梁建设,1994,(1):70-76.
    53 魏丽娜,方放,余天庆,等.变截面箱形梁桥剪滞效应的近似计算方法[J].土木工程学报,1997,30(1):64-72.
    54 罗旗帜.曲线箱梁有限条法计算程序[J].佛山大学学报,1993,11(4):33-41.
    55 CHANG S T, YUN D. Shear lag effect in box girder with varying depth[J]. Struct Engrg, ASCE, 1988, 114(10): 2 280-2 292.
    56 王修信,黄剑源.变截面多跨梯形箱梁桥剪滞效应差分解[J].桥梁建设,1993,(2):58-64.
    57 罗旗帜.薄壁箱形梁剪力滞计算的梁段有限元法[J].湖南大学学报,1991,18(2):33-39.
    58 罗旗帜.变截面多跨箱梁桥剪滞效应分析[J].中国公路学报,1998,11(1):63-70
    59 韦成龙,曾庆元,刘小燕.薄壁曲线箱梁桥剪滞效应分析的一维有限单元法[J].中国公路学报,2000,13(1):65-72.
    60 方志,曹国辉,王济川.钢筋混凝土连续箱梁剪力滞效应试验研究[J].桥梁建设,2000,(4):1-3.
    61 刘山洪,何广汉,杨永贤.部分预应力混凝土箱梁节段模型剪滞效应的试验研究[J].桥梁建设,2000,(3):5-7.
    62 谢旭,等.薄壁箱形梁桥约束扭转下翘曲、畸变和剪滞效应的空间分析,土木工程学报,1995,28(5)
    63 彭大文,等.连续弯箱梁剪滞效应分析和实用计算法研究.中国公路学报,1998,11(3).
    64 E. C.汉勃利.桥梁上部构造性能.人民交通出版社,1982
    65 R. Dabrowski. Curved Thin-walled Girders. 1968.
    66 R. Narayanan. Plated Structures. 1983
    67 H. R. Evans. An Experimental and Theoretical Investigation of the Behaviour of Box Girders Curved in Plan, Proc. Instn. Civ. Engrs. Port 2, V59, 1975.
    68 D. J. Just, Behavior of Skewed Beam and Slab Bridge Decks, ASCE, Vol. 107, No. ST2, 1981.
    69 胡海昌.弹性力学的变分原理及其应用.科学出版社,1981
    70 钱寅泉,倪元增.薄壁箱形大曲率梁桥理论分析.土木工程学报,第26卷第5期,1993
    71 倪元增,钱寅泉.分析大曲率薄壁弯梁桥的板元模式段元法.1998年全国市政工程学术交流会论文集,宁波,1998
    72 倪元增,多室薄壁箱形曲梁弹性畸变控制微分方程.第九届全国桥梁学术会议论文集,杭州,1990
    73 唐家祥,周世军.薄壁箱梁结构性能的矩阵分析.土木工程学报,第20卷第2期,1987
    74 倪元增.曲线梁桥的弹性控制微分方程.中国公路学报,第3卷第1期,1990
    75 倪元增,钱寅泉.弹性薄壁梁桥分析.北京:人民交通出版社,2000
    76 Qing S., Li Q., Review of some restrained torsion theories for thin -walled bars of closed cross-section. International symposium on,. GGeomechanics Bridges and structures, 1987
    77 钱寅泉,倪元增.箱梁剪力滞计算的翘曲函数法.铁道学报,第12卷第2期,1990
    78 钱寅泉,倪元增.薄壁箱形大曲率梁桥理论分析.土木工程学报,第26卷第5期,1993
    79 Hens C. P., Oleinik J. C.. Curved box beam bridge analysis. Computer& Structures, 1976(6)
    80 Zhang S. H., Lyons L. P. P. A thin-walled box beam finite element for curved bridge analysis. Computers & Structures, 1984
    81 王荣辉等.板桁组合结构空间计算的板桁梁段有限元法,工程力学,16(4),1999
    82 [日]小西一郎,朱立冬等译.钢桥第三分册,人民铁道出版社,北京,1980 D B McCallen and K M Romstad. A continuum model for the nonlinear analysis of beam-like lattice structures. Computer&Structure, 1988, 29(2)
    83 A K Noor, M S Anderson and W H. Greene continuum models for beam and plate-like lattice structure AIAA J16, 1978.
    84 W C McCarthy and A Q Melhem. Elasto-plastic analysis of composite steel-concrete superstructures. Computer & Structure, 1988, 29(3)
    85 郑凯锋等.板桁组合结构桥梁及其计算方法的研究.全国桥梁学术年会论文集,1996
    86 E. Volke. Railway Bridge decks. The proceedings of ECCS/BCSA International Symposium on steel Bridges, 1999
    87 伏魁先等.竖向偏载下板桁组合钢桥的空间计算分析.土木工程学报,1984(9)
    88 草野兼人.斜支持直線曲線桁橋立体立体的力学特性解明関研究.(日本)長罔技術科学大学修士論文,1989.2
    89 Nakai, H. and Chai Hong Yoo. Analysis and Design of Curved steel Bridges, Mc-Graw-Hill Book Company, New York, 1988
    90 K. J. Bathe,. Finite Element Procedures in Engineering Analysis, Prentice-Hall, inc., 1982
    91 Meyer, C. and Scordelis, A. C.. Analysis of Curved Folded Structures, Journal of the Structural Division, Proceedings of ASCE, Vol. 98, No. STL, 1972
    92 黄剑源,谢旭.城市高架桥的结构理论与计算方法.北京:科学出版社,2001
    93 吴文清,叶见曙等.薄壁箱梁剪力滞效应研究理论的若干问题讨论.桥梁建设,2001(6)
    94 PPC箱梁节段模型剪滞效应的试验研究.桥梁建设,2000(3)
    95 剪力滞效应对连续箱梁自振特性影响的研究.兰州铁道学院学报(自然科学版).2003.Vol.22(1)
    96 牛斌,杨梦蛟.预应力混凝土宽箱梁剪力滞效应试验研究.中国铁道科学,2004.Vol.25(2)
    97 高亮,杨绿峰等.一维离散有限元法计算箱形梁剪力滞效应.广西大学学报(自然科学报).2003.Vol.28(3)
    98 谢旭,黄剑源.薄壁箱形梁桥约束扭转下翘曲、畸变和剪滞效应的空间分析.土木工程学报.1995.28(4)
    99 胡少伟.聂建国.钢筋混凝土箱梁的约束扭转分析.清华大学学报(自然可以版).2004(12)
    100 万鹏,郑凯锋等.组合有限元方法在T形梁桥荷载横向分布分析中的应用.2003(8)
    101 郑凯锋等.全桥结构仿真分析和芜湖长江大桥连续梁桥的分析研究.Steel construction.1999(3),vol.14
    102 郑凯锋,唐继舜.钢桥全桥全壳单元模型的空间计算方法.铁道工程学报,1997(2)
    103 郑凯锋,唐继舜.铁路钢桥的全桥结构仿真分析研究.铁道学报,1992,vol.21(1)
    104 周岑,郑凯锋等.大跨度石拱桥的全桥结构仿真分析研究.土木工程学报,2004, vol.37(3).
    105 周岑,郑凯锋等.大跨度石拱桥拱架施工仿真分析在ALGOR R12上的实现.长沙铁道学院学报,2001,vol.19(4)
    106 郑凯锋.独特的伦敦千年桥及其加固方案和全桥结构仿真分析研究.国外桥梁2001(1)
    107 万鹏,郑凯锋.大跨钢拱与刚构协作桥梁体系的系杆调整作用研究.世界桥梁.2004(4)
    108 张晓壳,陈宁等.斜拉桥的数学建模.国外桥梁,1998(2)
    109 靳欣华,郑凯锋.分析桥梁结构剪力滞效应的新方法.重庆交通学院学报,2002, Vol.21(4)
    110 郑凯锋,夏招广.宜昌长江公路大桥悬索桥动力试验和计算研究.中国铁道科学,2002,Vol.23(5)
    111 贺国京,邹中权,吴再新等.宜万线宜昌长江大桥静动力仿真分析研究报告.
    112 朱鹏飞.宜万铁路宜昌长江大桥关键施工技术研究.桥梁建设,2004(1)
    113 Nam-Hoi Park, Nam-Hyoung Lim, Young-Jong Kang A consideration on intermediate diaphragm spacing in steel box girder bridge with a doubly symmetric section [J]. Engineering Structures, 2003, (11).
    114 韩皓,李斌,瞿尔仁.曲线梁桥横隔板的加劲作用研究[J].合肥工业大学学报,1999.
    115 颜昌清.分体箱梁的设计和试验[J].中南公路工程,2002,(3).
    116 陈佩琦,刘兴彦.直线箱梁剪力滞及剪切变形双重效益的矩阵分析法[J].湖南交通科技,2002,(2).
    117 李玉成、刘洪杰,开孔沉箱在斜向入射波作用下受力研究,海洋学报(中文版),2003 Vol.25 No.1
    118 杨佑发,横隔板间距对集中偏心荷载作用下简支钢箱梁畸变的影响,钢结构,2005 Vol.20 NO.4
    119 罗旗帜、黄君毅,横隔板及角隅承托对薄壁曲线箱形梁剪力滞影响的研究,佛山科学技术学院学报(自然科学版), 2005 Vol.23 No.2
    120 苏庆田、吴炜,一种新型扁平钢箱梁实腹式横隔板构造,结构工程师, 2005 Vol.21 No.3
    121 关为民,既有铁路桥梁横向加固施工技术,世界桥梁, 2005 No.2
    122 杨英武、尹宗学,箱形梁桥横隔板的作用分析,中南公路工程,2005 Vol.30 No.2
    123 赵如,横隔板对铁路预应力混凝土T梁横向动力性能的影响,铁道标准设计,2005 No.3
    124 李宏江、叶见曙,波形钢腹板箱梁横隔板间距的研究,公路交通科技, 2004 Vol.21 No.10
    125 经柏林、谢华鸾,PC斜拉桥横隔板裂缝成因分析,公路, 2004 No.6
    126 吕玉匣、刘炎海,横隔板对多主梁结构受力行为的影响分析,兰州交通大学学报, 2004 Vol.23 No.1
    127 于进学,混凝土简支梁横隔板裂损分析与加固措施,铁道建筑, 2003 No.8
    128 李育楷、王全凤,横隔板间距对悬挑箱梁畸变的影响,华侨大学学报(自然科学版),2002 Vol.23 No.4
    129 付超,钢管混凝土拱桥几个应注意的问题,钢结构, 2001 Vol.16 No.03
    130 吴再新,贺国京等.宜昌长江大桥箱梁横向受力性能研究.中国铁道科学.2005,26(4)
    131 Chai Hong Yoo and Philip C. Littrell. Crossing-bracing effects in Cureod Stringer Bridges. 1986,112(9).
    132 张耀辉,张华新.桥梁的横隔板效应,山西交通科技,1998,Vol:119(4)
    133 李育楷等.横隔板间距对悬挑箱梁畸变的影响.华侨大学学报(自然科学版)2002,Vol.23(4)
    134 吕玉匣,刘炎海.横隔板对主梁结构受力行为的影响分析.兰州交通大学学报(自然科学学报).2004.Vol.23(1)
    135 胡兆同,黄安录.钢板箱形梁的畸变与横隔板设置.西安公路交通大学学报.1998,Vol.18(4B)
    136 Murray N W. Introduction to the theory of Thin-walled structures. John Wiley & Sons ltd. 1984
    137 刘恢先.唐山大地震震害.北京:地震出版社,1986
    138 胡聿贤,谢礼立等.城市与工程减灾基础研究报告.北京:中国地震局地球物理研究所.哈尔滨:中国地震局工程力学研究所,1998
    139 谢礼立,罗学海.“国际减轻自然灾害十年”和地震工程研究的任务,地震工程与工程振动.1990,10(4)
    140 鹿岛尚武,潘元振.日本和世界地震防灾的推进及“国际减灾十年”,地震科技情报,1993,(2)
    141 袁一帆,陈永.日本坂神大震灾在应急救灾上的几点教训,自然灾害学报,1995,4(4)
    142 范立础.桥梁抗震.同济大学出版社,1997
    143 李国豪.工程结构抗震动力学.上海:上海科学技术出版社,1990
    144 胡聿贤.地震工程学.北京:地震出版社
    145 林家浩,张亚辉等,大跨度结构抗震分析方法及近期进展.力学进展,2001,31(3)
    146 王东升等.利用Push-over方法评价桥梁的抗震安全性.世界地震工程,2000,16(2)
    147 范立础,卓卫东.桥梁延性抗震设计.北京:人民交通出版社,2001
    148 欧进萍,王光远.结构随机振动.北京:高等教育出版社,1998
    149 杨溥,李东等.抗震结构静力弹塑性分析方法的研究进展.重庆建筑大学学报,2000,(2)
    150 钟万勰.结构动力学方程的精细时程积分法.大连理工大学学报,1994,34(2)
    151 Crandall S H. Random vibration, vol. I. Cambridge, MA:MIT press, 1958
    152 Ibrahim R A, Parametric random vibration, Research Studies Press Ltd, 1985
    153 Roberts J B, Spanos P O. Random vibration and statistical lineari- zation. John wiley and sons, 1990
    154 Berrah M, Kausel E. Response spectrum analysis of Structures subjected to Spatially Varying Motions. Earthquake Engineering and Structural Dynamics, 1992,21
    155 Kiureghian A D, Neuenhofer A. Response spectrum method for multi- support seismic excitations, Earthquake engineering and structural dynamics, 1992,21
    156 Ernesto H Z and Vanmarcke E H, Seismic Random Vibration Analysis of Multi-support seismic Excitations, Earthquake Engineering struct. Dynam. 1992(21),T13-740
    157 Chandra, R. Elastic-plastic Analysis of Steel Space Structures. J. Struct. Engng.,ASCE, Vol. 116, No. 4.1990
    158 陈清军、朱庆群,土-桩-结构相互作用体系随机地震反应分析,陈清军、朱庆群,力学季刊,2004 Vol.25 No.3
    159 赵岩、林家浩,行波效应下结构非平稳随机地震峰值响应分析,力学季刊,2004 Vol.25 No.2
    160 张国栋、王钊,土-结构相互作用体系的非线性随机地震反应,武汉大学学报(工学版),2006 Vol.39 No.3
    161 张国栋、王钊,基于反应谱的土与结构相互作用体系非平稳随机地震反应分析,振动与冲击,2005 Vol.24 No.4
    162 李鸿晶、孙广俊,结构平稳随机地震反应时域分析方法,地震工程与工程振动,2005 Vol.25 No.4
    163 李忠献、林伟,大跨度空间网格结构多维多点随机地震反应分析,地震工程与工程振动,2006 Vol.26 No.1
    164 朱以文、吴春秋,TMD多点控制体系随机地震响应分析的虚拟激励法,地震工程与工程振动, 2003 Vol.23 No.6
    165 王成博、史志利,随机地震动场多点激励下大跨度连续刚构桥的地震反应分析,地震工程与工程振动, 2003 Vol.23 No.6
    166 史志利、李忠献,随机地震动场多点激励下大跨度桥梁地震反应分析方法,地震工程与工程振动, 2003 Vol.23 No.4
    167 易大可、贺国京,随机结构的平稳随机地震响应,兰州铁道学院学报,2003 Vol.22No.1
    168 李创第、黄天立,带TMD结构随机地震响应分析的复模态法,振动与冲击,2003 Vol.22 No.1
    169 李静、陈健云,结构-地基体系的非比例阻尼影响及随机地震响应分析,世界地 震工程,2002 Vol.18 No.3
    170 周生震、吴知丰,结构非线性随机地震非零均值响应分析,世界地震工程,2002Vol.18 No.3
    171 王军、林家浩,剪切型非线性滞迟系统随机地震响应的虚拟激励分析,固体力学学报, 2001 Vol.22 No.01
    172 门玉明、黄义,场地土的随机地震反应分析,工程地质学报,2001 Vol.9 No.01
    173 徐赵东、刘军生,随机地震下阻尼器的优化设置,世界地震工程, 2000 Vol.16No.04
    174 高学奎、朱晞,近场地震作用下深水桥墩的地震响应分析,工程抗震与加固改造,
    175 陈宇文、王卫琴,大跨度钢管砼拱桥空间地震响应分析,广东工业大学学报,2006Vol.23 No.2
    176 李贞新、李俊,宜宾长江公路大桥主桥地震反应分析,公路交通科技,2006 Vol.23No.7
    177 韩艳、夏禾,地震作用下高速铁路桥梁的动力响应及行车安全性研究,中国铁道科学, 2006 Vol.27 No.3
    178 宋一凡、周勇军,连续梁桥横桥向地震动分析,振动与冲击,2006 Vol.25 No.2
    179 邹立华、赵人达,桩-土-独塔斜拉桥相互作用地震响应分析,计算力学学报,2006Vol.23 No.2
    180 张德文、郑世豪,简易桥墩基础之地震反应分析,岩土工程学报, 2006 Vol.28 No.4
    181 王蕾、赵成刚,考虑地形影响和多点激励的大跨高墩桥地震响应分析,土木工程学报, 2006 Vol.39 No.1
    182 陈兴冲、严松宏,青藏铁路多年冻土区桥墩随机地震反应分析,世界地震工程,2006 Vol.22 No.1
    183 王克海、李茜,高墩桥梁地震响应分析,世界桥梁, 2006 No.1
    184 布占宇、谢旭,不同阻尼计算模式对斜拉桥地震响应分析的影响,中国铁道科学,2006 Vol.27 No.2
    185 韩艳、夏禾,斜拉桥在地震与列车荷载同时作用下的动力响应分析,工程力学,2006 Vol.23 No.1
    186 陈水生、万益春,隔震桥梁地震响应非线性分析,长安大学学报(自然科学版),2006 Vol.26 No.1
    187 史小伟、李黎,地震动空间变异性对大跨刚构桥地震反应的影响,公路交通科技,2006 Vol.23 No.1
    188 李晓莉、喻宝金,三塔单索面PC斜拉桥的地震反应研究,公路交通科技,2006 Vol.23 No.2
    189 赵大亮、李爱群,大跨度桥梁地震反应谱的发展,公路交通科技, 2006 Vol.23 No.2
    190 丰硕、项贻强,超大跨度悬索桥的动力特性及地震反应分析,公路交通科技,2005 Vol.22 No.8
    191 何承义、彭志苗,预应力混凝土斜拉桥的地震响应分析,地震工程与工程振动,2005 Vol.25 No.5
    192 谢开仲、秦荣,钢管混凝土拱桥的材料非线性地震反应分析,世界地震工程,2005 Vol.21 No.3
    193 王军文、李建中,连续梁桥纵向地震碰撞反应参数研究,中国公路学报, 2005 Vol.18 No.4
    194 周艳、张雷明,美国Cypress高架桥地震倒塌的仿真分析,岩石力学与工程学报,2005 Vol.24 No.17
    195 黄建文、朱晞,近场地震作用下钢筋混凝土桥墩基于位移的抗震设计,土木工程学报, 2005 Vol.38 No.4
    196 刘保纲、郭咏辉,曲线箱梁桥的地震反应分析,土木工程学报, 2003 Vol.36 No.10
    197 叶爱君、胡世德,超大跨度斜拉桥的地震位移控制,土木工程学报,2004 Vol.37 No.12
    198 龙晓鸿、李黎,澳凼第三大桥斜拉桥的非线性地震反应及TMD初步控制研究,土木工程学报, 2004 Vol.37 No.11
    199 赵灿晖、周志祥,钢管混凝土拱桥的多维平稳随机地震响应,西南交通大学学报,2005 Vol.40 No.2
    200 赵岩、林家浩,桥梁滞变非线性随机地震响应分析,计算力学学报,2005 Vol.22 No.2
    201 代泽兵、黄金枝,基于智能阻尼器的大跨度斜拉桥多支承激励地震振动控制,振动与冲击, 2005 Vol.24 No.2
    202 杨孟刚、胡建华,独塔自锚式悬索桥地震响应分析,中南大学学报(自然科学版),2005 Vol.36 No.1
    203 王东升、王国新,桥梁结构地震反应邻梁碰撞分析等效刚体模型,工程力学,2004 Vol.21 No.4
    204 胡世德、苏虹,钢管混凝土拱桥的三维弹塑性地震反应理论分析,中国公路学报,2004 Vol.17 No.1
    205 王冒成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社, 1999.
    206 朱伯芳.有限单元法基本原理与应用.-2版.北京:中国水利水电出版社,1998
    207 李廉锟.结构力学(上).-3版.北京:高等教育出版社,1996.
    208 徐芝纶.弹性力学(上、下).-3版.北京:高等教育出版社,2002.
    209 方志,曹国辉等,钢筋混凝土连续箱梁剪力滞效应试验研究.桥梁建设,2004(4):1-3
    210 刘山洪,何广汉等,PPC箱梁节段模型剪力滞效应的试验研究,桥梁建设,2000(3):5-7
    211 郭金琼,房贞政等,箱形梁桥剪力滞效应分析,土木工程学报,1983,16(1):1—13
    212 程翔云,罗旗帜.箱梁在压弯荷载共同作用下的剪力滞.土木工程学报,1991,24(1):52—64.
    213 程翔云,项贻强.梯形截面箱梁桥的剪力滞.1985年中国公路学会桥梁工程学会学术讨论会论文集,1986.
    214 吴幼明,罗旗帜等.变高度连续箱梁剪力滞效应试验研究.实验力学[J],2004.Vol.19,No.1:85:90.
    215 吴幼明,罗旗帜等.薄壁箱梁剪力滞计算的梁段有限元法[J],中国铁道科学,2003,Vol.24,No.4:64-68.
    216 罗世东.铁路桥梁大跨度组合桥式结构的应用研究,铁道标准设计(铁道桥梁年会专辑),2005(11):1:4。
    217 罗世东.大跨度连续刚构柔性拱组合桥式研究,铁道科学与工程学报,2004,Vol.1, No.2:57—62.
    218 刘振标,严爱国等.梁拱组合结构收缩、徐变的影响分析,铁道标准设计,2006(8):22-24
    219 范立础.桥梁抗震[M].上海:同济大学出版社,1997:117-121.
    220 汉勃利[英].桥梁上部构造性能[M].郭文辉译.北京:人民交通出版社,1986.
    221 吴定俊,王小松等.高速铁路尼尔森拱桥车桥动力特性[J].铁道学报,2003,25(3):91-95
    222 李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992
    223 陈宝春.钢管混凝土设计与施工[M].北京:人民交通出版社,1999.182—190
    224 JTJ023-85,公路桥涵设计规范[S].北京:人民交通出版社,1985
    225 《宜昌长江大桥的工程场地地震安全性评价报告》, 中国地震局.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700