简控灵巧子弹控制技术研究与射击效能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
战斗部子母化以及发展各种新型灵巧子弹,是提高当前远程打击武器平台作战能力的重要发展方向。为适应实战中对攻击点目标和大型线目标武器的需求,提高子弹攻击精度,提升子母战斗部的作战效费比,本文在以“捷联成像探测器+简控装置”为工作体制的简控灵巧弹设计思想的基础上,具体研究了攻击点目标的“多次修正弹”和攻击大型线目标的“增速末修弹”两种子弹药的控制技术和射击效能等问题。主要内容如下:
     (1)系统阐述了简控灵巧弹的工作原理,根据弹道导弹和防区外机载布撒器两种远程投放平台的实际工作环境,确定了两种子弹的总体结构、弹道修正方法和工作过程。
     (2)在适当简化条件下,应用动态特性分析方法,研究了“多次修正弹”这类小型尾翼稳定旋转弹在控制力及干扰力矩作用下的稳定性和操纵性问题。从维持运动稳定性角度出发,提出总体设计时应考虑的转速设计参考范围。用数值方法计算分析了弹体对脉冲作用的动态响应。
     (3)研究了捷联成像导引头的“多次修正弹”导引律及其实现问题。推导了考虑相对加速度的待飞时间估计方法,使待飞时间的估算更接近实际值。给出利用捷联导引头测量信息实现脉冲比例导引律的方法。利用捷联导引头运动学方程建立视线转率估计模型,对自适应滤波器在脉冲比例导引律上应用进行初步探索,在一定条件下可以抑制测量噪声的干扰。
     (4)研究了“增速末修弹”控制方法。利用小扰动方法分析了伞-弹系统稳态扫描角变化规律,给出了控制系统的参考状态,在此基础上设计了增速修正一体化控制方法。
     (5)研究了“增速末修弹”抛撒出舱后的二次弹道并进行精度分析。建立描述增速末修弹伞-弹系统柱铰斜置连接的统一的质点刚体动力学模型,确定了伞-弹系统飞行时序。建立描述子弹群在启控点处散布的近似模型,提高了仿真计算速度。
     (6)研究了装载“增速末修弹”的机载布撒器对跑道毁伤效能。以跑道整体失效概率为毁伤评估指标,利用Monte-Carlo打靶和解析法相结合的方法计算整条跑道失效概率。提出一种物理意义清晰、简单易行的“边界窗口扫描法”来判定相邻两个攻击区域之间是否存在最小起降窗口,最终建立完整的布撒器子母弹对机场跑道毁伤效果评估方法。
     (7)提出理论上能够横向切断机场跑道的多瞄准线攻击策略,以跑道失效率为目标函数,给出利用重复攻击提高首轮攻击封锁概率的最优攻击方案。
     简控灵巧弹是符合我国国情的低成本新型弹药,通过目标探测和弹道修正,能够大幅提高子弹作战效能。本文的工作可为类似弹药设计及相关问题的研究提供有益参考。
It is an important trend to evolve various cargo warheads and smart submunitions for improving the combat capability of long-range weapon platforms. In order to enhance the cost-efficient and improve the accuracy of attack, and adapt to the requirement of point target and line target, the theory and its applications of smart submunition are researched in this dissertation. The work conception adopted by the submunition is“strap-down image seeker and simply control unit”. In the concept of the smart submunition, two specific researches are carried out: the contorl method and the firing effectiveness analysis of terminal multi-correction submunition (TMCS) for point target and terminal propelment and correction submunition (TPCS) for runway. The dissertation focuses on the following subjects:
     (1) The work principle of smart submunition is introduced. According with the actual work conditions of the ballistic missile warhead and the standoff airborne dispenser, the structure and work process of the TMCS and TPCS are established.
     (2) In the approximate conditions, the stability and maneuverability are studied using dynamics characteristics analysis method. From the perspective of maintaining stability of motion, the reference range of rotation rate is proposed. The dynamic response of pulse is analyzed by numerical methodology.
     (3) The problem of terminal guidance law and its implementation of TMCS are studied. Considering the relative acceleration, the time-to-go estimate method is derived, which makes estimation result closer to the actual value. A terminal guidance method is present which utilizes the information measurement from the seeker directly. Line-of-sight (LOS) estimate model is deduced from kinematic equation of strap-down seeker, the preliminary exploration of the application of using adaptive filter on pulsed proportional navigation (PPN) is made. In some given condition, the disturbance of measurement noise can be eliminated.
     (4) The control method of TPCS is established. The characteristics of steady-state rotation angle scanning are qualitatively analyzed. Hence, the reference parameters, which required by control system design, are determined.
     (5) Based on the characteristics of the various stages of trajectory, the unified parachute-bomb system model of mass-rigid connected by column hinge and the approximate simulation mathematical model for the distribution is established. The efficiency of Monte-Carlo simulation is enhanced using the distributed model of submunitions given before.
     (6) The interdiction effectiveness of standoff dispenser is studied. Based on tactical strategy of segmental blocking runway, the“border window scan”method is used to search the minimum lift window (MLW) between the two damaged areas. Afterward the method of disable probability of runway (DPR) is established.
     (7) The multi-aim-line strategy is proposed, under which the runway will be blocked theoretically. According to the characteristic of dispenser, an optimal strategy of the first round attack is given.
     The new-type smart submunition is a kind of low-cost cargo warhead, and its cost-efficient will be enhanced through detection of target and trajectory correction. Therefore, the submunition researched in this dissertation is able to meet the requirement of our national defence. The work present in this dissertation can provide analysis and demonstration methods for other similar designs.
引文
[1] Emerson D E. AIDA: An Airbase Damage Assessment Model[R]. R-1872-RP. 1976.
    [2] Emerson D E. TSARINA-User's Guide to a Computer Model for Damage Assessment of Complex Airbase Target[R]. N-1460-AF. 1980.
    [3] Emerson D E. An Introduction to the TSAR Simulation Program: Model Features and Logic[R]. R-2584-AF. 1982.
    [4]王志军.机载布撒器弹药系统效能与总体技术研究[D].北京理工大学, 1998.
    [5]寇保华.新型反机场末修子母弹射击效能分析及总体优化设计[D].国防科学技术大学, 2007.
    [6]贾天宝.脉冲修正子弹总体设计及关键技术研究[D].国防科技大学, 2007.
    [7]王儒策.弹药工程[M].北京:北京理工大学出版社,2002.
    [8]姚树旗.关于“灵巧弹要”一词的探讨[J].弹箭技术, 1995, (2): 60-61.
    [9] Pearson Richard J, Chien Kenrick K. Smart Weapons Encounter Model[R]. ARL-TR-2178. 2000.
    [10] Wereley N M, Pines D J. Feasibility Study of a Smart Submunition: Deployment From a Conventional Weapon[R]. ARL-C R-0475. 2001.
    [11] Michael L. The Implications of Airland Operations and Smart Munition Technology on Fire Support[R]. AD-A250037. 1992.
    [12]夏思宇.精确制导技术及其现状与发展[J].航空科学技术, 2003, (1): 41-43.
    [13]周伟.弹道修正子弹总体方案研究[D].国防科技大学, 2003.
    [14]阎明理.国外战术导弹能子母弹技术特点及发展[J].远方科技, 1998, (1): 8-13.
    [15]王强. 21世纪末制导弹药的发展预测[J].制导与引信, 2004, 25 (1): 5-10.
    [16]范金荣. 21世纪前20年精确制导技术发展预测[J].现代防御技术, 2003, 31 (1): 30-34.
    [17]郑荣跃,秦子增.子母弹研究进展[J].国防科技大学学报, 1996, (01): 60-64.
    [18]周军.美国的灵巧子弹药研制现状[J].飞航导弹, 2001, (2): 21-25.
    [19]曾宪林.红外成像导引头及其成像制导武器评述[J].航天电子对抗, 2004, (5): 45-48.
    [20]叶明.末制导子弹药的研制现状[J].飞航导弹, 1996, (06): 4-8.
    [21] Valaitis V. Handbook of Smart Weapon and PGM Related Acronyms and Terms 2nd Edition[R]. GACIAC HB-98-01. 1997.
    [22] Soencksen K P, Oskay Vural. An Investigation Into the Aerodynamics and Structural Integrity of the 155 mm M898 Projectile[R]. ARL-MR-46. 1999.
    [23] Richard Fong. Warhead Technology Advancements[R]. ADA394848. 2001.
    [24] Birk Avi, Kooker D E. A Novel Soft Recovery System for the 155-mm Projectile and Its Numerical Simulation[R]. ARL-TR-2462. 2001.
    [25] Haines P A, Jameson T C, Luces S A. Application of the Battlefield Forecast Model Predictions to Sadarm[R]. AIAA 2001-2059. 2001.
    [26] Vinson R J, Passwater R D. HWIL IR Imaging Testing[R]. AD-A098547. 1981.
    [27] Holberg D E, Grabowsky J F. Pave Mover Flight Test Program[R]. A82-14380.1981.
    [28] Robillard T J. The Joint Stars Platform Decision[R]. NDU-ICAF-97. 1997.
    [29] Hotline Dod. Acquisition of the Sensor Fuzed Weapon[R]. AQI00-04-0892. 2000.
    [30] Mcintosh a C. Transportability Testing of the Army Tactical Missile System (ATACMS)[R]. ADA236263. 1989.
    [31] Metcalf M G. Acoustics on the 21st Century Battlefield[R]. ADA405335. 1995.
    [32] David J W. A Comparative analysis of the Acquisition Strategies of Army Tactical Missile System(ATACMS) and Javelin Medium Antiarmor Weapon System[D]. NAVAL POSTGRADUATE SCHOOL, 1995.
    [33] Dyer J E. Long-range Missiles: Complete and Happy Victory[D]. University of Tulsa, 1981.
    [34] Rogers Henry. Army tactical missile system and fixed-wing aircraft capabilities in the joint time-sensitive targeting process[D]. United States Air Force Academy, 2006.
    [35] Barrichman P. Strategic Configured Load(SCL)24 - ARMY Tactical Missile System(ATACMS) Evaluation[R]. ADA403404. 2002.
    [36] Maddux Gary A. Microelectronic Status Analysis and Secondary Part Procureability Assessment of the ATACMS-BAT Weapon System[R]. ADA374503. 2000.
    [37] Kissell Ann H. An Example of Simulation Use in Army Weapon System Development[C]. Proceedings of the 1999 Winter Simulation Conference, 1999
    [38]周喻虹.红外末制导迫弹[J].弹箭技术, 1995, (5): 46-50.
    [39]何晓东.国外末制导炮弹现状与发展趋势[J].弹箭技术, 1996, (01): 1-16.
    [40]舒金龙,陈良瑜,朱振福.末制导炮弹的研制现状及发展趋势[J].系统工程与电子技术, 2003, 25 (4): 443-446.
    [41] James A. Medium Anti-tank Defense: the Case for the Return of the Tank Destroyer[R]. AD-A207971. 1988.
    [42]王华,马宝华.封锁机场跑道武器系统的发展趋势分析[J].飞航导弹, 1999, 28 (4): 25-28.
    [43] Hewish M. JP233 low-level airfield attack weapon system[J]. International Defense Review, 1984, (4).
    [44] Flume W. MW-1 the multipurpose weapon system[J]. Military Technology, 1985, (2).
    [45] Beal C., Sweetman B. Bolt from the blue standoff weapon development.[J]. International Defense Review, 1992, (8).
    [46] Riggins J. Brilliant Attack: The need for autonomous standoff weapon in airfield attack missions[R]. 1994.
    [47] Alder K. New hard-target munitions for the US Air Force.[J]. Armada International, 1989, (4).
    [48] Grimes V. P. Is there life after TSSAM.[J]. Military Technology, 1995, (3).
    [49] Nash T. Standoff and Deliver[J]. Armada International, 1996, (4).
    [50] Richardson D. Missiles for the Modern Warplane[J]. Asian Defence Journal, 1996, (9).
    [51] Philippe J. P. The APACHE: Forerunner of a family of air-to-surface missiles. [J]. Military Technology, 1992, (5).
    [52] Dornier. Advanced standoff missiles for strike aircraft[J]. Military Technology,1985, (3).
    [53] Tekinalp Ozan, Utalay Saadet. Simulated Annealing for Missile Trajectory Planning and Multidisciplinary Missile Design Optimization[J]. AIAA 00-0684, 2000.
    [54] Vincent Thomas L, Cottrellj Ronald G, Morgan Robert W. Minimizing Maneuver Advantage Requirements for a Hit-to-kill Interceptor[J]. AIAA 2001-4276, 2001.
    [55] Subchan S., Zbikowski R. Minimum-time Optimal Trajectories for the Terminal Bunt Manoeuvre[J]. AIAA 2005-5968, 2005.
    [56] Hodgson Jeremy A. Trajectory Optimization Using Differential Inclusion to Minimize Uncertainty in Target Location Estimation[J]. AIAA 2005-6187, 2005.
    [57]薛晓中,孙传杰.简易制导炸弹方案弹道优化设计[J].兵工学报, 2004, 25 (3): 376-378.
    [58]黄鹍,陈森发,刘荣忠.基于神经网络和遗传算法的末敏弹系统效能参数优化设计[J].兵工学报, 2004, 25 (3): 257-260.
    [59]张涛,彭绍雄,宋贵宝.反舰巡航导弹弹道设计与优化探讨[J].飞航导弹, 2002, (7): 16-18.
    [60]张军挪,王军波,刘丽荣.滑翔增程炮弹弹道仿真与优化设计[J].军械工程学院学报, 2003, 15 (2): 42-45.
    [61]李响.导弹俯冲段弹道分析与最优设计[J].北京理工大学学报, 2006, 26 (9): 773-776.
    [62]刘莉,李怀建.机载布撒器滑翔方案弹道优化与方案弹道库设计[J].弹箭与制导学报, 2004, 24 (3): 61-64.
    [63] Warran R.S., Price C. F., Gelb A. Direct Statistical Evaluation of Nonlinear Guidance System[C]. AIAA Guidance and Control Conference. BISCAYNE, FLORIDA, 1973.
    [64] Gelb A. Applied Optimal Estimation[M]. MIT Press, Cambridge, MA,1974.
    [65] Gelb A, Warren R S. Direct Statistical Analysis of Nonlinear System: CADET[J]. AIAA Journal, 1973.
    [66] Froriep R, Joost D. Stochastic Simulation Using Covariance Techniques: Modular Program Package for Nonlinear Missile Guidance[J]. Journal of Guidance and Control, 1984, 7 (4): 509-512.
    [67]骆连珍,徐明友,曹坚.随机风场作用下火箭弹散布的协方差分析描述函数法[J].弹道学报, 1997, 9 (4): 55-58.
    [68]金惠明,屈也频.协方差分析描述函数法在终端航空武器投放动态仿真研究中的应用[J].航空学报, 1998, 19 (2): 190-194.
    [69]李海平,钟瑞麟,魏岳.导弹末制导精度分析的协方差方法研究[J].战术导弹技术, 2004, (1): 49-56.
    [70]祁载康.制导弹药技术[M].北京理工大学出版社,2002.
    [71] Srivastava B. Lateral Jet Control of a Supersonic Missile: Computational and Experimental Comparisons[J]. Journal of Spacecraft and Rockets, 1998, 35 (2).
    [72] Srivastava B. Asymmetric Divert jet Performance of a Supersonic Missile: Computational and Experimental Comparisons[J]. Journal of Spacecraft and Rockets, 1999, 36 (5).
    [73] Brendeis J, Gill J. Experimental Investigation of Super- and Hypersonic JetInteraction on Missile Configurations[J]. Journal of Spacecraft and Rockets, 1999, 35 (3).
    [74] Harkin T, Brown T. Using Active Damping as a Precision-Enhancing Technology for 2.75-inch Rockets[J]. US Army Research Laboratory, 1999.
    [75] Jitpraphai Thanat, Burchett Bradley, Costello Mark. A Comparison of Different Guidance Schemes for a Direct Fire Rocket with Pulse Jet Control Mechanism[C]. AIAA Atmospheric Flight Mechanics Conference and Exhibit. Montreal, Quebec, 2001.
    [76] Jitpraphai Thanat, Costello Mark. Dispersion Reduction of a Direct Fire Rocket Using Lateral Pulse Jets[J]. Journal of Spacecraft and Rockets, 2001, (6).
    [77] Corriveau D, Berner C, Fleck V. Trajectory corection using impulse thrusters for conventional artillery projectiles[C]. 23th international Symposium on Ballistics. Tarragona, Spain: IBC, 2007.
    [78]胡俊,雷娟棉,吴甲生.横向喷流控制在导弹技术中的研究与应用[J].弹箭与制导学报, 2002, 22 (3).
    [79]王树军,胡俊,吴甲生.旋转导弹横向喷流/超声速来流干扰数值模拟[J].兵工学报, 2008, 29 (10): 1220-1226.
    [80]赵捍东,郭锡福,王芳.不同制导律在减小火箭弹散布中的技术研究[J].弹箭与制导学报, 2004, 24 (4): 45-46.
    [81]赵捍东,刘庆上,王芳.利用侧向脉冲力减小火箭弹散布的技术研究[J].弹箭与制导学报, 2004, 24 (2): 49-50.
    [82]赵捍东,王芳,刘庆上.用侧推力矢量控制技术提高火箭弹射击精度[J].华北工学院学报, 2005, 26 (2): 96-99.
    [83]董宇光,范宁军.火箭弹横向散布的弹道修正技术研究.[J].武器装备自动化, 2002, 21 (7): 18-21.
    [84]徐劲祥,夏群力.末段修正迫弹主要参数确定方法研究[J].弹箭与制导学报, 2005, 25 (2): 80-82.
    [85]徐劲祥.末段修正迫弹脉冲修正方案研究[J].弹箭与制导学报, 2005, 25 (1): 50-52.
    [86]徐劲祥,宋锦武,夏群力.弹道修正弹末段脉冲推力控制研究[J].弹道学报, 2005, (2): 19-23.
    [87]徐劲祥,张聘义,王磊.气动计算在小口径弹丸设计中的应用[J].弹箭与制导学报, 2004, 24 (1): 76-78.
    [88] Xu Jin-Xiang. Key Techniques of Terminal Correction Mortar Projectiles[J]. Journal of Beijing Institute of Technology, 2007, 16 (2): 168-172.
    [89] Xu Jin-Xiang. Study on overall Concept Planning of Terminal Correction Mortar Projectiles[J]. Journal of Beijing Institute of Technology, 2008, 17 (2): 127-132.
    [90]徐劲祥.弹道修正弹追踪制导律研究[J].弹箭与制导学报, 2004, 24 (4): 163-165.
    [91]徐劲祥.弹道修正弹六自由度弹道仿真研究[J].兵工学报, 2007, 28 (4): 411-413.
    [92]宋锦武,祁载康,夏群力.简易制导脉冲控制力修正技术研究[J].北京理工大学学报, 2004, 24 (5): 383-386.
    [93]宋锦武.两种追踪制导律对比研究[J].弹箭与制导学报, 2006, 26 (2):161-164.
    [94]宋锦武,夏群力,徐劲祥.速度追踪制导律制导回路建模及解析分析[J].兵工学报, 2008, 29 (3): 323-326.
    [95]王江,林德福,付培杰.脉冲力控制捷联探测器制导体制下命中精度研究[J].红外与激光工程, 2007, 36: 88-91.
    [96]王江,林德福,祁载康.脉冲直接力控制简易制导弹药命中精度研究[J].系统仿真学报, 2008, 20 (15): 4176-4178.
    [97] Fowler R.H, Gallop E.G, Lock C.N.H. The Aerodynamics of a Spinning Shell[M]. Philosophical Transactions of Royal Society of London,1920.
    [98] Mcshane E.J., Kelley J.L., Reno F. Exterior Ballistics[M]. Denver: University of Denver Press,1953.
    [99] Murphy C.H. Free Flight Motion of Symmetric Missile,Ballistic Research Laboratories[M]. 1963.
    [100] Platus D H. Ballistic Re-entry Vehicle Flight Dynamics [J]. J. Guidance, 1982, 5 (1): 4-16.
    [101]董亮,王宗虎.弹箭飞行稳定性理论及其应用[M].北京:兵器工业出版社,1990.
    [102]徐明友.弹箭飞行动力学[M].北京:国防工业出版社,2003.
    [103]徐明友.用李雅普诺夫直接法建立弹箭动稳定性条件[J].南京理工大学学报, 2001, 25 (1): 10-12.
    [104] Clarence P Young. On the Steady Aeroelastic behavior of a spinning rocket vehicle having aerodynamic asymmetry[J]. AIAA 70-1397, 1970.
    [105] Platus D M. Aeroelasic Stability of Slender Spinning Missiles[J]. AIAA 89-3393-CP, 1989.
    [106] Oberholtzer N W, Schmidt L E. Aeroelastic Behavior of Hypersonic Re-entry Vehicles[J]. AIAA 83-0033, 1983.
    [107]墨菲.对称发射体的自由飞行运动[M].北京:国防工业出版社,1984.
    [108] Murphy C.H, Mermagen William H. Flight Motion of an Continuously Elastic Finned Missile[J]. Army Research Laboratory, ARL-TR-2754, 2002.
    [109]臧涛成,胡焕性.大长细比弹箭弹性效应研究综述[J].弹道学报, 1999, 11 (3): 89-93.
    [110]王良明,王中原.大长径比弹箭飞行中的共振条件研究[J].弹道学报, 2001, 13 (4): 51-54.
    [111]张贺,黄晓鹏.弹性细长旋转弹箭运动稳定性问题的研究进展[C].第九届全国空气弹性学术交流会论文. 2005.
    [112]王中原,丁松滨,艾东民.修正弹道的飞行稳定性研究[J].弹道学报, 1999, 11 (4): 1-6.
    [113]王中原,丁松滨,王良明.弹道修正弹在脉冲力矩作用下的飞行稳定性条件[J].南京理工大学学报, 2000, 24 (4): 322-325.
    [114]王中原,王良明.修正弹道飞行稳定性分析[J].兵工学报, 1998, 19 (4): 298-300.
    [115]施坤林.末段修正弹对脉冲修正力的角运动响应分析[J].探测与控制学报, 2001, 23 (1): 7-11.
    [116]曹小兵,王中原,史金光.火箭脉冲矢量控制弹道特性分析[J].弹箭与制导学报, 2005, 25 (3): 67-69.
    [117]曹小兵,徐伊岑,王中原.迫弹横向脉冲控制飞行稳定性[J].弹道学报, 2008, 20 (4): 41-44.
    [118]程振轩,林德福,牟宇.简易制导迫弹脉冲力控制建模与仿真[J].系统仿真学报, 2009, 21 (17): 5528-5531.
    [119] Inado F. Some aspects of a realistic three-dimensional pursuit-evasion game[J]. Journal of Guidance, Control, and Dynamics, 1993, 16 (2): 289-293.
    [120] Gano B C, Meir P. Velocity pursuit guidance for antitank missiles with air-vane mounted seekers[J]. Proc Summer Computer Simulation Conf, 1990: 1007-1101.
    [121] Gano B C. Modified Velocity pursuit guidance law with crosswind correction for missiles against surface targets[C]. AIAA Guidance, Navigation and Control Conference, 1991 Reston V A: 1566-1571.
    [122] Bahu K R, Sarma I G, Swamy K N. Switched bias proportion navigation for homing guidance against highly maneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 1994, 17 (6): 1357-1362.
    [123] Guelman M, Shinar J. Optimal guidance law in the plane[J]. Journal of Guidance, Control, and Dynamics, 1984, 7 (6): 471-476.
    [124]贝茨C J,汤善同译.攻击机动目标的最优制导规律[M].北京:宇航出版社,1989.
    [125] Yuan P J. Solution of True Proportional Navigation for Maneuvering and Nonmaneuvering Target[J]. Journal of Guidance, Control and Dynamics, 1992, 15 (1): 268-271.
    [126] Yang C D. Optimal Pure Proportional Navigation for Maneuvering Targets[J]. IEEE Transactions on AES, 1997, 33 (3): 949-957.
    [127] Ghose D. True Proportional Navigation with Maneuvering Targets[J]. IEEE Transactions on AES, 1994, 30 (1): 229-237.
    [128] Yuan P J. Solution of Generalized Proportional navigation for Maneuvering and Nonmaneuvering Target[J]. IEEE Transactions on AES, 1995, 31 (1): 469-474.
    [129] Vathal S. Analysis of Generalized Guidance Law for Homing Missiles[J]. IEEE Transactions on AES, 1995, 31 (2): 514-520.
    [130]张岩,张明廉.现代自动导引导弹导引规律的研究[J].北京航空航天大学学报, 1986, 12 (4): 148-155.
    [131]柯浩,过崇伟.全向攻击比例导引律的优化及其攻击特性研究[J].北京航空航天大学学报, 1991, 17 (3): 118-125.
    [132]方群,陈武群.一种抗干扰修正比例导引律的研究[J].宇航学报, 2000, 21 (3): 76-81.
    [133] Fumiaki Imado, Takeshi Kuroda. Optimal Midcourse Guidance for Medium Range Air-to-Air Missiles[J]. Journal of Guidance, Control, and Dynamics, 1990, 13 (4): 603-608.
    [134]王小虎,张明廉.自寻地导弹攻击机动目标的最优制导规律的研究及实现[J].航空学报, 2000, 21 (1): 30-33.
    [135]聂永芳,周卿吉,张涛.制导规律研究现状及展望[J].飞行力学, 2001, 19 (3): 7-11.
    [136]乔元新.由捷联导引头产生比例制导信号技术[J].制导与引信, 1997, (1): 9-15.
    [137] Gulick J F, Miller J S. Missile Guidance: Interferometer Homing UsingBody-fixed An Atennas[J]. ADA119957, 1982.
    [138]颜东,张洪铖.捷联导引头制导系统导引律及自适应滤波方案设计[J].宇航学报, 1996, 17 (1): 8-15.
    [139] Song Jian-Mei. Research on Attitude Pursuit Guidance Law for Strapdown Homing System[J]. Chinese Journal of Aeronautics, 2004, 17 (4): 235-239.
    [140]姚郁,章国江.捷联成像制导系统的若干问题探讨[J].红外与激光工程, 2006, 35 (1): 1-6.
    [141]姚郁,林喆,遆晓光.捷联成像寻的器惯性视线重构精度分析[J].红外与激光工程, 2007, 36 (1): 1-5.
    [142]林喆,姚郁,富小薇.捷联成像寻的器视线重构[J].光电工程, 2006, 33 (3): 40-43.
    [143]李全运,宋建梅.捷联寻的制导系统滤波器设计[J].兵工学报, 2005, 26 (2): 215-219.
    [144]宋建梅,曹宇.捷联寻的制导弹药的新型卡尔曼滤波器设计[J].北京理工大学学报, 2005, 25 (11): 975-980.
    [145]郑建强,宋建梅.姿态更新算法在某型滚转弹药捷联寻的制导化中的应用研究[J].弹箭与制导学报, 2006, 26 (1): 161-164.
    [146]苏身榜.捷联寻的制导技术及其在国外的发展[J].航空兵器, 1994, (2): 45-51.
    [147] Botton W R. Trajectory Simulation of Parachute System[J]. AIAA74-0470, 1974.
    [148] Tory. Computer Model of a Fully Deployed Parachute[J]. J. Aircraft, 1977, 14 (7): 675-679.
    [149] Cockrell J, Haidar N A. Influence of the Canopy-payload Coupling on the Dynamic Stability in Pitch of a Parachute System[J]. AIAA93-1248, 1991.
    [150] Fallon. Parachute Dynamics and Stability Analysis of the Queen Match Recovery Systems[J]. J. Aircraft, 1971, 8 (6): 603-609.
    [151] White F M, Wolf D F. A theory of three dimensional parachute dynamic stability[J]. J. Aircraft, 1968, 5 (1): 86-92.
    [152] Wolf D F. The dynamics stability of a non-rigid parachute and payload system.[J]. J. Aircraft, 1971, 8 (6): 603-609.
    [153] Ibrahim S K, Engdahl R A. Parachute dynamics and stability analysis[J]. NASA CR 120326.
    [154] Dohher F, Saliaris C. On the Influence of Stochastic and Acceleration Dependent Aerodynamics Forces on the Dynamic Stability of Parachute[J]. AIAA81-194, 1981.
    [155] Dohher F., Cockrell D. J. Advances in the Application of Parachute Identification Analysis Techniques to Parachute Aerodynamics Test Data[J]. AIAA84-0799, 1984.
    [156] Dohher F., Schilling H. Nine-Degree-of-Freedom Simulation of Rotating Parachute Systems[J]. J. Aircraft, 1992, 29 (5): 774-780.
    [157]程文科,秦子增.具有倒"Y"吊挂的物伞组合体动力分析[J].弹道学报, 1998, 10 (2): 10-14.
    [158]张青斌.载人飞船降落伞回收系统动力学研究[D].国防科学技术大学, 2003.
    [159]熊菁.翼伞系统动力学及归航方案研究[D].国防科学技术大学, 2005.
    [160]宋旭民.大型降落伞系统动力学及抽鞭现象研究[[D].国防科学技术大学, 2006.
    [161]韩子鹏,孙乐.末敏弹刚柔二体相互作用力学模型探讨[J].弹道学报, 1997, 9 (4): 45-49.
    [162]舒敬荣,王宝贵,韩子鹏.伞—弹系统三体运动分析[J].航空学报, 2001, 22 (6): 481-485.
    [163]孙乐,韩子鹏,李奉昌.末敏弹减速运动和稳态扫描段运动特性的研究[J].航空学报, 1998, 19 (2): 147-151.
    [164]韩子鹏,王宝贵,刘昌源.旋转伞-物体系统扫描角变化特性分析[J].兵工学报, 2000, 21 (3): 205-208.
    [165]郭齐胜,郅志刚,杨瑞平.装备效能评估概论[M].北京:国防工业出版社,2005.
    [166]甄涛,王平均,张新民.地地导弹武器作战效能评估方法[M].北京:国防工业出版社,2005.
    [167] Emerson D. E. AIDA: An Airbase Damage Assessment Model[J]. R-1872-PR, 1976.
    [168] Emerson D. E. An Introduction to the TSAR Simulation Program: Model Features and Logic[J]. R-2584-AF, 1982.
    [169] Emerson D. E. TSARINA-User's Guide to a Computer Model for Damage Assessment of Complex Airbase Targets[J]. N-1460-AF, 1980.
    [170] Seyb E. K., Blaauw F. H. M. A Computer Program for the Calculation of Runway Interdiction Probability.[J]. Technical memorandum STC TM-431, 1974.
    [171] Pemberton John C. A Generalized Computer Model for the Targeting of Conventional Weapons to Destroy a Runway[D]. Air Force Institute of Technology, 1980.
    [172] Hachida Howard M. A Computer Model to Aid the Planning of Runway Attacks[D]. Air Force Institute of Technology, 1982.
    [173]王朝志,李廷杰.用地地常规子母弹头导弹封锁机场跑道的设想[R]. 1991.
    [174]曾涛.战术导弹打击机场跑道毁伤概率[J].火力与指挥控制, 2009, 34 (4): 156-159.
    [175]张建生.飞航导弹子母弹对机场跑道封锁概率研究[J].战术导弹技术, 2009, (1): 8-11.
    [176]韦常柱,郭继峰,崔乃刚.导弹对跑道封锁概率及进入角偏差计算方法研究[J].兵工学报, 2008, 29 (6): 764-768.
    [177]韦常柱,张立佳,崔乃刚.布撒器对机场跑道的封锁方式及概率分析[J].弹道学报, 2008, 20 (6): 32-36.
    [178]黄龙华,冯顺山,樊桂印.封锁型子母弹对机场的封锁效能[J].弹道学报, 2007, 19 (3).
    [179]黄龙华,冯顺山,王震宇.多模式封锁弹对机场跑道封锁效能的分析[J].弾箭与制导学报, 2006, 26 (4): 173-176.
    [180]黄龙华.封锁型子母弹对飞机从机场跑道强行起降的封锁效能分析[J].弹箭与制导学报, 2008, 28 (4): 139-142.
    [181]王震宇.杀伤子母弹机场封锁效能仿真[J].弹箭与制导学报, 2008, 28 (6): 135-138.
    [182]汪民乐,高晓光.战术导弹对机场攻击作战效能的计算[J].火力与指挥控制, 1998, 23 (12): 59-62.
    [183]王凤泰,唐雪梅.用像素模拟仿真法计算计算子母弹头的毁伤效率[J].现代防御技术, 2000, 28 (5): 29-35.
    [184]石喜林,谭俊峰.飞机跑道失效率计算的统计试验法[J].火力与指挥控制, 2000, 25 (1): 74-77.
    [185]石喜林,谭俊峰.单条飞机跑道失效率的统计试验法[J].第二炮兵工程学院学报, 2001, 16 (3): 13-16.
    [186]宋光明,宋建社.导弹打击机场跑道的计算机模拟[J].火力与指挥控制, 2001, 26 (4): 27-29.
    [187]雷宁利,唐雪梅.侵彻子母弹对机场跑道的封锁概率计算研究[J].系统仿真学报, 2004, 16 (9): 2030-2032.
    [188]王文君,黄德所,郑宇.侵彻子母弹封锁机场跑道最小升降窗口搜索算法研究[J].指挥控制与仿真, 2007, 29 (6): 31-34.
    [189]黄寒砚,王正明,袁震宇.跑道失效率的计算模型与计算精度分析[J].系统仿真学报, 2007, 19 (12): 2661-2664.
    [190]寇保华,杨涛,张晓今.末修子母弹对机场跑道封锁概率的计算[J].弹道学报, 2005, 17 (4): 22-27.
    [191]寇保华,杨涛,张晓今.基于交叉变异的混合粒子群优化算法[J].计算机工程与应用, 2007, (17): 85-88.
    [192]寇保华.解析法计算机载布撒器对单条跑道的最佳封锁策略[J].火力与指挥控制, 2007, 32 (2): 48-50.
    [193]王华,马宝华.封锁机场多模弹药反排策略与对抗特性分析[J].弹箭与制导学报, 2001, 21 (1): 42-46.
    [194]王华,焦国太,宋丽萍.配用多模引信的多模弹药封锁机场模型研究[J].探测与控制学报, 2003, 25 (3): 17-20.
    [195]梁敏,杨骅飞.机场封锁与反封锁对抗中的封锁效能计算模型[J].探测与控制学报, 2003, 25 (2): 50-54.
    [196]李新其,王明海.常规导弹封锁机场跑道效能准则问题研究[J].指挥控制与仿真, 2007, 29 (4): 77-81.
    [197]黄寒砚,王正明.子母弹对机场跑道封锁时间的计算方法与分析[J].兵工学报, 2009, 30 (3): 295-299.
    [198]袁子怀,钱杏芳.有控飞行力学与计算机仿真[M].北京:国防工业出版社,2001.
    [199]浦发,芮筱亭.外弹道学[M].北京:国防工业出版社,1989.
    [200]程兴华.固体脉冲发动机设计及优化[D].国防科技大学, 2007.
    [201] Vincent C.Lam. Time-to-go Estimate for Missile Guidance[C]. AIAA Guidance Navigation and Control Conference and Exhibit, 2005,AIAA 2005-6459: San Francisco, California:
    [202] Riggs T L. Linear Optimal Guidance for Short Range Air-to-Air Missile[J]. Proceeding of NAECON 1979, 1979, 2: 757-764.
    [203] Hull D. G., Radke J. J., Mack R. E. Time-to-go Prediction for Homing Missiles Based on Minimum-Time Intercepts[J]. Journal of Guidance, Control, andDynamics, 1991, 14 (5): 865-871.
    [204] Lee G. K. F. Estimate of the Time-to-Go Parameter for Air-to-Air Missiles[J]. Journal of Guidance and Control, 1985, 8 (2): 262-266.
    [205] Zarchan Paul. Progress in Astronautics and Aeronautics: Tactical and Strategic Missile Guidance[M]. Washington, DC: AIAA,1990.
    [206]葛健全,张晓今,杨涛.利用捷联导引头信息实现脉冲比例导引[J].弹道学报, 2008, 20 (1): 98-101.
    [207] Nesline F W, Zarchan Paul. Line-of-sight Reconstruction for Faster Homing Guidance[J]. Journal of Guidance, Control, and Dynamics, 1984, 8: 3-8.
    [208] Lin Zhe, Yao Yu, Ma Ke-Mao. The Design of LOS reconstruction filter for strap-down imaging seeker[C]. IEEE 2005 International Conference on Machine Learning and Cybernetics, 2005 GuangZhou: 2272-2277.
    [209] Sage a P, Husa G W. Adaptive filtering with unknown prior statistics[C]. Proceedings of Joint Automatic Control Conference, 1969 Boulder Colorado: 760-769.
    [210]邓自立.现代时间序列分析及应用[M].哈尔滨:哈尔滨工程大学出版社,1996.
    [211]黄永安,马路,刘慧敏. MATLAB7.0/Simulink6.0建模仿真开发与高级工程应用[M].北京:清华大学出版社,2005.
    [212]葛健全,张晓今,杨涛.末制导弹道修正子弹的六自由度建模仿真[J].计算机仿真, 2009, (01): 103-106.
    [213]葛健全,贾天宝,张晓今.不同制导律在脉冲式弹道修正灵巧弹上的应用[J].弹箭与制导学报, 2008, (04): 182-185.
    [214]葛健全,贾天宝,赵志明.基于田口方法的弹道修正弹参数优化[J].弹箭与制导学报, 2008, (06): 211-214.
    [215]王利荣.降落伞理论与应用[M].北京:宇航出版社,1997.
    [216]杨启仁.子母弹飞行动力学[M].北京:国防工业出版社,1999.
    [217]王志军,陈超.机载布撒器对机场跑道封锁效率的Monte-Carlo仿真[J].弾箭与制导学报, 2001, 21 (2): 73-77.
    [218]王志军,王瑞晨.反机场武器对跑道的空间与时间封锁效率分析[J].华北工学院院报, 2001, 22 (3): 165-169.
    [219]远林.台军机场无惧导弹?[J].中国新闻周刊, 2007, (35): 68-69.
    [220]范培蕾.机场跑道红外图像处理系统研究[D].国防科学技术大学, 2005.
    [221]王钠,万国龙.常规战术导弹封锁机场跑道效率研究[J].战术导弹技术, 2003, (3): 1-5.
    [222]黄寒砚,王正明,袁震宇.跑道失效率的计算模型与计算精度分析[J].系统仿真学报, 2007, 19 (12): 2661-2664.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700