旋转稳定弹复合控制与制导技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统高炮的致命弱点在于精度低,从而导致弹药大量消耗,因此,高炮在防空中的作用逐渐被淡化。但是和防空导弹相比,高炮具有成本低,初速大的特点,因此,低成本实现高炮制导就成为一项重要的研究课题。本文在国防预研基金“高速高旋机动弹药的制导及该弹药的陆基测控装备”支撑下,进行了旋转稳定弹的制导化研究。本课题组提出了一种名为“机动弹药”的制导技术,它的特点是不需要弹体的气动外形作出大的改动,在保留了弹体高初速高转速特点的基础上,利用了底排机构和阻力环机构实现射程控制,利用内置质量块机构实现姿态控制。本文围绕该方案的可行性展开研究,主要研究内容由以下两部分组成:
     (1)动力学研究
     首先进行了机动弹药动力学建模研究。从旋转稳定弹所独有的偏流现象入手,进行了旋转稳定弹的制导化可行性研究。在分析了影响偏流的各个因素后,采用弹体参数摄动的方法,对影响弹道的诸因素进行了仿真分析,确定阻力系数、极转动惯量和质阻心距是影响弹道的重要因素。结合实际的执行机构,确定通过内置质量块改变弹体的质阻心距和极转动惯量控制偏流,通过底排与阻力环改变弹体阻力系数来控制射程的复合控制思路。利用动量定理与动量矩定理推导建立了内置质量块控制模式下的机动弹药动力学模型,模型主要包括系统平动动力学方程和系统转动动力学方程。在对几种典型的质量块布局进行分析后,得到了一种优化的质量块布局方案。利用李雅普诺夫方法推导了质量块控制下的旋转稳定弹的陀螺稳定性条件,得到了飞行稳定性对于质量块设置的约束。对内置质量块的质量比、质量块布置的位置,底排点火时间、底排装药量等重要参数进行了分析与仿真验证,为后面的控制奠定了基础。
     (2)控制与制导研究
     根据动力学分析结果可以知道,阻力环和底排技术主要影响的是旋转稳定弹的平动系统,而内置质量块系统则主要影响的是弹体的转动系统。针对该特点,以及三种控制手段对旋转稳定弹影响的不同,将内置质量块的控制与其他两种控制方式分别进行研究。底排与阻力环进行射程控制时,其关键点在于控制机构启动时刻,在对不同种类的旋转稳定弹攻击方式进行分析后,提出了控制机构启动时刻快速算法,该算法能在较短时间内完成执行机构启动时间计算,并能使得弹道纵向命中点达到预定的精度。针对姿态控制回路,在考虑了质量块加速度因素的基础上,建立了旋转稳定弹姿态控制模型,利用基于时间尺度分离理论将旋转稳定弹分为快变的角速度跟踪回路和慢变的角度跟踪回路,对两个回路分别进行控制律的设计。利用滑模控制进行角度跟踪回路的设计,利用SDRE方法进行快变回路的设计,仿真结果证明该控制方法能快速有效的实现角度误差跟踪,达到姿态控制的目的。针对机动弹药二维制导律设计,分别用传统的Schur方法和θ-D方法以及改进的Newton方法对SDRE控制器进行了求解,对这三种算法进行了分析和比较,结果表明改进算法提高了计算精度,而其计算量没有显著增加。
     本文从上面两个方面对旋转稳定弹制导化的问题进行了研究,希望本文的研究能为常规弹药制导化的工作提供一定的参考。
A vital weakness of traditional gun weapon system is the large quantities of ammunition consumption caused by low firing accuracy. As a defenced weapon, compared with defence missile, gun weapon system has the advantages in cost and initial speed. The problem that how to improvre precision of gun weapon systems has become an important reaearch item. This thesis deals with the guidance on high-speed and high rolling projectile. The work is supported by the national defence prestudy fund "the guidenization of high-speed and high-rolling ammunition with land-based measuring and controlling equipment". Guidance technology of ammunition based on spin-stabilized, which is defined as maneuvering ammunition, is put forward by our reaearch team. The characteristic of maneuvering ammunition is that the aerodynamic shape is not changed. Based on reserved high initialization speed, maneuvering ammunition, pitching and orientation can be controlled by using the controllable base bleed, the aerodynamic force of drag brake and moving mass, respectively. This thesis discusses the feasibility of applying the base bleed and the moving-mass framework in the guidance of maneuvering ammunition. This thesis includes mainly the following two parts of contents:
     (1) Dynamics
     At first, the dynamics model of maneuvering ammunition is constructed. The guidance feasibility of high rolling projectile is analyzed based on bias flow phenomena. The factors which affect high rolling projectile track are analyzed by using parameter perturbation method. The simulation results show that drag coefficient, polar moment of inertia and distance from barycenter to drag center are important for projectile track. Compound control method is confirmed. The pitching is able to be controlled for changing distance from barycenter to drag center, and polar moment of inertia can be controlled by using moving mass. The orientation is able to be controlled via changing drag coefficient by using the base bleed and the aerodynamic force of drag brake. The dynamic model is derived based on the momentum theorem and the moment of momentum theorem for maneuvering ammunition with moving mass control mode. The moving mass layout is optimized based on analysing various moving mass layout. Turbinate stability is derived on Lyapunov theory for high roll projectile with moving mass control mode. The restriction of moving mass layout is concluded by flying stability. The effects of major factors, such as moving mass ratio, moving mass position, base bleed start time and base bleed powder, are analyzed.
     (2)Control and Guidance
     The dynamic result shows that the base bleed and the aerodynamic force of drag brake affects high rolling projectile's rotation system and the moving-mass affects high rolling projectile's motion system. The control organization deployment time is key in using base bleed and drag brake to control range. Based on analyzing attack mode of high roll projectile, a proportional acceleration convergence algorithm is adopted, and the predicted precision of falling point is achieved by the algorithm in less times of t rajectory repeat computation.
     Based on high speed rotation missile characteristic, the moving mass layout optimization situation is deployed. The dynamic equation is established. The attitude tracking control system is divided into attitude tracking control loop and angular velocity tracking control loop via two-time scale method. The sliding hyperplane containing tracking error and integral function was designed in outer loop. The control law based on state depended Riccati equation was applied in inner loop.The simulation result is given to show that the proposed control law is effective and provides a necessary reference for practical engineering. Firstly, the guidance model is established, and the relative kinematical equations for missile and target are set up. The guidance law is designed via SDRE technique. The controller is solved using three methods:Schur method, modified Newton method andθ-D method. Finally, the simulation results show the effectiveness of the control law based on SDRE method to the two dimensional guidance law, and the SDRE method has shown a great advantage over method with larger amount of calculation, while comparing with the traditional Schur method, the modified Newton method could largely raise the calculation precision.
     The research in this thesis covers dynamics, guidance and control topic of guidancing of high roll projectile. I hope that these researches could provide a reference for guidance of traditional gun weapon.
引文
[1]尚绍华,胡冬冬.发展中的精确制导弹药[J].飞航导弹,2010(7):60-64.
    [2]邱荣剑,张永录.国外舰炮制导弹药发展概况及趋势[J].飞航导弹,2011(1):39-43.
    [3]潘火荣,任风云.美国空军精确制导武器技术发展计划简述[J].航空兵器,2004(4):7-9.
    [4]任武能.美军精确弹药的发展趋势[J].国防,2007(2):68-69.
    [5]夏元杰,段红建,刘志东等.美国陆军精确打击技术及其发展[J].兵工学报,2011,31(12):88-91.
    [6]吴引宁.世界第一种激光制导炮弹一M172“铜斑蛇”[J].知识窗,2007(3):35-36.
    [7]杨林冲,陈勇.小型精确制导武器关键技术及发展现状分析[J].飞航导弹,2010(11):11-14.
    [8]杨树谦.精确制导技术发展现状与展望[J].航天控制,2004,22(4):17-20.
    [9]杨艺.致命利刃一美国陆军XM395式120毫米精确制导迫击炮弹[J].兵林新秀,2007(6):9-11.
    [10]王伟,马志赛.制导炮弹的优势特点及发展趋势[J].飞航导弹,2011(7):10-14.
    [11]赵玉玲.精确制导弹药——弹药发展的热点[J].外军炮兵,2005(4):30-33.
    [12]武强.美俄陆军精确打击武器的发展现状及启示[J].兵工学报,2010,31(12):70-74.
    [13]刘忆宁.俄罗斯武器装备研发特点[J].外军军事学术,2003(7):72.
    [14]方艳艳,柴金华.美俄激光末制导炮弹的对比分析[J].制导与引信,2004,25(3):12-18.
    [15]刘承恩.迫弹鸭舵弹道修正动力学研究[D].北京:北京理工大学,2003.
    [16]刘承恩,范宁军,何娟.弹道修正引信鸭舵空气动力学设计和仿真[J].探测与控制学报,2003,25(增刊):40-43.
    [17]徐劲祥.弹道修正弹六自由度弹道仿真研究[J].兵工学报,2007,28(4):411-413.
    [18]王江,林德福,祁载康.脉冲直接力控制简易制导弹药命中精度研究[J].系统仿真学报,2008,20(15):4176-4178.
    [19]徐劲祥,宋锦武,夏群力.弹道修正弹末段脉冲推力控制研究[J].弹道学报,2008,20(15):4176-4178.
    [20]祁载康.制导弹药技术[M].北京:北京理工大学出版社.2002.12.
    [21]陈科山等.一维弹道修正引信阻力器的研究现状分析及其设计原则探讨[J].探测与控制学报.2003,25(3):24-29.
    [22]程振轩,林德福,牟宇.简易制导迫弹脉冲力控制建模与仿真[J].系统仿真学报.2009,21(17):5528-5531.
    [23]郭锡福.远程火炮武器系统射击精度分析[M].北京:国防工业出版社,2004.
    [24]卞伟伟,王良民,蒲元.鸭舵-阻力环复合控制火箭弹制导方法[J].火力与指挥控制,2010,35(10):84-86.
    [25]赵捍东.脉冲发动机提供控制力的火箭弹弹道修正理论及技术研究[D].南京:南京理工大学,2008.
    [26]史金光,王中原,常思江等.二维弹道修正弹修正方法[J].海军工程大学学报,2010,22(4):87-92.
    [27]史金光,王中原,曹小兵.一维弹道修正弹气动布局与修正能力研究[J].火力与指挥控制,2010,35(7):80-83.
    [28]史金光,王中原,李铁鹏.弹道修正中的控制算法[J].弹道学报,2011,23(2):19-21.
    [29]杨少宇,田志刚.论高炮制导化需要研究的若干课题[J].火炮发射与控制学报.2007,(3):66-68.
    [30]杨绍卿.论武器装备的新领域-灵巧弹药[J].中国工程科学.2009,11(10):4-7.
    [31]谭凤岗.弹道修正弹的概念研究[J].弹箭技术.1998,9(4):2-11.
    [32]解增辉,刘占辰,郭佳.旋转稳定弹丸外弹道修正分析及数学模型的建立[J].弹箭与制导学报.2006,26(4):233-236.
    [33]薄煜明.近程防空反导火控系统关键技术[D].南京:南京理工大学,2004.
    [34]杨鹏.高速高旋弹方位制导的可行性分析[D].南京:南京理工大学,2007.
    [35]李永博.基于旋转稳定的机动弹药制导技术[D].南京:南京理工大学,2009.
    [36]易彦,周凤岐,周军.变质心控制策略分析[J].西北工业大学学报,2002,20(1):117-120.
    [37]易彦,周凤岐,周军.基于变质心控制导弹的运动分析[J].航天控制,2000(3):1-5.
    [38]崔利明.旋转弹头变质心机动控制制导系统的研究和仿真[D].西安:西北工业大学,2000.
    [39]Nelson R. L, Price D. A. New concept for controlled lifting entry flight experiments[R]. NASA,1967.
    [40]Childs D. A movable mass attitude stabilization system for artificial space stations[J]. Journal of Spacecraft and Rockets,1974,8(9):11-15.
    [41]Kunciw B., Kaplan M. Optimal space station detumbling by internal mass motion[J]. Automatica,1976,12(5):45-51.
    [42]White J. E., Robinett R. D. Principal axis misalignment control for deconing of spinning spacecraft [J].Journal of Guidance, Control and Dynamics,1994, 17(4):823-830.
    [43]Robinett R. D., Sturgis B. R., Kerr S. A. Moving mass trim control for aerospace vehicles[J]. Journal of Guidance, Control and Dynamics,1996,19(5):1064-1070.
    [44]Petsopoulous T, Regan F. J, Barlow J. Moving mass roll control system for fixed trim reentry vehicle[J]. Journal of Spacecraft and Rockets,1996,33(1):54-60.
    [45]Petsopoulous T., Regan F. J. Moving-mass trim control for deconing of spinning Spacecraft[J]. Journal of Guidance Control and Dynamics,1994,17(4):823-830.
    [46]Menon P. K., Sweriduk G. D., Ohlmeyer E J, Malyevac D. S. Integrated guidance and control of moving mass actuated kinetic warheads[J].Journal of Guidance, Cont rol and Dynamics,2004,27 (1):118-126.
    [47]Menon P.K., Swerduk G.D., Ohlmeyer E.J. Integrated guidance and control of moving mass actuated kinetic warheads[R]. ADA408904,2002.
    [48]Menon P.K., Swerduk G.D., Ohlmeyer E.J. Nonlinear discrete-time design methods for missile flight control systems[R]. AIAA-2004-5326,2004.
    [49]Vaddi S. S., Menon P. K., Sweriduk G. D. Multistepping solution to linear two point boundary value problems in missile integrated control[C].AIAA Guidance, Navigation and Control Conference, San Francisco,2005.
    [50]Vaddi S. S. Moving mass actuated missile control using convex optimization techniques[C]. AIAA Guidance, Navigation and Control Conference and Exhibit, Colorado,2006,65-75.
    [51]Vaddi S. S., Menon P. K., Sweriduk G. D. Multistepping approach to finite interval missile integrated control[J]. Journal of Guidance, Control and Dynamics,2006, 29(4):1015-1019.
    [52]Gohary A. E. About stabilization of the relative equilibrium position of a satellite with the help of moving masses [C]. Tashken University Science Conference,1992: 3-4.
    [53]Menon P. K., Sweriduk G. D., Ohlmeyer E. J., Malyevac D. S. Integrated guidance and control of moving mass actuated kinetic warheads[J] Journal of Guidance, Control and Dynamics,2004,27(1):118-126.
    [54]Halsmer D. M., Mingori D. L. Nutational stability and passive control of spinning rockets with internal mass motion [J]. Journal of Guidance, Control and Dynamics,1995,18(5):1197-1203.
    [55]Rogers J., Costello M. Cantilever beam design for projectile internal moving mass systems[R]. ADA532061,2010.
    [56]Yam Y., Mingori D. L., Halsmer D. M. Stability of a spinning axis symmetric rocket with dissipative internal mass motion [J]. Journal of Guidance, Control and Dynamics,1997,20(2):306-311.
    [57]Woolsey C. A. Reduced Hamiltonian dynamics for a rigid body coupled to a moving point mass [J]. Journal of Guidance, Control and Dynamics,2005,28(1): 131-138.
    [58]Byrne R. H., Sturgis B. R., Robinett R. D. A moving mass trim control system for reentry vehicle guidance[C]. AIAA-96-3438.
    [59]周凤岐,林鹏,周军.变质心执行机构对弹头命中精度的影响分析[J].火力与指挥控制,2007,32(8):24-27.
    [60]Lin P., Zhou J. Researching variable structure control of moving mass reentry-vehicles[C]. Computer Science and Information Technology (ICCSIT),2010 3rd IEEE International Conference, Xi'an,2010:126-129.
    [61]易彦,周凤岐.高超声速战术导弹的变质心矢量控制[J].中国科学,2003,33(3):281-288.
    [62]易彦,周凤岐,余松煌.变质心控制导弹的稳定性分析与鲁棒控制[J].上海交通大学学报,2003,37(4):570-573.
    [63]周凤岐,易彦,周军.克服旋转导弹螺旋运动的方法研究[J].宇航学报,2001,22(5):77-81.
    [64]何矞,周凤岐,周军.KKV的变质心矢量控制[J].战术导弹控制技术,2004,1(44):1-5.
    [65]何商,周凤岐,周军.变质心控制导弹综合LPV鲁棒自动驾驶仪的设计[J].西北工业大学学报,2004,22(3):360-364.
    [66]毕开波,周凤岐,周军.变质心旋转弹头变结构控制研究[J].航天控制,2006,24(3):17-19.
    [67]林鹏,周凤岐,周军.基于变质心控制方式的再入弹头控制模式研究[J].航天控制,2007,25(2):16-20.
    [68]林鹏,周凤岐,周军.变质心弹头纵平面机动飞行的控制指令设计[J].火力指挥与控制,2008,33(3):35-38.
    [69]Lin P., Zhou F. Q., Zhou J. Research on maneuverability of moving centroid warhead[J]. Journal of China Ordnance,2007,3(3):199-202.
    [70]林鹏,周军,周凤岐.变质心再入飞行器的质心移动方式研究[J].火力指挥与控制,2009,34(2):40-42.
    [71]张晓宇,贺有智,王子才.质量矩拦截弹的模糊滑模姿态控制系统设计[J].宇航学报,2006,27(6):1419-423.
    [72]李瑞康.再入体变质心动力学建模与仿真问题研究[D].哈尔滨工业大学硕士论文,2006.
    [73]郝丽杰,姚郁姜宇.质量矩控制导弹的建模与仿真研究[J].系统仿真学报,2005,17(9):2054-2056.
    [74]姜宇,姚郁.大气层外质量矩控制自旋拦截器的姿态机动效果分析[J].航天控制,2005,23(5):4-8.
    [75]高长生,荆武兴,李君龙.基于自适应反演法的质量矩导弹控制律设计[J].兵工学报,2011,32(6):686-690.
    [76]贺有智.非线性预测控制在质量矩导弹姿态控制系统设计上的应用[J].战术导弹控制技术,2005(1):47-51.
    [77]贺有智,李君龙.神经网络在质量矩导弹控制系统上的应用[J].系统工程与电子技术,2005,27(1):93-96.
    [78]贺有智,张晓宇.模糊变结构在三滑块质量矩导弹系统上的应用[J].系统工程于电子技术,2005,27(2):292-334.
    [79]高长生.变质心再入飞行器动力学,控制与制导问题研究[D].哈尔滨工业大学博士学位论文,2007.
    [80]秦莉,杨明,郭庆.遗传算法在质量矩导弹姿态控制中的应用[J].北京航空航天大学学报,2007,33(7):769-772.
    [81]秦莉,杨明,郭庆.基于RBF网络的质量矩导弹姿态控制[J].航空动力学报,2007,22(7):1184-1189.
    [82]高长生,荆武兴,李瑞康.变质心飞行器动力学分析[J].哈尔滨工业大学学报,2007,39(增刊):226-230.
    [83]高长生,荆武兴,李瑞康.提高变质心飞行器可操纵性的方法研究[J].宇航学报,2008,29(6):1778-1781.
    [84]张晓宇,王子才.质量矩拦截弹的鲁棒控制研究[J].哈尔滨工程大学学报,2008,29(1):50-55.
    [85]张晓宇,王子才.基于动态逆的质量矩拦截弹模糊滑模控制[J].哈尔滨工业大学学报,2008,40(5):673-677.
    [86]郭庆,杨明,王子才.质量矩导弹变质心姿态控制规律研究[J].控制与决策,2008,23(1):19-24.
    [87]Wang S. Y., Yang M., Wang Z. C. Moving mass trim control system design for spinning vehicles[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China,2006.
    [88]高长生,荆武兴,李瑞康.质量矩再入飞行器的参数优化和性能分析[J].航空学报,2008,29(6):1419-1423.
    [89]张晓宇,贺有智,王子才.基于H∞性能指标的质量矩拦截弹鲁棒控制[J].航空学报,2007,28(3):634-640.
    [90]张晓宇,王子才,高伟巍.基于ITAE准则的质量矩拦截弹鲁棒控制研究[J].系统工程与电子技术,2007,29(12):2101-2105.
    [91]廖国兵,于本水,杨宇光.质量矩控制技术的机理分析及方程简化研究[J].系统工程与电子技术,2004,26(11):1635-1639.
    [92]杨宇光,王丽丽,万自明,陈国瑛.质量矩拦截器机动能力估算[J].现代防御技术,2004,32(4):26-31.
    [93]廖国兵,杨宇光,王丽丽.质量矩控制导弹制导控制系统的仿真研究[J].战术导弹技术,2004(5):49-53.
    [94]廖国兵,万自明.两质量块质量矩控制导弹滚转速度的变化及对弹体姿态运动影响分析[J].航空兵器,2005(5):3-6.
    [95]廖国兵,张晓宇,杨宇光.质量块控制自旋导弹的Lyapunov稳定性分析[J].现代防御技术,2005,33(3):34-38.
    [96]廖国兵,杨宇光,王丽丽.质量矩导弹的敏捷性分析[J].战术导弹技术,2005,1:41-46.
    [97]Liao G. B. Neural network and adaptive nonlinear control of mass moment missles[J]. Chinese Journal of Astronautics,2004,25(5):520-525.
    [98]邓以高,顾文锦,赵红超等.一类碟式飞行器复合控制模型研究[J].弹箭与制导 学报,2004,24(3):116-118.
    [99]邓以高,顾文锦,赵红超等.一类碟型飞行器质量/推力矢量复合控制研究[J].飞行力学,2005,23(3):28-31.
    [100]徐胜红,盛忠培,顾文锦.碟形飞行器复合控制的非线性分配策略研究[J].弹箭与制导学报.2006,26(1):8-11.
    [101]徐胜红,顾文锦.低空飞行器变质量矩控制响应特性研究[J].飞行力学,2006,24(4):34-37.
    [102]史佩,徐胜红,顾文锦.碟形飞行器非线性预测控制系统设计[J].弹箭与制导学报,2008,28(2):13-15.
    [103]王军生,徐胜红,刘海波.基于模糊理论的碟形飞行器复合控制分配策略[J].海军航空工程学院院报,2006,(3):69-73.
    [104]吴进煌,徐胜红,顾文锦.遗传模糊逻辑的碟形飞行器复合控制分配策略[J].火力与指挥控制,2008,33(5):63-66.
    [105]施建洪,徐胜红,刘海波.基于模糊理论的碟形飞行器复合控制分配策略[J].海军航空工程学院院报,2005,20(5):513-516.
    [106]彭善国,杨侃,顾文锦.基于变结构控制碟形飞行器复合控制方法研究[J].计算机仿真,2010,27(11):32-35.
    [107]顾文锦,冯国虎,肖正良.碟式飞行器复合控制的共栖现象研究[J].飞行力学,2008,26(1):28-30.
    [108]Gu W. J., Zhao H. C., Pan C.P. Sliding mode control for an aerodynamic missile based on backst epping design [J]. Journal of Control Theory and Applications,2005,1: 71-75.
    [109]Liu J.Z., Gao X.Y., Ma Y.H. Study on guidance and control technology of mass moment vehicle[C]. IEEE International Conference on Control and Automation, Christchurch, New Zealand 2009:679-684.
    [110]张妍.质量矩控制机理的原理性试验研究[D].北京理工大学硕士学位论文,2004.
    [111]Zhao, E., Song, B.W. Modeling and variable structure control of autonomous underwater vehicles with moving mass[C]. International Conference on Mechanical and Electronics Engineering,2011,1963-1967.
    [112]王巧云,林岩,董文翰.弹道导弹变质心反推自适应控制[J].战术导弹控制技术,2005,3:1-5.
    [113]葛晖,徐德民,周秦英.基于变质心控制的低速水下航行器动力学建模[J].机械科学与技术,2007,26(3):327-331.
    [114]孙卫华,李高风.移动质心再入飞行器姿态的无源性控制[J].宇航学报,2008,29(4):1314-1319.
    [115]孙卫华,李高风,王小虎.移动质心飞行器的参数辨识和补偿控制[J].航天控制,2008,26(5):32-36.
    [116]孔雪,杨明,王松艳.新概念飞行器的姿态复合控制[J].宇航学报,2009,30(2):566-571.
    [117]姜宇,姚郁,贺风华.一种质量矩飞行器配置方案及其控制问题分析[J].系统工程与电子技术,2008,30(2):320-323.
    [118]李瑞康,荆武兴,高长生等.基于布局优化的飞行器变质心控制性能研究[J].上海航天,2010,(1):9-14.
    [119]李瑞康,荆武兴,高长生等.变质心飞行器姿态与弹道性能分析[J].宇航学报,2009,30(4):1498-1503
    [120]毕开波.旋转质量矩弹头双环滑模变结构姿态控制[J].弹道学报,2009,21(4):51-55.
    [121]Vathsal S., Rao M. N. Analysis of generalized guidance laws for homing missiles[J]. IEEE Transactions on Aerospace and Electronic System,1995, 31(4):514-521.
    [122]Yuan P. J., Chen J. S. Ideal proportional navigation[J]. Journal of Guidance and Control,1992,15(5):1161-1165.
    [123]Yuan P. J., Chen J. S. Analytic study of biased proportional navigation[J]. Journal of Guidance, Control and Dynamics,1992,15(1):185-190.
    [124]Lee G. T., Lee J. G. Improved command to line-of-sight for homing guidance[J]. IEEE Transactions on Aerospace and Electronic Systems,1995,31(4):506-510.
    [125]Kim M., Grider K. V. Terminal guidance for impact attitude angle constrained flight trajectories[J]. IEEE Transactions on Aerospace and Electronic Systems,1973, 9(6):852-859.
    [126]Hull D. G., Speyer J. L., Burns D. B. A linear quadratic guidance law for dual control of homing missiles. AIAA-87-2381.
    [127]Rusnak I., Meir L. Optimal guidance for acceleration constrained missile and maneuvering target[J]. IEEE Transactions on Aerospace and Electronic Systems,1990, 26(4):618-624.
    [128]Rusnak I. Optimal guidance laws with uncertain time-of-flight[J]. IEEE Transactions on Aerospace and Electronic Systems,2000,36(2):721-725.
    [129]Ryoo C. K., Cho H., Tahk M. J. Tahk. Closed forms solutions of optimal guidance with terminal impact angle constraint[C]. Proceedings of the IEEE Conference on Control Applications,2003,504-509.
    [130]Ryoo C. K., Cho H., Tahk M. J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control and Dynamics,2005,28(4):724-732.
    [131]Ryoo C. K., Cho H., Tahk M. J. Time-to-go weighted optimal guidance with impact angle constraints [J]. IEEE Transactions on Control Systems Technology,2006, 14(3):483-492.
    [132]JinIk Lee, Byoung Mun Min, Min Jea Tahk. Suboptimal guidance laws with terminal jerk constraint[C]. Proceeding of the IEEE International Conference on Control, Automation and Systems,2007,1399-1403.
    [133]Hexner G., Shima T. LQG guidance law with bounded acceleration command[J]. IEEE Transactions on Aerospace and Electronic Systems,2008,44(1):77-86.
    [134]Chiou Y. C., Kuo C. Y. Geometric approach to three dimensional missiles guidance problem[J]. Journal of Guidance, Control and Dynamics,1998, 21(2):335-341.
    [135]Oshaman Y., Rad D. A. Deferential-game-based guidance law using target orientation observations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006,42(1):316-326.
    [136]Shima T., Golan O. M. Bounded deferential games guidance law for duial-controlled missiles[J]. IEEE Transactions on Control Systems Technology, 2006,14(4):719-724.
    [137]White B. A., Zbikowski R. Direct intercept guidance using deferential geometry concepts[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007,43(3):899-919.
    [138]Zhou Rui. Design of closed loop optimal guidance law using neural networks[J]. Chinese Journal of Aeronautics.2002,15(2):98-102.
    [139]Song E. J., Tahk M. J. Three-dimensional midcourse guidance using neural networks for interception of ballistic targets[J]. IEEE Transactions on Aerospace and Electronic Systems,2002,38(2):404-414.
    [140]Li D., Wang Q. C. Robust sliding mode control guidance law for interceptor based on wavelet neural networks[C]. Proceedings of the 6th World Congress on Intelligent Control and Automation,2006,2199-2203.
    [141]Sun Weimeng, Zheng Zhiqiang.3D variable structure guidance law based on adaptive model-following control with impact angular constraints[C]. Proceedings of the 26th Chinese Control Conference,2007,2148-2152.
    [142]Xu Q. J., Yu J. D., Yu J. Y., Yang X. Z. Integrated guidance/autopilot design for missiles with impact angle constraints[C]. Proceedings of the IEEE International Conference on Information Acquisition,2006,75-79.
    [143]Lechevin N., Rabbath C. A. Backstepping guidance for missiles modeled as uncertain time-varying 1st-order systems[C]. Proceedings of the American Control Conference,2007,2148-2152.
    [144]Lin C. M., Hsu C. F., Mon Y. J. Self-organizing fuzzy learning CLOS guidance law design[J]. IEEE Transactions on Aerospace and Electronic Systems,2003, 39(4):1144-1151.
    [145]Yuan L. Y., Li S. Y. Missile guidance law using nonlinear robust output regulation and T-S model[C]. Proceedings of the 2th IEEE Conference on Industrial Electronics and Applications,2007,1037-1042.
    [146]Savkin A. V., Pathirana P. N. Problem of precision missile guidance:LQR and H∞ control frameworks [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003,39(3):901-910.
    [147]Shi eh C. S. Tunable H∞ robust guidance law for homing missiles[J]. IEE Proceedings of Control Theory and Applications,2004,151(1):103-107.
    [148]郭庆,杨明,王松艳.三轴稳定质量矩拦截器末制导律研究[J].系统仿真学报,2007,19(7):1531-1534.
    [149]郭庆,秦开宇,杨明.质量矩复合控制拦截器一体化制导控制方法[J].固体火箭技术.2010,33(4):363-368.
    [150]高长生,李瑞康,荆武兴.新型制导律在变质心再入飞行器中的应用[J].哈尔滨工业大学学报.2009,41(3):6-10.
    [151]郭锡福.底部排气弹外弹道学[M].北京:国防工业出版社,1995.
    [152]丁则胜,陈少松,刘亚飞等.环境温度对底排效应的影响[J].弹道学报. 2003,15(1):37-40.
    [153]陈新虹,黄华,周志超等.排气能量对底部排气弹气动特性影响的数值模拟[J].兵工学报.2010,31(4):447-452.
    [154]张领科,周彦煌,余永刚.底排装置工作不一致性对射程散布影响的研究[J].兵工学报,2010,31(4):442-446.
    [155]张领科,周彦煌,余永刚.底排点火具射流特性对点火延迟时间的影响[J].弹道学报,2010,22(3):8-12.
    [156]杨博,周军,郭建国.偏转弹头导弹的动力学建模方法研究[J].航空学报.2008,29(4):909-913.
    [157]宋丕极.枪炮与火箭外弹道学[M].北京:兵器工业出版社,1993.
    [158]徐明友.火箭外弹道学[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [159]浦发,芮筱亭.外弹道学[M].北京:国防工业出版社,1989.
    [160]钱杏芳等.导弹飞行力学[M].北京:北京理工大学出版社,2000.
    [161]张友安,杨旭,崔祜涛.应用动态逆和时间尺度分离的BTT导弹控制[J].飞行力学.1999,17(2):87-91.
    [162]张友安,王宏然,程继红.应用动态逆和三时标分离的飞航导弹过载控制系统设计[J].宇航学报.2006,27(增刊):6-11.
    [163]许可康.控制系统中的奇异摄动[M].北京:国防工业出版社,1986.
    [164]胡荣林,李兴国.确定射程弹道修正弹阻力器展开时刻的算法研究[J].兵工学报,2008,29(2):235-239.
    [165]王宝全,李世义,申强等.一维弹道修正引信阻尼弹道系数的优化与仿真[J].弹道学报,2002,14(4):67-73.
    [166]陈科山,马宝华,何光林等.一维弹道修正引信阻力器的研究现状分析及其设计原则探讨[J].探测与控制学报,2003,25(3):24-29.
    [167]张强,高敏,余建华.一维弹道修正引信DCM启动时间快速计算方法研究[J].探测与控制学报,2004,26(1):28-31.
    [168]史金光,王中原,曹小兵等.一维弹道修正弹气动力计算方法和射程修正量分析[J].火力与指挥控制,2010,35(7):80-83.
    [169]陶陶,王海川.一维弹道修正弹阻力环修正控制算法研究[J].指挥控制与仿真,2009,31(3):88-93.
    [170]王永周,刘明喜,赵小侠.一维弹道修正弹阻力执行机构开启时间确定算法[J].弹箭制导学报,2009,29(6):165-167.
    [171]王宝全,李世义,何光林等.一维弹道修正引信射程扩展量的计算方法[J].探测与控制学报,2002,24(4):17-20.
    [172]Cloutier J. R., Souza C.N., Mracek C.P. Nonlinear regulation and nonlinear control via the state-dependent Riccati equation technique[C]. Proceedings of the 1st International Conference on Nonlinear Problems in Aviation and Aerospace,Daytona Beach, RL, USA,1996:117-141.
    [173]Cloutier J. R. State-dependent Riccati equation techniques:an overview[C]. Proceedings of the American Control Conference[C]. Albuquerque,NM,USA, 1997:932-936.
    [174]Cloutier J. R., Stansbery, D.T. Nonlinear hybrid bank-to-turn/skid-to-turn missile autopilot design[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, August6-9,2001.
    [175]Cloutier J. R., Stansbery D.T. All-aspect acceleration limited homing guidance[C]. Proceedings of AIAA guidance, Navigation and Control Conference, Portland, 1999:633-639.
    [176]Mracek, C.P. SDRE autopilot for dual controlled missiles[C]. Proceedings of the IFAC Symposium on Automatic Control in Aerospace, Toulouse, France.2007.
    [177]Salamci, M.U., Gokbilen B. SDRE missile autopilot design using sliding mode control with moving sliding surfaces[C]. Proceedings of the IFAC Symposium on Automatic Control in Aerospace, Toulouse, France,2007.
    [178]张军,徐世杰.基于SDRE方法的挠性航天器姿态控制[J].宇航学报,2008,29(1):138-144.
    [179]Stansbery D.T., Cloutier J. R. Position and attitude control of a spacecraft using the state-depended Riccati equation technique[C]. Proceedings of the American Control Conference, Chicago,IL,2000:1867-1871.
    [180]Bogdanov, A. and E. Wan. State-dependent Riccati equation control for small autonomous helicopters[J]. AIAA Journal of Guidance, Control, and Dynamics, 2007,30:47-60.
    [181]Ming Xin, Balakrishnan S. N., Ohlmeyer E. J. Guidance law design for missiles with reduced seeker field-of-view [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado,2006.
    [182]Ming Xin, Balakrishnan S. N. A new optimal nonlinear control method and its application to missile guidance law design[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, USA,2002:1-10.
    [183]Ming Xin, Balakrishnan S. N. A new method for suboptimal control of a class of non-linear systems [J]. Optimal Control Applications and Methods,2005,26(2):55-83.
    [184]Ming Xin, Balakrishnan S. N., Ohlmeyer E. J. Integrated guidance and control of missiles with method [J]. IEEE Transactions on Control Systems Technology,2006, 14(6):981-992.
    [185]Anderea B., Mario I., Lorenzo P. A Newton algorithm for implementation of SDRE controllers[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisico, California, USA,2005:1-12.
    [186]Guo C, Lancaster P. Analysis and modification of Newton's method for algebraic Riccati equations[J]. Mathematic of Computation,1998,67(223):1089-1105.
    [187]张晨光,陈大融.拦截机动目标的一种鲁棒末制导律设计[J].清华大学学报,2007,47(8):1300-1303.
    [188]葛连正,赵立军等.一种前向拦截的非线性变结构制导律[J].系统仿真学报,2009,21(6):1663-1666.
    [189]Sima V. An Efficient Schur Method to solve the stabilizing problem[J]. IEEE Transactions on Automatic Control,1981, AC26(3):724-725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700