几种低分子量有机酸、磷酸对BSA和酶在土壤胶体、矿物表面的吸附及活性影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文在分析总结了国内外有关研究的基础上,用批量法和傅立叶变换红外光谱(FTIR)法首次系统地研究了乙酸、草酸、酒石酸和磷酸几种配体的浓度、pH及加入顺序对牛血清白蛋白(BSA)、酸性磷酸酶在黄棕壤、砖红壤、高岭石、针铁矿和二氧化锰表面的吸附行为及活性的影响,探讨了这些配体对蛋白吸附机理及二级结构的影响。这对深入探讨土壤对酶与白蛋白吸附中有关组分的相互作用机理,阐明影响土壤酶活性的因素,对土壤肥力和环境质量的提高与调控有重要的理论和实际意义。取得的主要结果和进展有:
     1、在FTIR测试中,首次用真空冷冻干燥法明确了:草酸和针铁矿表面均可使BSA的正常β-折叠减少,无规卷曲结构增加;两者对BSA的异常β-折叠、α-螺旋和β-转角结构含量的贡献相反,针铁矿表面可使有序结构增加且与蛋白加入浓度密切相关:草酸可使BSA中的疏水性羰基增加,亲水性羰基减少,而针铁矿表面的作用则相反。
     2、提出了:1)对供试胶体悬浊液中土壤胶体进行快速精确定量的方法,即:将制成的供试胶体悬浊液经超声波和磁力搅拌充分分散,再用移液枪定量吸取的方法是可行的;2)在待试液混合前分别调控其pH以控制试验体系pH的方法,可取得较为满意的结果。
     3、不同阴离子配体对酶与蛋白在土壤胶体、矿物表面的吸附及活性影响研究中,首次明确了配体对蛋白吸附及活性的影响程度取决于胶体的表面类型、酶与蛋白的种类、配体分子的大小、浓度、功能团的数量、体系的pH及配体的加入顺序等。
     1)首次揭示出:<10mmol/L的乙酸对供试胶体表面蛋白的吸附有促进作用,>10mmol/L的乙酸则轻微抑制;<5mmol/L的草酸对蛋白吸附表现为抑制,>5mmol/L后有促进作用;酒石酸或磷酸浓度的升高对蛋白吸附表现为一直抑制。磷酸对针铁矿上蛋白吸附抑制最显著,酒石酸对土壤胶体和高岭石上的抑制最明显,且发现不同阴离子配体的存在使供试土壤胶体和矿物对蛋白的吸附产生选择性,揭示出胶体矿物的表面类型、配体分子的大小及功能团在决定胶体矿物表面蛋白吸附中起重要作用。
     2)阐明了:A)蛋白等温吸附曲线的类型与配体的种类、浓度密切相关;B)乙酸、草酸、低浓度酒石酸和磷酸体系中,蛋白的等温吸附曲线与Langmuir方程(类型为H或L型)相符,而高浓度酒石酸(>50mmol/L)或磷酸(>100mmol/L)体系中的蛋白等温吸附符合线性方程(C型);C)乙酸或磷酸加入顺序对供试胶体酶的等温吸附曲线形状、最大吸附量和吸附结合能影响较小(磷酸对针铁矿除外);草酸或酒石酸对上述吸附参数影响均显著。这可能与它们加入顺序不同导致的吸附机理不同有关。
     3)发现:A)胶体表面类型(硅氧烷表面或羟基化表面)及阴离子配体对胶体表面负电荷的贡献量在酶的吸附及活性保持中的重要性:B)阴离子配体后加入时酶的吸附量一般比配体先加入时的高;C)配体加入顺序对二氧化锰的影响最显著,对砖红壤和
    
     高岭石的居中;对针铁矿的次之:对黄棕壤的最小。D)乙酸或草酸加入顺序对高岭
    石上固定化酶比活性的影响最大,而酒石酸或磷酸则对针铁矿影响最大。
     4)供试胶体上酶的最大吸附量的pH一般在酶的等电点和供试胶体的PZC之间,
    曲线形状为“坡形”或“钟形”,本试验结果完善并证实了非对称性模型假说。随配体
    体系pH变化,针铁矿上酶的比活性远比其它胶体上的高,且一般有两个最大比活性点,
    分别在pH 4.0和6.5附近;其它胶体上则只有一个,在pH 4.8一6.1,与原酶相比有所漂
    移,说明配体的存在使固定化酶活性中心的微域环境发生改变。
     5)供试胶体与不同配体复合物(L一C)的无机催化活性大小顺序为:磷酸>>酒石酸
    >草酸>乙酸,这与文献报道的有关配位复合物的稳定常数及其对供试胶体表面的溶解能
    力非常吻合。从胶体类型来看则为:针铁矿>>二氧化锰>层状硅酸盐类矿物,说明配体
    在胶体表面的存在使胶体具有了伪酶的作用。
The effect of the concentration, pH of several ligands such as acetate, oxalate, tartrate and phosphate solution and their orders added on the adsorption and activity of BSA and acid phosphatase on yellow brown soil, latosol, kaolinite, goethite and -MnO2 was first systematically studied by using batch and FTIR methods after analyzed and studied the relative literature that reported in the world. The impact of these ligands on the adsorption mechanism and secondary structure of protein was simultaneously engaged. These studies have important significances in scientific field and practice for probe into interaction mechanism of the relate compositions in the adsorption of BSA and enzyme and for clarification the factors affecting soil enzyme activity, as well as for improving soil fertility and environmental quality. Some main results and progressions are illustrated as follows:
    1. The results of FTIR in vacuum for the first time indicated that: Both oxalate and goethite surface can make the -sheet of BSA decrease, and make that of random bent increase of BSA. The effect action of oxalate and goethite surface on the content of abnormity -sheet, -helix and -turn structure in BSA was contrary, whereas the goethite surface can make the ordered structure increase of BSA, and it related nearly to the concentration of BSA added into the system. Oxalate can make the increase of C=O in hydrophobic situation of BSA, and make the decrease of C=O in polar situation of BSA. However, the action of goethite surface in this aspect was contrary.
    2. The quick-speed and accurate method provided by author such as 1). Suspension prepared by adding deionized water into soil colloids and minerals tested to be dispersed by ultrasonic and magnetic force stirrer, sucked with finnpipette to get quantitative soil colloids and minerals was validity; 2). The method by adjusting the pH of each sample solution before mixing them can control the pH of reaction system in the true sense.
    3. In the research of effects of ligands on adsorption and activity of protein and enzyme on soil colloids and minerals studied, we elucidated for the first time that: The influencing degree of ligands on adsorption and activity of protein and enzyme were depended on surface type of colloids, the kind of protein and enzyme, the magnitude ligand, the content of function group, the concentration and pH of lignad solution, and the addition order of ligands and enzyme and so on.
    1) First revealed that: (1) there were stimulative action of acetate in low concentration
    
    
    (<10mmol/L) for proteins adsorption on the surface of soil colloids and minerals studied whereas the weak restraint action would be happened when acetate concentration was over 10 mmol/L; (2) For oxalate system, the adsorption amount of protein firstly decreased (0-5mmol/L), followed with an increment (>5mmol/L); (3) For the tartrate and phosphate system, with the concentration of them increasing, the amount of protein adsorbed by colloids tested would be depressed considerably and progressively. (4) Phosphate shows the greatest impact for the adsorption of protein on Fe oxide surface whereas the tartrate may pose a greater effect on the protein adsorption for other sorts of surfaces, such as layer aluminum silicate minerals. One found that the selectivity of soil colloids and minerals for the protein adsorption would be caused by the presence of different anion ligands in system. This proved that the protein adsorption on the surface of soil colloids and minerals at a certain degree depend upon the surface type of colloids, the molecular magnitude and function group of ligands.
    2). Elucidated that: (1) The type of adsorption isotherm related nearly to the kind and concentration of ligands. (2) In acetate, oxalate and low concentrations of tartrate and phosphate solution, the adsorption isotherms for the proteins on soil colloids and minerals tested conformed to the Langmuir model (L or H type) whereas a linear (C type) adsorption isotherm was obtained at higher concentrations of ta
引文
1.于天任主编.土壤化学原理。北京,科学出版社,1987
    2.中国科学院南京土壤研究所主编.土壤理化分析。上海:上海科学技术出版社,1978
    3.田中民,李春俭,王晨,赵紫娟.缺磷白羽扇豆排根与非排根区根尖分泌有机酸的比较。植物生理学报。2000,26(4):317-322
    4.田宝珍,汤鸿宵.聚合铁的红外光谱和电导特征。环境化学。1990,9(6):70-76
    5.关松荫等主编.土壤酶及其研究法。北京:农业出版社。1986
    6.刘凡,介晓磊,贺纪正等.不同pH条件下针铁矿表面磷的配位形式及转化特点.土壤学报,1997,34:367-374
    7.刘凡,贺纪正,李学垣,徐凤琳,何慧,王典芬.磷溶液浓度与针铁矿表面吸附磷的化学状态。科学通报。1994,39:1996-1999
    8.江泽洲.疏水力的热力学分析及生物学意义.湖北工学院学报。1997,12(1):85-87
    9.吴桦,范涌,隋森芳.疏水表面对牛血清白蛋白二级结构的诱导。生物化学与生物物理学报。1993,25(6):611
    10.宋克敏,焦新之,李琳,颜季琼.磷酸饥饿时番茄幼苗酸性磷酸酶活性的变化与PI吸收的关系。云南植物研究。1999,21[1]:101—108
    11.宋勇春,李晓林,冯固,张福锁.菌根际及菌丝酸性磷酸酶活性的简易测试。科学通报。2000,45:187-191
    12.张宝贵,李贵桐,孙钊,王建奎.两种生态类型蚯蚓几种消化酶活性比较研究。生态学报,2001.21:978-981
    13.李玉京,李滨,刘建中,李继云,姚树江,李振声.长穗偃麦草酸性磷酸酶与碱性磷酸酶编码基因的柒色体定位。遗传学报。1998,25(5):449—453
    14.沈阿林,李学垣.土壤中低分子量有机酸在物质循环中的作用。植物营养与肥料学报。1997,3(4):363-371
    15.沈淑娟编著.波谱分析法。上海,华东理工大学出版社,1992
    16.苏友波,王贺,张俊伶,李晓林,张福锁.丛枝菌根对三叶草根际磷酸酶活性的影响。植物营养与肥料学报。1998,4(3):264-270
    17.周礼恺编著.土壤酶学。北京,科学出版社。1987
    18.俞志明,马锡年,谢阳.粘土矿物对海水中主要营养盐的吸附研究。海洋与湖沼。1995,26(2):208-214
    19.姜明华.铁、铝氧化物及高岭石对脲酶、蔗糖酶的吸附和活性的影响。[硕士学位论文]。武汉,华中农业大学,1996
    20.洪山海编著.光谱解析法在有机化学钟的应用。北京,科学出版社。1980
    21.钟海庆编.红外光谱法入门。北京,化学工业出版社。1984
    22.涂书新,孙锦荷,郭智芬,谷峰.植物根系分泌物与根际营养关系评述。土壤与环境,2000,9(1):64-67
    23.黄巧云,李学垣.粘粒矿物、有机质对酶活性的影响。土壤学进展,1995,23:12-18
    24.谢晶曦编著.红外光谱在有机化学和药物化学中的应用。北京,科学出版社,1987
    25.廖丽霞.有机酸对土壤表面电荷性质及次级吸附Cd2+的影响。[硕士学位论文]。武汉,华中农业大学。2001
    26. Ae N, Arihada J, Okada K, Yashihara T, Johansen C. Phosphorus uptake by pigeon pea and its role in cropping system of the India Subcontinent. Science. 1990,248:477-480
    27. Albert J T and Harter R D. Adsorption of lysozyme and ovalbumin by clay: Effect of clay suspension
    
    Ph and clay mineral type. Soil Sci. 1973,115(2):130-136
    28. Ali M A and Dzombak D A. Competitive sorption of simple organic acids and sulfate on goethite Environ. Sci. Technol. 1996,30:1061-1070
    29. Aliev R A and Zvyagintsev D G. Effect of proteolytic enzymes on free and adsorbed catalase and on the catalase activity of soils. Prochvovedenie. 1974,29:97-104
    30. Appelt H, Coleman N Tand Pratt P F. Interactions between organic compounds, minerals and ions in volcanic-ash-derived soils: I. Adsorption of benzoate, p-OH benzoate, salicylate and phthalate ions. Soil Sci. Soc. Am. Proc. 1975,39:623-627
    31. Armstrong D E and Chesters G. Properties of protein-bentonite complexes as influenced by equilibrium conditions. Soil Sci. 1964,98:39-52
    32. Asanov Alexander N, Lawrence J Delucas, Philip B Oldham, Wilson W William. Interfacial Aggregation of Bovine Serum Albumin Related to Crystallization Conditions Studied by Total Internal Reflection Fluorescence. J Colloid Interface Sci. 1997, 196: 62-73
    33. Atkinson R J, Parfitt R L and Smart R St C. Infrared study of phosphate adsorption on goethite. J Chem Soc Faraday Trans. 170,1472-1479
    34. Atkinson R J, Posner A M and Quirk J P. Adsorption of potential determining ions at the ferric oxide aqueous electrolyte interface. J physic Chem. 1967,71:550-558
    35. Balistrieri L S and Chao T T. Selenium adsorption by goethite. Soil Sci Soc Am J. 1987,51 : 1145-1151
    36. Balizani V and Carassiti V. Photochemistry of coordination compounds. Academic Press, New York, N. Y., 1970, pp.432
    37. Barnhisel R I And Bertsch P M. Chlorites and hydroxy-interlayered vermiculite and smectite. In Minerals in Soil Envronments (2nd edition), J. B. Dixon and S. B. Weed. Eds. Soil Science Society of America, Madison, Wisconsin,1989,729-788
    38. Baron M H, Revault M, Servagent-Noinville S, J Abadie, and H Quiquampoix. Chymotrypsin Adsorption on Montmorillonite:enzymatic activity and kinetic FTIR structural analysis. J Colloid Interface Sci. 1999, 214:319-332
    39. Barrett-Lennard E G, Greenway H. Partial speration and characterization of soluble phosphatase from leaves of wheat grown under phosphorus deficiency and water deficit. J Exp Bot. 1982,33:694-704
    40. Barrow N J. Reactions with Variable Charge Soils. Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1987
    41. Barrow N J. A mechanistic model for describing the sorption and desorption of phosphate by soil. J Soil Sci, 1983,34:733-750
    42. Barrow N J. An evaluation of the immiscible displacement method for studying the reactions between soil and phosphate. Fertilizer Research. 1982,3:423-433
    43. Barrow N J. The effect of time on competition between anions for sorption. J Soil Sci. 1992,43:421-428
    44. Beck J L, McArthur L A, Summors A C, Arnold W N, De J ersey A and Zemer B. Properties of purple acid phosphatase from red kidney bean: a zinc-iron metalloenzyme. Biochim Biophys Acta. 1986,869:61-68
    45. Bhatti J S, Comerford N B, Johnston C T.Influence of oxalate and soil organic matter on sorption and desorption of phosphate onto a spodic harizon. Soil Sci Sco Am J. 1998,62:L1089-1095
    46. Bolan N S and Barrow N J. Modelling the effect of adsorption of phosphate and other anions on the surface charge of variable charge oxides. J Soil Sci. 1984,35:273-281
    47. Bollag J-M, Meyers C, Pal S and Huang P M. The role of abiotic and biotic catalysts in the
    
    transformation of phenolic compounds. In Huang P Met al. eds., Environmental impact of soil component interactions. Vol.2. Natural and anthropogenic organics. CRC Press/Lewis Publ., Boca Raton, FL. 1995,299-310
    48. Bord S A and Mortland M M. Enzyme interactions with clay-organic matter complex. In Soil Biochemistry, Vol.6, J. M. Bollag and G. Stotzky, eds. Marcel Dekker. New York. 1986,1-28
    49. Bornermisza E and Llanos R. Sulphate movement, adsorption and desorption in three Costa Rican soils. Soil Science Society of America Proceedings. 1967,31:356-360
    50. Bosetto M, Arfaioli P, Pantani O L and Ristori G G. Study of the humic-like compounds formed from L-tyrosine on homoionic, clays Clay Miner. 1997,32:341-349
    51. Bowden J W, Nagarajah S, Barrow N J, Posner A M and Quirk J P. Describing the adsorption of phosphate, citrate and selenite on a variable-charge mineral surface. Australian Journal of Soil Reseach. 1980,18:49-60
    52. Bowen W Richard, Diana T Hughes. Ion exchange of proteins: a microcalorimetric study of the adsorption of bovine serum albumin on anion-exchange materials. J Colloid Interface Sci. 1993,158:395-402
    53. Boyd S A and M M Mortland. Enzyme interactions with clays and clay-organic matter complexes. R 1-28. InBollag J-M and Stotzky G ed., Soil biochemistry. Vol.6. New York: Marcel Dekker. 1990
    54. Boyd S A and Mortland M M. Selective effects of smectite organic complexes on the activities of immobilized enzymes. J Mo. Catal. 1986,34:1-8
    55. Boyd S A and Mortland M M. Urease activity clay-organic complex. Soil Sci Soc Am J. 1985,49:619-622
    56. Braum S M. Mobilization of phosphorus and other mineral nutrients by citrate in the rhizophere of white lupin(Lupinus albus L.) Ph.D. thesis. Madison,University of Wisconsin. 1995
    57. Breeuwsma A and Lyklema J. Physical and chemical adsorption of ions in the electrical double layer of haematite (α-Fe2O3). J Colloid Interface Sci. 1973,43:437-448
    58. Brown W Richard, Diana T Hughes. Ion exchange of proteins: a microcalorimetric study of the adsorption of bovine serum albumin on anion-exchange materials. J Colloid Interface Sci. 1993,158:395-402
    59. Burns R G. Enzyme activity in soil: Location and a possible role in microbial ecology. Soil Bio Biochem. 1982,14:423-427
    60. Cabrejas Manchado M, Guil J M, Perez Masia A, Ruiz Panirgo A and Trejo Menayo J M. Langmuir. 1994,10:685-691
    61. Calamai L. Interaction of catalase with inorganic and organic smectite surfaces. Agrochimica.1991,35:280-284
    62. Calamai L, Lozzi I, Stotzky G, Fusi P, Ristori G G. Interaction of catalase with montmorillonite homoionic to cations with different hydrophobicity:effect on enzymatic activity and microbial utilization. Soil Biol Biochem.2000, 32:815-823
    63. Carrasco M S, Rad J C and Gonz(?)lez-Carcedo S. Immobilization of alkaline phosphatase by sorption on Na-sepiolite. Bioresou. Technol. 1995,51 : 175-181
    64. Celi Luisella, Elisabetta Barberis, Franco Ajmone Marsan. Sorption of phosphate on goethite at high concentrations. Soil Sci, 2000, 165 (8): 657-664
    65. Cemic M, Borkovec M and Westall J C. Affinity Distribution Description of Competitive Ion Binding to Heterogeneous Materials. Langmuir.. 1996,12:6127-6137
    66. Chao T T. Anionic effects on sulphate adsorption by soils. Soil Science Soc. Am. Proce.
    
    1964,28:581-583
    67. Chao T T, Harward M E and S C Fang. Adsorption and Desorption phenomena of sulphate ions in soil. Soil Science Soc. Am. Proce. 1962,26:234-237
    68. Charlet L, Disc N and Stumm W. Sulfate Adsorption on a Variable Charge Soil and on Reference Minerals. Agr Ecosys. Environ. 1993,47:87-102
    69. Claus H and Z Filip. Effects of clays and other solids on the activity of phenoloxidases produced by some fungi and actinomycetes. Soil Biol Biochem. 1990,22:483-488
    70. Cline G R, Powell P E, Szaniszlo P J and C P P Reid. Comparison of the abilities of hydroxyamic, synthetic, and other natural organic acids to chelate iron and other ions in nutrient solution. Soil Sci Soc Am J. 1982,46:1158-1164
    71. Cornell R M and Schwertmann U. Influence of organic anions on the crytallization of ferrihydrite. Clays Clay Miner. 1979,27:402-409
    72. Cornell R M, Posner A M and Quirk J E Crystal morphology and the dissolution of goethite. J Inorg Nucl Chem. 1974,36:1937-1947
    73. Cristofaro A De, He J Z, Zhou D H and Violante A. Adsorption of phosphate and tartrate on hydroxy-aluminum-oxalate precipitates. Soil Sci Soc Am J. 2000,64:1347-1355
    74. Curtin D and Syers J K. Mechanisms of sulphate adsorption by two tropical soils. J Soil Sci. 1990,41:295-304
    75. David E Armstrong and Chesters G. Properties of protein-bentonite complexes as influenced by equilibration conditions. Soil Sci. 1964,98:39-52
    76. Davis J A and Kent D B. Reviews in Mineralogy. In: Hochella M F and White A F Eds., Mineral-water Interface Geochemistry. Vol. 23, Washington DC: Mineralogical Socirty of America, 1990,177-189
    77. Deb D L and Datta N E Effect of associated anions on phosphorus retention in soil:Ⅰ. Under variable P concentrations. Plant Soil. 1967,26:303-316
    78. Dec J and Bollag J-M. Dehalogenation of chlorinated phenols during oxidative coupling. Environ Sci Technol. 1994,28:484-490
    79. DeEndredy A S. Estimation of free iron oxides in soils and clays by a photolytic method. Clay Miner Bull. 1963,9:209-217
    80. Dick M A and Tabataibai M A. Kinetics and activities of phosphatase-clay complexes. Soil Sci.1987,143:5-14
    81. Dick W A, Juma N G and Tabatabai M A. Effects of soils on acid phosphatase and inorganic pyrophosphatase of corn roots. Soil Sci. 1983,136(1): 19-25
    82. Duinhoven S, Poort R, Van Der Voet G, W G M Agterof, W Norde, and J Lyklema. Driving force for enzyme adsorption at solid-liquid interfaces: 1. The serine protease savinase. J Colloid Interface Sci. 1995,170:340-350
    83. Durmus A, Ficken C, Sift B H. The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas): Metal content and spectroscopic characterization. Eur J Biochem. 1999, 260:709-716
    84. Dynes J J and Huang P M. Influence of citrate on selenite adsorption-desorption on short-range ordered aluminum hydroxides. In Huang P M et al. eds., Environmental impact on soil component interactions. Vol.2. Metals, other inorganics, and microbials activities. CRC/Lewis Publishiers, Boca Raton. FL. 1995,47-61
    85. Dynes J J and Huang P M. Influence of organic acids on selenite sorption by poorly ordered aluminum hydroxides. Soil Sci Soc Am J. 1997,61:772-783
    
    
    86. Dzombak D A and Morel F M M. Surface complexation modeling: Hydrous Ferric Oxide. New York:John Wiley, 1990
    87. Earl K D, Syers J K, and Mclaughlin J R. Origin of the effect of citrate, tartrate, and acetate on phosphate sorption by soil and synthetic gels. Soil Sci Soc Am J. 1979,43:674-678
    88. Evans A Jr, and Zelanzny L W. Kinetics of aluminum and sulfate release from forest soil by mono-and diprotic aliphatic acids. Soil Sci. 1990, 149:324-330
    89. Fan Liu, He Jizheng, Claudio Colombo and Antonio Violante. Competitive adsorption of sulfate and oxalate on goethite in the absence or presence of phosphate. Soil Sci. 1999,164(3): 180-189
    90. Fendorf S, Eick M J, Grossl P and Sparks D L. Arsenate and chromate retention on goethite: 1. Surface structure. Environ Sci Technol. 1997,31:315-320
    91. Filius Jeroen D, Tjisse Hiemstra and Willem H Van Riemsdijk. Adsorption of small weak organic acids on goethite: modeling of mechanisms. J Colloid Interface Sci. 1997,195:368-380
    92. Fox T R and Comerford N B. Soil microbial population numbers and enzyme activities in relation to altitude and forest degradation. Soil Biol Biochem. 1992,24(8):761-767
    93. Fox TR, Comerford N B and Mcfec W W. Kinetics of phosphorus release from spodosols: Effects of oxalate and formate. Soil Sci. Soc Am J. 1990,54:1441-1447
    94. Fox TR, Comerford N B and Mcfec W W. Phosphorus and aluminum release from a spodic horizon mediated by organic acids. Soil Sci Sco Am J. 1990,54:1763-1767
    95. Fuller C F, Davis J A and Waychunas G A. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim Cosmochim Acta. 1993,57:2271-2282
    96. Fusi P, Ristorl G G, Calamai L and Stotzky G. Adsorption and binding of protein on "clean" (homoionic) and "dirty"(coated with Fe oxyhydroxides) montmorillonite,illite and kaolinite.Soil Biol Biochem. 1989,21:911-920
    97. Garwood G A, Mortland M M and Pinnavaia T J. Immobilization of glucose oxide on montmorillonite clay and ionic modes of binding. J Mol Catal. 1983,22:153-163
    98. Gediminas Niaura, Adolfas K Gaigalas and Vincent L Vilker. Surface-Enhanced Raman spectroscopy of phosphate anions: adsorption on siliver, gold and copper electrodes. J Phys Chem. 1997, B 101,92: 50-62
    99. Gianfreda L and Bollag J. Effect of soils on the behavior of immobilized enzymes. Soil Sci Soc Am J. 1994,58:1672-1681
    100. Gianfreda L and Violante A. Activity, stability and kinetic properties of enzymes immobilized on clay minerals and organo-mineral complexes. In Huang P M, Bertherlin J et ai Eds., Environmental impact of soil component interaction, Lewis publishers. 1995
    101. Gianfreda L. Adsorption, activity and kinetic properties of urease on montmorillonite complexes. Soil Biol Biochem. 1992,24(1):51-58
    102. Gianfreda L. Interactions of invertase with tannic acid, hydroxy-aluminium(OH-Al) species or montmorillonite. Soil Biol Biochem. 1993,25(6):671-677
    103. Gianfreda L. Invertase (β-Fructosidase): Effects of montmorillonite, Al-hydroxide and Al(OH)x-Montmorillonite complex on activity and kinetic properties. Soil Biol Biochem. 1991,23(6): 581-587
    104. Gianfreda L. Kinetic behavior of sythetic organo-and organo-mineral-urease complexes. Soil Sci Soc Am J. 1995, 59:811-815
    105. Giles C H, MacEwan T H, Nakhwa S N. Studies in adsorption Part Ⅺ. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurement
    
    of specific surface area of solids. Journal of the chemical society. 1960:3973~3993
    106. Goldberg S. Use of surface complexation models in soil chemical systems. In Sparks J L Ed., Advances in Agronomy, Vol.47, San Diego, Academic Press, 1992,233-329
    107. Goldberg Sabine and Cliff T Johnston. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements,vibrational spectroscopy, and surface complexation modeling. J Colloid Interface Sci.2001,234: 204-216
    108. Goldstein L. Guidelines for the characterization of immobilised biocatalysts. In: Mosbak K ed., Methods in Enzymology, Vol.44, New York, Acsdemic Press, 1976, 397-408
    109. Grego S, D'Annibale A, Luna M, Badalucco L and Nannipieri P. Multiple forms of synthetic pronase-phenolic copolymers. Soil Biol Biochem. 1990,22(5):721-724
    110. Griffith S M and Thoma R Ls. Activity of immobilized pronase in the presence of montmorillonite. Soil Sci So. Am J. 1979,43:1138-1140
    111. Grossl P R, Eic Mk, Sparks D L, Goldberg S and Ainsworth C C. Arsenate and chromate retention mechanisms on goethite. 2. Kinetics evaluation using a pressure-jump relaxation technique. Environ Sci Technol. 1997,31:321-326
    112. Gunning Patrick, Piet W J De Groot, Jasp Vissert, Victor J Morris. Atomic force microscopy of a hydrophobin protein from the edible mushroom Agaricus bisporus. J Colloid Interface Sci. 1998,2001:118-126
    113. Hamzehi E and W Pflug. Sorption and binding mechanism of polysaccharide cleaving soil enzymes by clay minerals. Z Pflanzene rhaehr Bodebd. 1981,144:505-513
    114. Harley J L. The significance of mycorrhiza. Mycological Research. 1989,92:129-139
    115. Hayes K F, Papelis C and J G Leckie. Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. J Colloid Interface. 1988, 125(2):717-726
    116. Hayes K F, Roe A L, Brown G E, Hodgson K O, Leckie J O and G A Parks. In situ. X-ray adsorption study of surface complexes: Selenium oxyanion on α-FeOOH. Science(Washion, DC.). 1987,238:783-786
    117. He J Z, Cristofaro A De and Violante A. Comparison of adsorption of phosphate, tartrate, and oxalate on hydroxy aluminum montmorillonite complexs. Clays and Clay Minerals. 1999, 47(2): 226-233
    118. Hiemstra T and Riemsdijk W H Van. Surface structural ion adsorption modeling of competitive binding of oxyanions by metal (hydr)oxides. J Colloid Interface Sci. 1999,210:182-193
    119. Hiemstra T, Venema P and Van Riemsdijk W H. Intrinsic Proton Affinity of Reactive Surface Groups of Metal (Hydr)oxides: The Bond Valence Principle. J Colloid Interface Sci. 1996,184(2):680-692
    120. Hingston F J. Specific adsorption of anions on ggoethite and gibbsite. Ph. D. thesis. University of Western Australia. 1970
    121. Hingston F J, Posner A M and Quick J P. Anion adsorption by goethite and gibbite I. The role of the proton in determiniting adsorption envelopes. J Soil Sci. 1972,23:177-192
    122. Hirata H, Hisaka H, Hirata A. Effects of phosphorus and potassium deficiency treatment on roots screation of wheat and rice seedlings. Soil Sci Plant Nutr. 1982,28:543-552
    123. Hsia T H, Lin S -L Lo C -F and Lee D Y. Characterization of arsenate adsorption on hydrous iron oxide using chemical and physical methods. Colloids Surfaces A: Physicochem. Eng Aspects. 1994,85:1-7
    124. Huang P M. The role of short-range ordered mineral colloids in abiotic transformations of organic components in the environment. P. 135-167. In Huang P M et al. eds., Environmental impact of soil component interactions. Vol.1. Natural and anthropogenic organics. CRC Press/Lewis Publ., Boca
    
    Raton, FL. 1995
    125. Huang Q and Li X. Effects of clay minerals and organic matter on the activity of enzymes. Progress in Soil Sci. 1995,23:192-198
    126. Huang Q Y. Adsorption, activities and kinetics of acid phosphatase as influenced by montmorillonite with different interlayer material. Soil Sci. 1995, 159(4):271-278
    127. Huang Q Y, Shindo H. Effects of copper on the activity and kinetics of free and immobilized acid phosphatase. Soil Biol Biochem. 1999
    128. Huang Q Y, Jiang M, and Li X. Adsorption and activity of invertase as influenced by iron, aluminum oxides and kaolinite. Preceedings of the 16th world congress of Soil Science. Montpellier, France. 1998,pp.750
    129. Huang Q Y, Jiang M, and Li X. Adsorption and properties of urease immobilized on several iron, aluminum oxides and kaolinite. In Berthelin J; Huang P M, Bollag J M and Andreux F Eds., Effect of Mineral-Organic-Microorganism interactions on Soil and Freshwater Environment. London: Kluwer Academic/Plenum publishers, 1999,167-174
    130. Huang Q Y, Jiang M, and Li X. Effects of iron and aluminum oxides and kaolinite on adsorption and activity of invertase. Pedosphere. 1998,8:251-260
    131. Huang Q Y, Jiang M, and Li X. Effects of several oxides and kaolinite on the adsorption,activity and kinetics of urease. In: Zhihong Cao et al eds., Soil, Human and Environment Interactions, Beijing: China Science & technology Press, 1997,392-400
    132. Huang Q Y, Jiang M, and Li X. Influence of several soil colloids in central-south China on the adsorption, activity, kinetics and stability of urease enzyme. Journal of WuhanUniversity of Technology. 1997,12:25-32
    133. Huang Q Y, Chen W, and shindo H. Comparison of the influence of Cu, Zn and Cd on the activity and kinetics of free and immobilized acid phosphatase. Pedosphere. 1999
    134. Hue N V. Effects of organic acids/anions on P sorption and phytoavailability in soils with different mineralogies. Soil Sci. 1991,152(6): 463-471
    135. Hughes J D and Simpson G H. Arylsulphatase-clay interations. Ⅱ. The effect of kaolinite and montmorillonite on arylsulphatase activity. Aust J Soil Res. 1978,16:35-40
    136. Inskeep W P. Adsorption of sulphate by kaolinite and amorphous iron oxide in the presence of organic ligands. Journal of Environmental Quality. 1989,18:379-385
    137. Jairegeri M A and Reisenauer H. M. dissolution of oxide of manganese and iron by root exudates components. Soil Sci Soc Am J. 1982,46:314-317
    138. James R O and Parks G A. enzyme. In Matijevic E Ed., Surface and Colloid Science. Vol.12, Chap.2, New York: Plenum Press, 1982
    139. Jenoe T Albert and Robert D Harter. Adsorption of lysozyme and ovalbumin by clay:effect of clay suspension pH and clay mineral type. Soil Sci. 1972,115:130-136
    140. Jens Degenhardt, McQuillan A James. Mechanism of oxalate ion adsorption on chromium oxide-hydroxide from pH dependence and time evolution of ATR-IR spectra. Chemical Physics Letters. 1999,311:179-184
    141. Jones D L and Brassington D S. Sorption of organic acids in acid soils and its implications in the rhizosphere. European Journal of Soil Science. 1998,49:447-455
    142. Kammenan A, Diopb J. Properties of two membrane-bound acid phosphatase compared with those of a cytoplasmnic acid phosphatase from Dioscera cayensis rotundata. Plant Sci Lett. 1983,32:305-312
    143. Kinjo T and Parfitt P. Nitrate adsorption: Ⅱ. In competition with chloride, sulfate, and phosphate. Soil
    
    Sci Soc Amer Proc. 1971,35:725-728
    144. Klabunde T, Str(?)ter N, Fr(?)hlich R, H Witzel and B Krebs. Mechanism of Fe(Ⅲ)-Zn(Ⅱ) purple acid phosphatase based on crystal structures. J Mol Biol. 1996,259:737-748
    145. Kobayashi Y and Aomine S Mechanism of inhibitory effect of allophane and montmorillonite on some enzymes. Soil Sci Plant Nutr. 1967,13(6): 189-194
    146. Kummerova M. Location of acid phosphatase in maize root under phosphorus deficiency. Biol Plant. 1986,28:270-274
    147. LaCount Michael W, George Handy and Lukasz Lebioda. Structual Origins of L(+)-tartrate inhibition of human prostatic acid phosphatase. Soil Sci. 1998,273(46): 30406-30409
    148. Ladd J N. Soil enzymes. In: Vaughan D and Malcom E eds., Soil Organic Matter and Biological Activity, Martinus Nijhoff Dr. W. Junk Publishers, Dordrecht, 1985, 175-185
    149. Ladd J N, Foster R C and Skjemstad J O. Phosphorus. In Broussard L and Kooinstra M J ed.,Workshop on Methods of Reseach on Soil Structure, Geoderma, 1993,56:401-405
    150. Lai C M and Tabatabai M A. Kinetic parameters of immobilized urease. Soil Biol Biochem. 1992,524(3): 225-228
    151. Lefebvre D D, Duff S M G, Fife C A et al. Response to phosphate deprivation in Brassion Nigra suspension cells. Enhancement of intracellular, cell surface, and secreted phosphatase activities compared to increases in Pi-adsorption rate. Plant Physical. 1990,93:504-511
    152. Li Li and Robert Stanforth. Distinguishing Adsorption and Surface Precipitation of Phosphate on Goethite (α-FeOOH). J Colloid Interface Sci, 2000,230:12-21
    153. Liu B, H Ru and Deng J. Characterization of immobilization of an enzyme in a modified Y zeolite matrix and its application to amperometric glucose biosensor. Anal Chem. 1997,69:2343-2348
    154. Lopez-Hernandez D, Siegert G and Rodriguez J V. Competitive adsorption of phosphate with malate and oxalate by tropical soils. Soil Sci Soc Am J. 1986,50:1460-1462
    155. Lumsdon D G, Frase A Rr, Russel J Dl and Livesey N T. New infrared band assignments for the arsenate ion adsorbed on synthetic goethite (α-FeOOH). J Soil Sci. 1984,35:381-386
    156. Makboul H E and J C G Ottow. Clay minerals and Michaelis constant of urease. Soil Biol Biochem. 1979,11:683-686
    157. Manceau A. The mechanisms of anion adsorption on iron oxides: Evidence for the bonding of arsenate tetrahedral on free Fe(O,OH)_b edges. Geochim. Cosmochem. Acta. 1995, 59:3647-3653
    158. Markboul H E and Ottow J G G. Alkaline phosphatase activity and michaelis constant in the presence of different clay minerals. Soil Sci. 1979,128(3): 129-135
    159. Markboul H E and Ottow J G G. Clay minerals the michaelis constant of urease. Soil Biol Biochem. 1979,11:683-686
    160. Markboul H E and Ottow J G G. Michaelis constant(Km) of phosphatase as affected by montmorillonite, illite, and kaolinite clay minerals. Microbial Ecology. 1979,5:207-213
    161. Markboul H E and Ottow J G G. The effect of two and three-layer clay minerals on the activity of dehydrogenase,acid phosphatase and urease in model experiments. Z Pflanzenernaehr Bodenk. 1979,142(3):500-513
    162. Maste Marc C L, Willem Norde, Antonie J W G Visser. Adsorption-Induced Conformational Changes in the Serine Proteinase Savinase: A Tryptophan Fluorescence and Circular Dichroism Study. J Colloid Interface Sci. 1997,196:224-230
    163. Mayaudon J. The role of carbohydrates in the free enzymes in soil. In: Fuchsman C H ed., Peat and Water, Amsterdam, Elsevier Applied Science, 1986, 263-288
    
    
    164. McBride M B. Adsorption and oxidation of phenolic compounds by iron and manganese oxides. Soil Sci Soc Am J. 1987,51:1466-1472
    165. McBride M B. Oxidation of dihydroxybenzenes in aerated aqueous suspensions of birnessite. Clays Clay Miner. 1989,37:341-347
    166. McLaren A D, Peterson G H and Barshad I. The adsorption and reactions of enzymes and proteins on clay minerals: Ⅳ. Kaolinite and montmorillonite. Soil Sci Soc Am Proc. 1958,22:239-244
    167. Mekaru T and Uehara G. Anion adsorption in ferruginous tropical soils. Soil Sci Soc Am J. 1972,36:296-300
    168. Mesuere K and Fish W. Chromate and oxalate adsorption on goethite (a-FeOOH). 1. Comparison of models. Environ Sci Technol, 1992,26:2357-2364
    169. Miller W P, Zelazny L W and Marten D Cs. Dissolution of synthetic crystalline and noncrystalline iron oxides by organic acids. Geoderma. 1986,37:1-13
    170. Mizata S and Suda S. A comparative study of mutiple acid phosphatase in cellular fractions of bean hypocotyl. Ann Bot. 1980,45:369-382
    171. Morgan H W and Corke C T. Adsorption,desorption,and activity of glucose oxidase on selected clay species. Can. J Microbiol. 1976,22:684-693
    172. Morland M M. Clay-organic complexes and interactions. Adv Agron. 1970,23:75-117
    173. Mortland M M and Gieseking J E X. The influence of clay minerals on the enzymatic hydrolysis of organic phosphorus compounds. Soil Sci Soc Am Proc. 1952,20:10-14
    174. Mortland M M. Deamination of glutamic acid by pyridoxal phosphate-Cu-smectite, catalyst. J Mol Catal. 1984,27:143-155
    175. Muljadi D, Posner A M and Quirk J P. The mechanism of phosphate adsorption by kaolinite, gibbsite and pseudoboehmite. J Soil Sci. 1966,17:212-47
    176. Myneni S C, S J Traina, T J Logan and G A Waychunas. Oxyanion behavior in alkaline environments: sorpion and desorption of arsenate in ettringite. Environ Sci Technol. 1997,61:746-752
    177. Nagarajah S, Posner A M and Quirk J P. Competitve adsorption phosphate with polygalacturonate and other organic anion on kaolinite and oxide surface. Nature. 1970,228:83-85
    178. Nagarajah S, Posner A M and Quirk J P. Desorption of phosphate from kaolinite by citrate and bicarbonate. Soil Sci Soc Am Proc. 1968,32:507-510
    179. Naidja A and B Siffert. Glutamic acid deamination in the presence of montmorillonite. Clay Miner. 1989,24:649-661
    180. Naidja A and Siffert B. Oxidative decarboxylation of isocitric acid in the presence of montmorillonite. Clay Miner. 1990,25:27-37
    181. Naidja A and Huang P M. Deamination of aspartic acid by aspartase-Ca-montmorillonite complex. J Mol Catal. 1996,106:255-265
    182. Naidja A, Violante A and Huang P M. Adsorption of tyrosinase onto montmorillonite as influenced by hydroxyaluminum coatings. Clays Clay Miner. 1995,43:647-655
    183. Naidja A, Huang P M and Bollag J-M. Activity of tyrosinase immobilized on hydroxyaluminum-montmorillonite complexes. J Mol Catal. 1997,115:305-316
    184. Naidja A, Huang P M and Bollag J-M. Comparison of reaction products from the transformation of catechol catalyzed by birnessite or tyrosinase. Soil Sci Soc Am J. 1998,62:188-195
    185. Naidja A, Huang P M, Dec J and Bollag J-M. Kinetics of catechoi oxidation catalyzed by tyrosinase or δ-MnO_2. In: Berthelin J et al. ed. Effect of mineral-organic-microorganism interactions on soil and freshwater environments. London, Plenum Publ, 1999, 389-400
    
    
    186. Nannipieri P and Gianfreda L. Kinetics of enzyme rections in Soil environments, In: Huang P M, Senesi N and Buffie J eds. Structure and Surface Rections of Soil Particles. John Wiley & Sons Ltd. 1998, 450-475
    187. Nannipieri P Ceccanti B, Bianchi D and M Bonmati. Fractionationh of hydrolase-humus complexes by gel chromatograpgy. Biol Fert Soils. 1985, 1:25-29
    188. Nannipieri P Ceccanti B, Bianchi D. Characterization of humus-phosphatase complexes extracted from soil. Soil Biol Biochem. 1988,20:683-691
    189. Nannipieri E Enzyme activity. In: Finkl C W ed., The Encyclopedia of Soil Science and Technology. New York, Van Norstrand Reinhold Company, 1996, 25-39
    190. Nannipieri P, Fusi P and Sequi P. Humus and Enzyme Activity.In: Piccolo A ed. Humic Substances in Terrestrial Ecosystems, Amsterdam, Elsevier, 1997,293-300
    191. Niebes J F, Dufey J E, Jaillard B, Hinsinger P. Release of nonexchangeable potassium from different size fractions of two highly K-fertilized soils in the rhizosphere of rape (Brassica napus cv Drakkar). Plant Soil.1993, 155/156:403-406
    192. Nisson N, Persson P, Lovgren L and Sjoberg S. Competitive surface complexation of o-phthalate and phosphate on goethite (《alpha》-FeOOH) particles. Geochim Cosmochim Acta. 1996,60(22): 4385-4395
    193. Noda T, Sato Z, Kobayashi H. Isolation and structural elucidation of phytoxic substances produced by Xanthemonas campestris pv. aryzae Arm. Phytopath Soc Japan. 1980,46:663-666
    194. Norde W, Giacomelli CE. BSA structural changes during homolecular exchange between the adsorbed and the dissolved states. J Biotechnol. 2000,79:259-268
    195. Nowicki M, A Emundts, J Werner, G Pirug and H P Bonzel. X-RAY photoelectron diffraction study of a long-range-ordered acetate layer on Ni(110). Surface Review and Letters, 2000, 7(1 & 2 )25-36
    196. O'Reilly S E, Strawn D G and Sparks D L. Residence time effects on arsenate adsorption/desorption mechanisms on goethite. Soil Sci Soc Am J. 2001,65:67-77
    197. O'connell A M. and Grove T S. Acid phosphatase activity in kerri(Eucolyptus diversicolor F. Maell.) Ann Bot. 1980,45:369-382
    198. Ognalaga M, Frossard E and Thomas F. Glucose-1-phosphate and myoinositol hexaphosphate adsorption mechanisms on goethite.Soil Sci Soc Am J. 1994,58:332-337
    199. Otani T, Ae N, Tanaka H. Phosphorus(P) uptake mechanisms of groups grown in soils with low P status.Ⅱ. Significance of organic acids in root excudes of pigeonpea. Soil Sc. Plant Nutr. 1996,42(3): 553-560
    200. Pal S, Bollag J-M and Huang P M. Role of abiotic and biotic catalysts in the transformation of phenolic compounds through oxidative coupling reactions. Soil Biol Biochem. 1994,26:813-820
    201. Parfitt R L. Anion adsorption by soil and soil materials. Advances in Agronomy. 1978,30:1-50
    202. Parfitt R L, Farmer V C and J D Russell. Adsorption on hydrous oxides Ⅰ.oxalate and benzoate on goethite. J Soil Sci. 1977,28:29-39
    203. Parfitt R L, Fraser A R, Russell J D and V C Farmer. Adsorption on hydrous oxides Ⅱ. oxalate,benzoate and phosphate on gibbsite. J Soil Sci. 1977,28:40-47
    204. Parfitt R L, Russell J D and Farmer V C. Confirmation of the surface structures of goethite (α-FeOOH) and phosphated goethite. J Chem Soc Faraday Trans. 172,1082-1087
    205. Pasricha N S and Fox R L. Plant nutrient sulfur in the tropics and subtropics. Advances in Agronomy. 1993,50:209-269
    206. Peak Derek, Robert G Ford and Donald L Sparks. An in Situ ATR-FTIR investigation of sulfate
    
    bongding mechanisms on goethite. J Colloid Interface Sci. 1999,218:289-299
    207. Peak J D, Spark D Ls and Ford R G. An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite. J Colloid interface Sci. 1999,218:289-299
    208. Pflug W. Sorption and binding mechanisms of polysaccharide cleaving soil enzymes by clay mineral. Z Pflanzenernaehr Bodenk. 1982,147:497-501
    209. Pizzigallo M D R, Ruggiero P, Crecchio C and Mininni R. Manganese and iron oxides as reactiants for oxidation of chlorophenols. Soil Sci Soc Am J. 1995,59:444-452
    210. Pyrz J W, Sage J T, Debtunner P G and Que L Jr. The interaction of phosphate with uteroferrin. Charaterization of a reduced uteroferrin-phosphate complex. J Biol Chem. 1986,261: 11015-11020
    211. Quiquampoix H. A Stepwise approach to the understanding of extrcellular enzyme activity in soil Ⅱ: Competitive effects on the adsorption of a β-D-glucosidase in mixed mineral or organomineral system.. Biochimie. 1987,69:765-770
    212. Quiquampoix H and Ratcliffe R G. A ~(31)p NMR study of the adsorption of Bovine Serum Albumin on montmorillonite using phosphate and the paramagnetic cation Mn~(2+): modification of conformation with pH. J Colloid Interface Sci. 1992,148:343-352
    213. Quiquampoix H, Chassin P and Ratcliff R Ge. Enzyme activity and cation exchange as tools for the study of the conformation of ptoteins adsorbed on mineral surfaces. Progr Colloid Polym Sci. 1989,79:59-63
    214. Quiquampoix H, Staunton S, Baron M-H, Ratcliffe R G. Interpretation of the dependence of protein adsorption on clay mineral surfaces and its relevence to the understanding of extracellular enzyme activity in soil. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1993,75:85-93
    215. Rajan S S S. Adsorption of selenite, phosphate and sulphate on hydrous alumina. J Soil Sci. 1979,30:709-718
    216. Rajah S S S, Changes in net surface charge of hydrous alumina with phosphate adsorption. Nature. 1976,262:45-46
    217. Rao M A, Gianfreda L and Violante A. Catalytic behavior of acid phosphatase immobilized on clay minerals and organo-mineral complexes. Trans. 15th World Congr. Soil Sci., Mexico: Acapulco, 10-16 July 1994, 117-118. Vol. 3b. Int. Soc. Soil Sci., Mexico.
    218. Rao M A, Violante A, Gianfreda L. Interaction of acid phosphatase with clays,organic molecules and organo-mineral complexes: kinetics and stability. Soil Biol Biochem. 2000,32:1007-1014
    219. Rietra R P J J, Hiemstra T and W H van Riemsdijk. Electrolyte anion affinity and its effect on oxyanion adsorption on goethite. J Colloid Interface Sci. 2000,299:199-206
    220. Roger K Sandwick and Keith J Schray. Conformational states of enzymes bound to surfaces. J Colloid Interface Sci.1988, 121:1-12
    221. Rojio M J, Carcedo S G and Mateos P M. Distribution and characterization of phosphatase and organic phosphorus in soil fractions. Soil Biol Biochem. 1990,22(2): 169-174
    222. Ross D J and Mcneilly B A. Some Influences of different soil and minerals on the activity of glucose oxides. Soil Biol Biochem. 1972,4:9-18
    223. Ross D J. Invertase and amylase activitys as influenced by clay minerals, Soil-clay fraction and topsoil under grassland. Soil Biol Biochem. 1983,15:287-293
    224. Russell J D. 1987, Infrared methods, in Wilson, M.J ed., A handbook of determinative methods in clay mineralogy, Chapman and Hall, New York, NY, p. 133-173
    225. Ryden J C and Syers J K. Charge relationships of phosphate sorption. Nature. 1975,255:51-53
    226. Ryden J C, McLauchlin J R and J K Syers. Mechanisms of phosphate sorption by soil and hydrous
    
    ferric oxide gel. J Soil Sci. 1977,28:72-92
    227. Sarkar J M. Immobilization of enzymes on clays and soils. Soil Biol Biochem. 1989,21 (2):223-230
    228. Sawhney R L. Charge characteristics of soils as affected by phosphate sorption. Soil Sci Soc Am J. 1974,38:159-160
    229. Schalscha E B, Pratt P F and D Soto. Effect of phosphate adsorption on the cation-exchange capacity of volcanic ash soils. Soil Sci Soc Am J. 1974,38:539-540
    230. Schalscha E B, Pratt P F, Kinjo T and J Amar. Effect of phosphate salts as saturating solutions in cation exchange capacity determinations. Soil Sci Soc Am J. 1972,36:912-914
    231. Screeranmdu A, Patil S S, Nayudu M V. Phytotoxic organic acids produced in vivo by isolates of the bacterial leafblight pathogen of rice[J]. Indian Phytopathology, 1987,40(3):320-326
    232. Sedenko D M, Zaitecva M G. The activity of phosphatase in wheat roots in relation to plant supply with phosphorus. Fiziol Rasl. 1984,31: 146-152
    233. Sepelyak Robert J, Joseph R Feldkamp, Timothy E Moody, Joe L. White and Stanley L. Hem. Adsorption of pepsin by aluminum hydroxide Ⅰ:adsorption mechanism. Journal of Pharmaceutical Science.1984,73:1514-1517
    234. Servagent-Noinville S, Revault M, Quiquampoix H, and Baron M-H. Conformational changes of bovine serum albumin induced by adsorption on different clay surfaces: FTIR analysis. J Colloid Interface Sci.2000, 221:273-283
    235. Shanmuganathan R T and Oades J M. Influence of anions on dispersion and physical properties of the A horizon of a red-brown earth. Geoderma. 1983,29:257-277
    236. Shen Alin, Li Xueyuan, Kanamori T and Arao T. Effect of long application of compost on some chemical properties of wheat root rhizosphere and non-rhizosphere soils. Pedosphere, 1996, 6(4):355-363
    237. Shen Alin, Li Xueyuan, Kanamori T. and Arao T. Low-molecular-weight organic acids in two Japanese soils incubated with plant resides under different moisture conditions: I. Aliphatic acids. Pedosphere, 1997, 7(1):79-86
    238. Shindo H and Huang P M. Role of Mn (Ⅳ) oxide in abiotic formation of humic substances in the environment. Nature (London). 1982,298:363-365
    239. Siffert B and Naidja A. Stereoselectivity of montmorillonite in the adsorption and deamination of some amino acids. Clay Miner. 1992,27:109-118
    240. Simpson G H and Huges J D. Arylsulfphatase-clay interactions. I: Adsorption of arysulphatase by kaolinite and montmorillite. Aust J Soil Res. 1978, 16(1):27-33
    241. Song Da, Daniel Forciniti. Effects of cosolvents and pH on protein adsorption on polystyrene latex: a dynamic light scattering study. J Colloid Interface Sci. 2000,221:25-37
    242. Sposito G A. phosphrous. In The surface Chemistry of Soil, New York: Oxford University Press, 1984, 25-40
    243. Staunton S and Quiquampoix H. Adsorption and conformation of bovine serum albumin on montmorillonite: modification of the balance between hydrophobic and electrostatic interactions by protein methylation and pH variation. J Colloid Interface Sci. 1994, 166:89-94
    244. Stone A T and Morgan J J. Reductive Dissolution of manganese (Ⅲ/Ⅳ) oxides by substituted phenols. Environ Sci Technol. 1987,21:979-988
    245. Str(?)ter N, Klabunde T, Tucker P etc. Crystal structure of a purple acid phosphatase containing a dinuclear Fe (Ⅲ)-Zn(Ⅱ) active site. Science. 1995,268:1489~1492
    246. Struthers P H and Sieling D H. Effect of organic anions on phosphate precipitation by Fe and Al as
    
    influenced by pH. Soil Sci. 1950,69:205-213
    247. Stumm W. Chemistry of the solid-water interface. New Yoek: John Wiley Aons,1992
    248. Su C and Suarez D L. In situ infrared speciation of adsorbed carbonate on aluminium and iron oxides. Clays Clay Miner. 1997,45(6):814-825
    249. Sun X, and Doner H E. An investigation of arsenate and arsenite bonding structure on goethite by FTIR. Soil Sci. 1996,161:865-872
    250. Swenson R M, Cole C V and Sieling D H. Fixation of phosphate by iron and aluminum and replacement by organic and inorganic anions. Soil Sci. 1949,67:3-22
    251. Szabo-magy A, Olah Z, Erdei L. Phosphatase induction in roots of winter wheat during adaptation to phosphrous deficiency. Physiol Plantarum. 1987,70:544-552
    252. Tabataibai M A. Sulfur. In: Page A L& Miller R H.eds. Methods of Soil Analysis, Agronomy, 1982,9 501-583
    253. Tadano T, Sakai H. Secretion of acid phosphatase by the roots of serveral crop species under phosphorus-deficient condition.Soil Sci Plant Nutr. 1991, 37: 129-140
    254. Takijuma Y. Studies on organic acids in paddy field soils with reference to their effects on the growth of rice plants. Soil Plant Nutr. 1964,10(5): 14-29
    255. Tani M, Higashi T and Nageztsuka S. Low-molcular-weight aliphatic acids in some andisols of Japan. In Huang P M,Berthelin J,Bollag J M,McGill W B and Page A. L.eds., Environmental impact of soil component interaction. Lewis, Chelea, MI., 1995, 235-243
    256. Tapp H, L Calamai and G Stotzky. Adsorption and binding of the insecticidal proteins from Bacillus thuringiensis subsp. Kustaki and subsp. Tenebrionis on clay minerals. Soil Biol Biochem. 1994,26:663-679
    257. Tarafdar J C and Chhonkar P K. Sorption and desorption of acid and alkaline phosphatase by clays as influenced by cation saturation. Clay Research. 1990,9:6-10
    258. Theng B K G. Formation and properties of clay-polymer complexes. New York: Elsevier, 1979.157-211
    259. Thierry Zoungrana, Gerhard H Findenegg, and Willem Norde. Structure,stability, and activity of adsorbed enzymes. J Colloid Interface Sci. 1997,190:437-448
    260. Trazar-Cepeda M C and Gil-Sotes G F. Phosphatase activity in acid high organic matter soils in galicia (NW Spain). Soil Biol Biochem. 1987, 19(3):281-287
    261. Trazar-Cepeda M C and Gil-Sotes G F. Kinetics of acid phosphatase acitivity in various soils of galicia (NW Spain). Soil Biol Biochem. 1988,20(3):275-280
    262. Trilas M, Peral J and Domenech X. Photocatalyzed degradation of phenol, 2,4-dichlorophenol, phenoxyacetic acid and 2,4-dichlorophenoxyacetic acid over supported TiO2 in a flow system. J Chem Tech Biotechnol. 1996,67:237-242
    263. Tyler G, Str(?)m L. Differing organic acid exudation pattern explains calcifuge and acidifuge behavior of plants. Annals of Botany. 1995,75:75-78
    264. Ukrainczyk L and McBride M B. Oxidation and dechlorination of chlorophenols in dilute aqueous suspensions of manganese oxides: Reaction products. Enxiron Toxico. Chem. 1993b, 12:2015-2022
    265. Ukrainczyk L and McBride M B. Oxidation of phenol in acid aqueous suspensions of manganese oxides. Clays Clay Miner. 1992,40:157-166
    266. Ukrainczyk L and McBride M B. The oxidative dechlorination reaction of 2,4,6-trichlorophenol dilute aqueous suspensions of manganese oxides. Environ Toxicol Chem. 1993a,12:2005-2014
    267. Villalobos Mario and Leckie J O. Carbonate adsorption on goethite under closed and open CO_2
    
    conditions.Geochim Cosmochim Acta. 2000,64:3787-3802
    268. Villalobos Mario and James O Leckie. Surface complexation modeling and FTIR study of carbonate adsorption to goethite. J Colloid Interface Sci. 2001,235:15-32
    269. Violante A and Gianfreda L. Competition in adsorption between phosphate and oxalate on an aluminum hydroxide montmorillonite complex. Soil Sci Soc Ame J. 1993,57:1235-1241
    270. Violante A, Cristofaro De, Rao M A, and Gianfreda L. Physicochemical properties of protein-smectite and Protein-Al(OH)x-Smectite complexes. Clay Minerals. 1995,30:325-336
    271. Violante A, Rao M A, Chiara A De and Gianfreda L. Sorption of phosphate and oxalate by a synthetic aluminium hydroxysulphate complex. European Journal of Soil Science. 1996,47:241-247
    272. Wang M C and Huang P M. Pyrogallol transformations as catalyzed by nontronite, bentonite, and kaolinite. Clays Clay Miner. 1989,37:525-531
    273. Wang M C and Huang P M. Humic macromolecule interlaying in nontronite through interaction with phenol monomers. Nature (London). 1986,323:529-531
    274. Wang M C. Catalysis of nontronite in phenols and glycine transformations. Clays Clay Miner. 1991,39:529-531
    275. Waychunas G A, Rea B A, Fuller C C and Davis J A. Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochem Acta. 1993,57:2251-2269
    276. Wijnja H and Schulthess C P. Interaction of carbonate and organic anions with sulfate and selenate adsorption on an aluminum oxide. Soil Sci So. Am J. 2000,64:898-908
    277. Wijnja H and Schulthess C E ATR-FTIR and DRIFT spectroscopy of carbonate species at the aged [gamma]-Al2O3/water interface. Spectrochimica Acta, Part A 55(4):861-872
    278. Wilson M J. A hand book of deteminative methods in clay mineralogy. New York: Chapman and Hall, 1987. 163-165
    279. Wu H, Fan Y, Sheng J, Sui S F. Induction of changes in the secondary structure of globular proteins by a hydrophobic surface. Eur Biophy. J. 1993,22 (3):201-205
    280. Xiaohua Sun and Harvey E Doner. An investigation of arsenate and arsenite bonding structures on goethite by FTIR. Soil science. 1996,161(12):865-872
    281. Xu H, Allard B and Grimvall A. Influence of pH and organic substance on the adsorption of As() on geologic materials. Water Air Soil Pollut. 1988,40:293-305
    282. Yamagata H, Kuromitsu Z, Kasai Z. Purification and characterization of acid phosphatase in alcurone particles of rice grain. Plant Cell Physical. 1980,21:1449-1460
    283. Yoon Jeong-Yeol, Ham-Yong Park, Jung-Hyum Kim, Woo-Sik Kim. Adsorption of BSA on highly carbxylated microspheres-quantitative effects of surface functional groups and interaction forces.J Colloid Interface Sci. 1996,177:613-620
    284. Yoshida K, Kummitsa Z, Oganca N. Phosphate metabolism and cellular regulation. In: Torriani-Gorini A., Rethman F. G., Silver S., Wright A., Yagil E. eds., Microorganisms. ASM, Washington DC, 1987,49-55
    285. Zhang P C and Sparks D L. Kinetics of selenate and selenite asorption-desorption at the goethite/water interface. Environ Sci Technol. 1990,24:1848-1856
    286. Zhang P C and Sparks D L. Kinetics and mechanisms of sulfate adsorption/desorption on goethite using pressure-jump relaxation. Soil Sci Soc Am J. 54:1266-1273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700