基于正则化的高倍加速并行磁共振成像技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成像时间长是磁共振成像技术发展的主要瓶颈之一。尽管提高磁场梯度可以有效地加快数据采集,缩短成像时间,但受制于磁场梯度切换所引起的生理效应,这一途径的加速效果已经接近极限。近年来出现的并行成像技术则通过多通道的并行数据采集,来减少单个通道的数据采集量。由于不依赖于磁场梯度的提高,并行成像技术可以在不产生人体的生理效应的情况下,提高了成像速度。故而,其在磁共振成像中获得了广泛的应用。因此,研究高倍加速并行成像技术对于缩短磁共振成像时间具有普遍而重要的意义。
     高倍加速并行成像技术的难点在于:其重建过程是一个病态求逆问题,存在噪声放大现象,会严重破坏重建图像的质量。为了解决这一问题,本文针对不同的成像需要提出了两种正则化方法。一方面,为了既保留Tikhonov正则化方法计算简便的优势,又减轻其对图像的模糊效应,本论文将小波域多参数正则化方法应用于并行成像,并提出了基于信号-噪声能量比例的参数估计方法,实现了多个参数的自适应估计。另一方面,为了获得更高质量的重建图像,论文提出了基于图像继承性的非线性正则化方法,其对重建图像中细节信息的保护要明显优于现有正则化方法。该方法既能将多种滤波方法转换为正则化方法,也允许根据图像的特征直接构造正则化泛函,提供了设计正则化的新框架。
     并行成像技术的重建还受到线圈灵敏度估算精度的影响。本论文提出了非线性估算方法来提高线圈灵敏度的估算精度。该方法缓解了当前线性估算方法中存在的分辨率下降和吉布斯振铃问题,更好地保留了灵敏度的空间定位信息,提高了灵敏度估算的精度,降低了并行成像技术的重建误差。
     对于磁共振成像序列而言,成像速度和成像质量相互制约。高倍加速并行成像技术不仅可以用于提高成像速度,还可以在少量牺牲成像速度的情况下,在一定程度上,提高成像质量。为了验证本文所提出成像方法的普适性,其被应用于平面回波成像、心脏成像和量化温度成像。实验结果表明,本文中的高倍加速并行成像技术可以有效地提高成像的速度(或质量),具有较广范的适用范围。
The long scan time is a bottle neck for the development of magnetic resonanceimaging (MRI). The improvement of the gradient system can directly accelerate everysingle data acquisition and reduce the scan time. However, this method has nearlyreached its limits for scan time reduction, due to the physiological problem induced bythe magnetic gradient. Parallel imaging, on the other hand, shortens the scan time byreducing the amount of the acquired data. It does not rely on the magnetic gradientand has no physiological problems, which makes parallel imaging available for almostall MRI applications. Therefore, it is of great significance to research and develop thehighly accelerated parallel imaging technique for fast MRI.
     The di?culty of achieving highly accelerated parallel imaging lies in that its re-construction is an ill-posed inverse problem. For this reason, the reconstructed imagesu?ers from severely amplified noise when the acceleration is high. To solve the prob-lem, this thesis proposes two regularization methods. To maintain the computationale?ciency of Tikhonov regularization while reducing its blurring e?ect, we appliedthe wavelet-based multivariate linear regularization to parallel imaging reconstruction.Furthermore, we proposes a parameter estimation method based on power signal-noiseratio, which enables the automatic and adaptive parameter estimation of multivariateregularization. To achieve a high quality reconstructed image, we proposes the non-linear coherence regularization, which significantly outperforms current regularizationmethods in preserving image details. Besides, the coherence regularization can notonly be used to transform various image filtering methods into regularization, but alsobe used to design regularization directly based on image characteristics. Therefore, itprovides a new framework for designing regularization.
     The estimation of receiver coil sensitivity is also critical for parallel imaging re-construction. This thesis proposes a nonlinear method to improve the accuracy of coilsensitivity estimation. This method addresses the problems of resolution loss and Gibbs ringing in the standard linear method, so that the spatial information of coil sensitivityis better preserved. With this sensitivity information, the parallel imaging reconstruc-tion exhibits fewer error than the standard method.
     There exists an intrinsic trade-o? between image quality and imaging speed inMRI. Under some situations, parallel imaging technique can not only boost the imag-ing speed, but also improve the image quality without obviously sacrificing the imag-ing speed. To demonstrate the versatility of the proposed method, we applied it to echoplanar imaging, cardiac imaging and temperature mapping. The experimental resultsdemonstrated that the proposed method could e?ciently improve the spatial or tem-poral resolution of MR imaging, which would potentially be available in a variety ofapplications.
引文
[1]俎栋林.核磁共振成像学.高等教育出版社, 2004.
    [2] Mark E, Haacke M, Brown R. Magnetic resonance imaging: physical principles and se-quence design. Wiley-Liss, 1999.
    [3] Liang Z, Lauterbur P. Principles of magnetic resonance imaging: a signal processing per-spective. SPIE Optical Engineering Press, 2000.
    [4] Lauterbur P. Image formation by induced local interactions: examples employing nuclearmagnetic resonance. Nature, 1973, 242(5394):190–191.
    [5] Twieg D. The k-trajectory formulation of the NMR imaging process with applications inanalysis and synthesis of imaging methods. Med Phys, 1983, 10(5):610–621.
    [6] Frahm J, Haase A, Matthaei D. Rapid NMR imaging of dynamic processes using the FLASHtechnique. Magnetic resonance in medicine, 1986, 3(2):321–327.
    [7] Haase A, Frahm J, Matthaei D, et al. FLASH imaging. Rapid NMR imaging using low?ip-angle pulses. Journal of Magnetic Resonance (1969), 1986, 67(2):258–266.
    [8] Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for clinical MR.Magnetic Resonance in Medicine, 1986, 3(6):823–833.
    [9] Mansfield P. Multi-planar image formation using NMR spin echoes. Journal of Physics C:Solid State Physics, 1977, 10:L55–L58.
    [10] Pruessmann K, Weiger M, Scheidegger M, et al. SENSE: sensitivity encoding for fast MRI.Magnetic Resonance in Medicine, 1999, 42(5):952–962.
    [11] Sodickson D K, Manning W J. Simultaneous Acquisition of Spatial Harmonics (SMASH):Fast Imaging with Radiofrequency Coil Arrays. Magnetic Resonance in Medicine, 1997,38:591–603.
    [12] Griswold M, Jakob P, Nittka M, et al. Partially parallel imaging with localized sensitivities(PILS). Magnetic Resonance in Medicine, 2000, 44(4):602–609.
    [13] Kyriakos W, Panych L, Kacher D, et al. Sensitivity profiles from an array of coils forencoding and reconstruction in parallel(SPACE RIP). Magnetic Resonance in Medicine,2000, 44(2):301–308.
    [14] Petr J, Kybic J, Bock M, et al. Parallel image reconstruction using B-spline approximation(PROBER). Magnetic Resonance in Medicine, 2007, 58(3):582–591.
    [15] Griswold M, Jakob P, Heidemann R, et al. Generalized autocalibrating partially parallelacquisitions (GRAPPA). Magnetic Resonance in Medicine, 2002, 47(6):1202–1210.
    [16] Liu C, Bammer R, Moseley M. Parallel imaging reconstruction for arbitrary trajectoriesusing k-space sparse matrices (kSPA). Magnetic Resonance in Medicine, 2007, 58(6):1171–1181.
    [17] Pruessmann K, Weiger M, Bornert P, et al. Advances in sensitivity encoding with arbitraryk-space trajectories. Magnetic Resonance in Medicine, 2001, 46(4):638–651.
    [18] Griswold M, Kannengiesser S, Heidemann R, et al. Field-of-view limitations in parallelimaging. Magnetic Resonance in Medicine, 2004, 52(5):1118–1126.
    [19] Seiberlich N, Breuer F, Blaimer M, et al. Non-Cartesian data reconstruction using GRAPPAoperator gridding (GROG). magnetic resonance in medicine, 2007, 58:1257–1265.
    [20] Samsonov A, Block W, Arunachalam A, et al. Advances in locally constrained k-space-based parallel MRI. Magnetic Resonance in Medicine, 2006, 55(2):431–438.
    [21] Heidemann R, Griswold M, Seiberlich N, et al. Direct parallel image reconstructions forspiral trajectories using GRAPPA. Magnetic Resonance in Medicine, 2006, 56(2):317–326.
    [22] Lin F, Kwong K, Belliveau J, et al. Parallel imaging reconstruction using automatic regular-ization. Magnetic Resonance in Medicine, 2004, 51(3):559–567.
    [23] Weiger M, Pruessmann K, Leussler C, et al. Specific coil design for SENSE: a six-elementcardiac array. Magnetic Resonance in Medicine, 2001, 45(3):495–504.
    [24] Zwart J, Ledden P, Kellman P, et al. Design of a SENSE-optimized high-sensitivity MRIreceive coil for brain imaging. Magnetic Resonance in Medicine, 2002, 47(6):1218–1227.
    [25] Hansen P. Rank-deficient and discrete ill-posed problems: numerical aspects of linear in-version. Society for Industrial Mathematics, 1998.
    [26] Sodickson D. Tailored SMASH image reconstructions for robust in vivo parallel MR imag-ing. Magnetic resonance in medicine, 2000, 44(2):243–251.
    [27] Wang Z, Ferna′ndez-Seara M. 2D partially parallel imaging with k-space surroundingneighbors-based data reconstruction. Magnetic Resonance in Medicine, 2006, 56(6):1389–1396.
    [28] Brau A, Beatty P, Skare S, et al. Comparison of reconstruction accuracy and e?ciencyamong autocalibrating data-driven parallel imaging methods. Magnetic Resonance InMedicine, 2008, 59:382–395.
    [29] Wang Z, Wang J, Detre J. Improved data reconstruction method for GRAPPA. MagneticResonance in Medicine, 2005, 54(3):738–742.
    [30] Nana R, Zhao T, Heberlein K, et al. Cross-validation-based kernel support selection forimproved GRAPPA reconstruction. Magnetic Resonance in Medicine, 2008, 59(4):819–825.
    [31] Samsonov A. On optimality of parallel MRI reconstruction in k-space. Magnetic Resonancein Medicine, 2008, 59(1):156–164.
    [32] Tikhonov A, Arsenin V, John F. Solutions of ill-posed problems. VH Winston Washington,DC, 1977.
    [33] Lin F, Wang F, Ahlfors S, et al. Parallel MRI reconstruction using variance partitioningregularization. Magnetic Resonance in Medicine, 2007, 58(4):735.
    [34] Ying L, Xu D, Liang Z. On Tikhonov regularization for image reconstruction in parallelMRI. Proceedings of the 26th Annual International Conference of IEEE EMBS, San Fran-cisco, CA, USA, 2004. 1056–1059.
    [35] Liang Z, Bammer R, Ji J, et al. Making better SENSE: Wavelet denoising, Tikhonov regu-larization, and total least squares. Proceedings of the 10th Annual Meeting of the ISMRM,Honolulu, Hawai’i., 2002. 2388.
    [36] Qu P, Wang C, Shen G. Discrepancy-based adaptive regularization for GRAPPA reconstruc-tion. Journal of Magnetic Resonance Imaging, 2006, 24(1):248–255.
    [37] Tsao J, Pruessmann K, Boesiger P. Feedback regularization for SENSE reconstruction.Proceedings of the 10th Annual Meeting of the ISMRM, Honolulu, Hawai’i., 2002. 739.
    [38] Raj A, Singh G, Zabih R, et al. Bayesian parallel imaging with edge-preserving priors.Magnetic resonance in medicine, 2007, 57(1):8–21.
    [39] Ying L, Liu B, Steckner M, et al. A statistical approach to SENSE regularization witharbitrary k-space trajectories. Magnetic Resonance in Medicine, 2008, 60(2):414–421.
    [40] King K. Combined compressed sensing and parallel imaging. Proceedings of the 16thAnnual Meeting of ISMRM, Toronto, Canada, 2008.
    [41] Liu B, King K, Steckner M, et al. Regularized sensitivity encoding (SENSE) reconstructionusing Bregman iterations. Magnetic resonance in medicine, 2009, 61(1):145–152.
    [42] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms.Physica D, 1992, 60:259–268.
    [43] Block K, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. Iterative imagereconstruction using a total variation constraint. Magnetic Resonance in Medicine, 2007,57(6):1086–1098.
    [44] Chan T, Esedoglu S, Park F, et al. Recent developments in total variation image restoration.Mathematical Models of Computer Vision, 2005, 1:17–32.
    [45] Hoge W, Brooks D. Using GRAPPA to improve autocalibrated coil sensitivity estimationfor the SENSE family of parallel imaging reconstruction algorithms. Magnetic Resonancein Medicine, 2008, 60(2):462–467.
    [46] McKenzie C, Yeh E, Ohliger M, et al. Self-calibrating parallel imaging with automatic coilsensitivity extraction. Magnetic Resonance in Medicine, 2002, 47(3):529–538.
    [47] Ying L, Sheng J. Joint Image Reconstruction and Sensitivity Estimation in SENSE(JSENSE). Magnetic Resonance in Medicine, 2007, 57:1196–1202.
    [48] Uecker M, Hohage T, Block K, et al. Image reconstruction by regularized nonlinearinversion-Joint estimation of coil sensitivities and image content. Magnetic Resonance InMedicine, 2008, 60(3):674–682.
    [49] Weiger M, Pruessmann K, Kassner A, et al. Contrast-enhanced 3D MRA using SENSE.Journal of Magnetic Resonance Imaging, 2000, 12(5):671–677.
    [50] Weiger M, Pruessmann K, Boesiger P, et al. Cardiac real-time imaging using SENSE. Mag-netic Resonance in Medicine, 2000, 43(2):177–184.
    [51] Ohno Y, Kawamitsu H, Higashino T, et al. Time-resolved contrast-enhanced pulmonary MRangiography using sensitivity encoding (SENSE). Journal of Magnetic Resonance Imaging,2003, 17(3):330–336.
    [52] Reeder S, Wintersperger B, Dietrich O, et al. Practical approaches to the evaluation ofsignal-to-noise ratio performance with parallel imaging: application with cardiac imagingand a 32-channel cardiac coil. Magnetic Resonance in Medicine, 2005, 54(3):748.
    [53] Boubertakh R, Prieto C, Batchelor P, et al. Whole-heart imaging using undersampled radialphase encoding (RPE) and iterative sensitivity encoding (SENSE) reconstruction. Magneticresonance in medicine, 2009, 62:1331–1337.
    [54] Lin F, Tsai S, Otazo R, et al. Sensitivity-encoded (SENSE) proton echo-planar spectroscopicimaging (PEPSI) in the human brain. Magnetic Resonance In Medicine, 2007, 57:249–257.
    [55] Sa′nchez-Gonza′lez J, Tsao J, Dydak U, et al. Minimum-norm reconstruction for sensitivity-encoded magnetic resonance spectroscopic imaging. Magnetic Resonance In Medicine,2006, 55(2):287–295.
    [56] Hu H, Madhuranthakam A, Kruger D, et al. Combination of 2D sensitivity encoding and 2Dpartial Fourier techniques for improved acceleration in 3D contrast-enhanced MR angiogra-phy. Magnetic Resonance in Medicine, 2006, 55(1):16–22.
    [57] Huber M, Kozerke S, Pruessmann K, et al. Sensitivity-encoded coronary MRA at 3T. Mag-netic Resonance in Medicine, 2004, 52(2):221–227.
    [58] Dydak U, Weiger M, Pruessmann K, et al. Sensitivity-encoded spectroscopic imaging. Mag-netic Resonance in Medicine, 2001, 46(4):713–722.
    [59] Sutton B, Ciobanu L, Zhang X, et al. Parallel imaging for NMR microscopy at 14.1 Tesla.Magnetic Resonance in Medicine, 2005, 54(1):9–13.
    [60] Bydder M, Atkinson D, Larkman D, et al. SMASH navigators. Magnetic Resonance inMedicine, 2003, 49(3):493–500.
    [61] Atkinson D, Larkman D, Batchelor P, et al. Coil-based artifact reduction. Magnetic Reso-nance in Medicine, 2004, 52(4):825–830.
    [62] Bammer R, Aksoy M, Liu C. Augmented generalized SENSE reconstruction to correct forrigid body motion. Magnetic Resonance In Medicine, 2007, 57(1):90–102.
    [63] Winkelmann R, Bornert P, Dossel O. Ghost artifact removal using a parallel imaging ap-proach. Magnetic Resonance in Medicine, 2005, 54(4):1002–1009.
    [64] Fautz H, Honal M, Saueressig U, et al. Artifact reduction in moving-table acquisitions usingparallel imaging and multiple averages. Magnetic Resonance in Medicine, 2007, 57(1):226–232.
    [65] Liu C, Moseley M, Bammer R. Simultaneous phase correction and SENSE reconstructionfor navigated multi-shot DWI with non-Cartesian k-space sampling. Magnetic Resonancein Medicine, 2005, 54(6):1412–1422.
    [66] Odille F, C??ndea N, Mandry D, et al. Generalized MRI reconstruction including elasticphysiological motion and coil sensitivity encoding. Magnetic Resonance in Medicine, 2008,59(6):1401–1411.
    [67] Lin W, Huang F, Bo¨rnert P, et al. Motion correction using an enhanced ?oating navigatorand GRAPPA operations. Magnetic resonance in medicine, 2009, 63:339–348.
    [68] Bammer R, Keeling S, Augustin M, et al. Improved di?usion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE). Magnetic Resonance InMedicine, 2001, 46:548–554.
    [69] Bammer R, Auer M, Keeling S, et al. Di?usion tensor imaging using single-shot SENSE-EPI. Magnetic Resonance in Medicine, 2002, 48(1):128–136.
    [70] Kuroki Y, Nasu K, Kuroki S, et al. Di?usion-weighted imaging of breast cancer with thesensitivity encoding technique: analysis of the apparent di?usion coe?cient value. MagneticResonance in Medical Sciences, 2004, 3(2):79–85.
    [71] Weiger M, Pruessmann K, Osterbauer R, et al. Sensitivity-encoded single-shot spiral imag-ing for reduced susceptibility artifacts in BOLD fMRI. Magnetic Resonance in Medicine,2002, 48(5):860–866.
    [72] Yang Q, Wang J, Smith M, et al. Reduction of magnetic field inhomogeneity artifacts in echoplanar imaging with SENSE and GESEPI at high field. Magnetic Resonance in Medicine,2004, 52(6):1418–1423.
    [73] Bellgowan P, Bandettini P, Gelderen P, et al. Improved BOLD detection in the medialtemporal region using parallel imaging and voxel volume reduction. Neuroimage, 2006,29(4):1244–1251.
    [74] Lin F, Huang T, Chen N, et al. Functional MRI using regularized parallel imaging acquisi-tion. Magnetic Resonance in Medicine, 2005, 54(2):343–353.
    [75] Yoshikawa T, Kawamitsu H, Mitchell D, et al. ADC measurement of abdominal organsand lesions using parallel imaging technique. American Journal of Roentgenology, 2006,187(6):1521–1530.
    [76] Truong T, Song A. Single-shot dual-z-shimmed sensitivity-encoded spiral-in/out imagingfor functional MRI with reduced susceptibility artifacts. Magnetic Resonance in Medicine,2008, 59(1):221–227.
    [77] Lu Y, Shen L, Xu Y. Multi-parameter regularization methods for high-resolution imagereconstruction with displacement errors. IEEE Transactions on Circuits and Systems I:Regular Papers, 2007, 54(8):1788–1799.
    [78] Chen Z, Lu Y, Xu Y, et al. Multi-parameter Tikhonov regularization for linear ill-posedoperator equations. J. Comp. Math, 2008, 26:37–55.
    [79] Blaimer M, Breuer F, Mueller M, et al. SMASH, SENSE, PILS, GRAPPA: how to choosethe optimal method. Topics in Magnetic Resonance Imaging, 2004, 15(4):223.
    [80] Jakob P, Grisowld M, Edelman R, et al. AUTO-SMASH: a self-calibrating technique forSMASH imaging. Magnetic Resonance Materials in Physics, Biology and Medicine, 1998,7(1):42–54.
    [81] Heidemann R, Griswold M, Haase A, et al. VD-auto-SMASH imaging. Magnetic Reso-nance in Medicine, 2001, 45(6):1066–1074.
    [82] Engl H, Hanke M, Neubauer A. Regularization of inverse problems. Kluwer Academic Pub,1996.
    [83] Jacob M, Xu D, Liang Z. Optimal selection of phase encodings in parallel MR imaging.Proceedings of Proceedings of the 2nd International Workshop on Parallel Imaging, Zuerich,Switzerland, 2004.
    [84] Xiao Z, Hoge W, Mulkern R, et al. Comparison of parallel MRI reconstruction methodsfor accelerated 3D fast spin-echo imaging. Magnetic resonance in medicine: o?cial jour-nal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance inMedicine, 2008, 60(3):650–660.
    [85] Lustig M, Donoho D, Pauly J. Sparse MRI: The application of compressed sensing for rapidMR imaging. Magnetic Resonance in Medicine, 2007, 58(6):1182–1195.
    [86] Donoho D. Compressed sensing. IEEE Transactions on Information Theory, 2006,52(4):1289–1306.
    [87] Cande`s E, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstructionfrom highly incomplete frequency information. IEEE Transactions on information theory,2006, 52(2):489–509.
    [88] Hadamard J. Sur les problemes aux derivees partielles et leur signification physique. Prince-ton University Bulletin, 1902, 13(1):49–52.
    [89] Trefethen L, Bau D. Numerical linear algebra. Society for Industrial Mathematics, 1997.
    [90] King K, Angelos L. SENSE image quality improvement using matrix regularization. Pro-ceedings of the 9th Annual Meeting of ISMRM, Glasgow, Scotland, 2001. 1771.
    [91] Hansen P. Truncated singular value decomposition solutions to discrete ill-posed problemswith ill-determined numerical rank. SIAM Journal on Scientific and Statistical Computing,1990, 11:503–518.
    [92] Phillips D. A technique for the numerical solution of certain integral equations of the firstkind. Journal of the ACM (JACM), 1962, 9(1):84–97.
    [93] Stoer J, Bulirsch R, Gautschi W, et al. Introduction to numerical analysis. Springer Verlag,2002.
    [94] Qu P, Zhong K, Zhang B, et al. Convergence behavior of iterative SENSE reconstructionwith non-Cartesian trajectories. Magnetic Resonance in Medicine, 2005, 54(4):1040–1045.
    [95] Belge M, Kilmer M, Miller E. Wavelet domain image restoration with adaptive edge-preserving regularization. IEEE Transactions on Image Processing, 2000, 9(4):597–608.
    [96] Aachen R. Wavelet and multiscale methods for operator equations. Acta Numerica, 1997.55–228.
    [97] Heath M. Scientific computing. McGraw-Hill, 2002.
    [98] Rudin L. Images, Numerical Analysis of Singularities and Shock Filters[D]. Pasadena, CA,USA: California Institute of Technology, 1987.
    [99] Osher S, Burger M, Goldfarb D, et al. An iterative regularization method for total variation-based image restoration. Multiscale Modeling and Simulation, 2006, 4(2):460–489.
    [100] Tadmor E, Nezzar S, Vese L. A multiscale image representation using hierarchical (BV, L2)decompositions. Multiscale Model. Simul, 2004, 2(4):554–579.
    [101] Gilboa G, Sochen N, Zeevi Y. Texture preserving variational denoising using an adaptivefidelity term. Proceedings of Proc. VLSM. Citeseer, 2003. 137–144.
    [102] Durand S, Froment J. Reconstruction of wavelet coe?cients using total variation minimiza-tion. SIAM Journal on Scientific computing, 2003, 24(5):1754–1767.
    [103] Lintner S, Malgouyres F. Solving a variational image restoration model which involves L∞constraints. Inverse Problems, 2004, 20:815–831.
    [104] Donoho D. De-noising by soft-thresholding. IEEE transactions on information theory, 1995,41(3):613–627.
    [105] Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restorationof images. IEEE Trans. Pattern Anal. Mach. Intell., 1984, 6:721–741.
    [106] Besag J. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society.Series B (Methodological), 1986, 48(3):259–302.
    [107] Chan T, Shen J. Image Processing and Analysis: variational, PDE, wavelet, and stochasticmethods. Philadelphia: Society for Industrial Mathematics, 2005.
    [108] Ziemer W. Weakly di?erentiable functions. Springer-Verlag New York, Inc. New York, NY,USA, 1989.
    [109]王大凯,候榆青,彭进业.图像处理的偏微分方程方法.北京:科学出版社, 2008.
    [110] Perona P, Malik J. Scale-space and edge detection using anisotropic di?usion. IEEE Trans-actions on pattern Analysis and machine intelligence, 1990, 12(7):629–639.
    [111] Black M, Sapiro G, Marimont D, et al. Robust anisotropic di?usion. IEEE Transactions onImage Processing, 1998, 7(3):421–432.
    [112] Weickert J. Anisotropic di?usion in image processing. Teubner-Verlag, Stuttgart, Germany,1998.
    [113] Weickert J, Romeny B, Viergever M, et al. E?cient and reliable schemes for nonlineardi?usion filtering. IEEE Transactions on Image Processing, 1998, 7(3):398–410.
    [114] Weickert J. Coherence-enhancing di?usion filtering. International Journal of ComputerVision, 1999, 31(2):111–127.
    [115] You Y, Xu W, Tannenbaum A, et al. Behavioral analysis of anisotropic di?usion in imageprocessing. IEEE Transactions on Image Processing, 1996, 5(11):1539–1553.
    [116] Gelfand I, Fomin S, Silverman R. Calculus of variations. Courier Dover Publications, 2000.
    [117] Chan T, Mulet P. On the convergence of the lagged di?usivity fixed point method in totalvariation image restoration. SIAM Journal on Numerical Analysis, 1999, 36(2):354–367.
    [118] Vogel C, Oman M. Iterative methods for total variation denoising. SIAM Journal on Scien-tific Computing, 1996, 17(1):227–238.
    [119] Vogel C. Computational methods for inverse problems. Philadelphia: Frontiers Appl. Math.23, SIAM,, 2002.
    [120] Buades A, Coll B, Morel J. A review of image denoising algorithms, with a new one.Multiscale Modeling and Simulation, 2006, 4(2):490–530.
    [121] Buades A, Coll B, Morel J. Nonlocal image and movie denoising. International Journal ofComputer Vision, 2008, 76(2):123–139.
    [122] Gilboa G, Osher S. Nonlocal linear image regularization and supervised segmentation.Multiscale Modeling and Simulation, 2008, 6(2):595–630.
    [123] Gilboa G, Darbon J, Osher S, et al. Nonlocal convex functionals for image regularization.Technical Report 57, UCLA, 6, 2006.
    [124] Combettes P, Wajs V. Signal recovery by proximal forward-backward splitting. MultiscaleModeling and Simulation, 2006, 4(4):1168–1200.
    [125] Fadili M, Starck J. Sparse representation-based image deconvolution by iterative threshold-ing. Proceedings of Astronomical Data Analysis IV, Marseille, France, 2006.
    [126] Lustig M, Alley M, Vasanawala S, et al. L1 SPIR-iT: Autocalibrating Parallel ImagingCompressed Sensing. Proceedings of the 17th Annual Meeting of ISMRM, Hawaii, USA,2009.
    [127] Malgouyres F, Guichard F. Edge direction preserving image zooming: a mathematical andnumerical analysis. SIAM Journal on Numerical Analysis, 2002, 39(1):1–37.
    [128] Cha Y, Kim S. Edge-forming methods for color image zooming. IEEE Transactions onImage Processing, 2006, 15(8):2315–2323.
    [129] Takeda H, Farsiu S, Milanfar P. Kernel regression for image processing and reconstruction.IEEE transactions on image processing, 2007, 16(2):349–366.
    [130] Noll D, Nishimura D, Macovski A. Homodyne detection in magnetic resonance imaging.IEEE transactions on medical imaging, 1991, 10(2):154–163.
    [131] King K, Angelos L. SENSE with partial Fourier homodyne reconstruction. Proceedings ofthe 8th Annual Meeting of ISMRM, Denver, USA, 2000.
    [132] Li C, Pan X, Ying K, et al. An internal reference model-based PRF temperature mappingmethod with Cramer-Rao lower bound noise performance analysis. Magnetic Resonance inMedicine, 2009, 62(5):1251–1260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700