二维电磁散射问题的一种高精度算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由R. F. Harington于1968年提出的矩量法(MoM),是在解决电磁散射的诸多方法中运用最普遍的方法,如可用于各种复杂目标体的电磁散射问题、确定性目标散射、分析天线问题、随机粗糙面散射等。它是通过引入基函数与权函数的方法,离散积分方程为矩阵方程的方式来进行求解的。实现其高精度计算的核心问题是阻抗矩阵中对角元素的计算,这些计算涉及弱/超奇异积分的数值处理。
     机械求积法直接使用数值积分公式离散化,不用计算大量的积分,只需要直接赋值即可,这样可以节省大量的计算时间。该方法基于推导出的公式,用计算机求积,没用任何变换,给出一求奇异积分的公式,这样计算出的结果精度很高,但如何构造恰当求积公式及阐述相应求积方法的可靠性是计算数学的一大难题。本文所采用的机械求积公式是关于奇异积分高精度计算的最新公式。而矩量法采用的是汉克函数的小自变量公式,这就使得机械求积技术的精度要高于矩量法。径向基函数方法作为一个本质上用一元函数描述多元函数的强有力工具,是在处理大规模散乱数据时经常用到的方法。近十几年来,无网格径向基函数方法受到了人们越来越多的关注。作为一种新型的数值计算方法,无网格法仅仅需要在域内分布一些相互独立的点,而不是相互连接的单元,所以可以减少大量的数据准备,避免了普通有限元法和边界元法在计算中需要的网格生成或重生成,以及在大变形(如金属成型,高速碰撞等)计算中可能遇到的单元自锁、扭曲、畸变、移动等问题。本文主要做了以下工作:首先利用关于奇异积分高精度计算的最新公式结合积分方程的配置法处理2维散射问题,利用算子分裂方法将光滑边界推广到分段光滑边界问题,本文具体是将光滑边界推广到三角形边界,还可以用类似方法推广到多边形边界;另外考虑到脉冲匹配的精度问题,利用径向基函数逼近表面电流,并采用高精度机械求积公式(MQM)计算涉及到的奇异积分,数值结果表明了这种方法的计算效率。
The Method of moments (MoM) is the one of the most common method used tosolve electromagnetic scattering.the core issue to achieve its high-precision calculation is the calculation of the diagonal elements in its impedance matrix, which involves numerical treatment of the weak/hypersingular integralshese. The MoM may solve some problems related with complex boundary that analytic method is inoperative. As a result, the MoM is broadly used in various electromagnetic researches, such as EMC, microwave net, micro-strip analysis, antenna design, radiation effort and antenna issues, etc.This essay will improve the method of mechanical quadrature (MQM) related with two-dimensional scattering issue as described below:With the latest formula in high-precision calculation of singular integral, and combining the method of dealing with 2-dimensional scattering problem, this paper extends smooth boundary to piecewise smooth boundary problem by using operator splitting method. Adopts the singular integral related to high-precision mechanical quadrature formula (MQM) calculations related to. The numerical results show the computational efficiency of this method. We could obtain improved MQM with better accuracy than it of MQM and MoM with calculation time saving advantages.Taking into account of the accuracy of pulse matching, it approximates surface currentthe by using radial basis function. The interpolation theory of RBF may help to reduce large amount of workload in grid subdivision, and therefore highly improve the efficiency and result accuracy of algorithm.
引文
[1]任吉林,电磁无损检测的新进展J,无损探伤,2001,5:1-5
    [2]Keller J.B. Determination of reflected and transmitted field by geometrical optics. Journal of the Optical Society of America,1950,40(1):48—52
    [3]J. B. Keller. Geometrical theory of Diffraction. Journal of the Optical Society of America.1962,52:116—130
    [4]Sloan D. Robertson. Target for Microwave radar navigation. Bell Sys Tech.1947, 26:852—869
    [5]Lubbers R. J. A heuristic UTD slope diffraction coefficient for rough lossy wedges. IEEE Transon Antennas Propagate.1989,37(2):206—211
    [6]R. G Kouyoumjian and P. H. Pathak. A uniform theory of Diffraction for an Edge in a perfectly conducting surface. Proc IEEE,1974,62(11):1448—1461
    [7]S. W. Lee and GA. Deschamps. Auniform asymptotic theory of electromagnetic diffraction by a curved wedge. IEEE Trans on Antennas Propagate.1976,24(1): 25—34
    [8]GA. Deschamps, J. Boersma. Three—Dimensional half-plane diffraction:Exact solution and testing of uniform theories. IEEE Trans on Antennas Propagate.1984, 32(3):264 — 271
    [9]R. F. Millar. An approximate theory of the diffraction of an electromagnetic wave by an aperture in a plane screen. Proc. IEEE,1956,103(c):177—185
    [10]A. Michaeli. A closed from psical theory of diffraction solution for electro-magnetic scattering by strip and 900 dihedrals. Radio science,1984.19(2):609 — 616
    [11]Keller J. B, Strefer W. Complex rays with an application to Gaussian beams. J. Opt. Soc,1971,61:40-43
    [12]Felsen L B. Complex rays. Philips Res., Special Issue in honor of C. J. Bouwkamp 30,1975:169-184
    [13]R. F. Harrington. Matrix methods for fields problems. Proc. IEEE,1967,55(2): 136 — 149
    [14]K. Yashiro and S. Ohkawa. Boundary element method for electromagnetic scattering from cylinders. IEEE Antenna and Propagation,1985, AP — 33(4):383 — 389
    [15]J. A. Potti, J. A. Motente. RCS of low observable targets with the TLM method. IEEE Trans.,1998,46(5):741 — 743
    [16]Umashankar K. R. and Taflove A. A Novel Method to Analyze Electromagnetic Scattering of Complex Objects. IEEE Trans. On Electromagnetic Compatibility, 1982,24 (4):397—405
    [17]A. Tallo, Review of FDTD numerical modeling of EM wave scattering and radar cross section. IEEE Proceedings,1989,17(5):682 — 699
    [18]T. K. Sarkar, E. Arvas, and S. M. Rao. Application of FFT and the conjugate gradientmethod for thesolution of electromagnetic radiation from electrically large and small conducting bodies. IEEE Trans. Antennas Propagation,1986, AP — 34(5):635 —640
    [19]V Rolhlin. Rapid solution of integral equations of scattering theory in two dimension. Journal of computational physics,1990 86:414 — 439
    [20]Engheta. N, Murphy. W. D, Rokhlin. V and Vassiliou. M. S. The fast multipole method (FMM) for electromagnetic scattering problems [J]. IEEE Trans. On Antennas and Propagation,1992,40 (6):634 — 641
    [21]Nader Engheta, Marius S., The Fast Multipole Method (FMM) for Electromagnetic Scattering Problems [J]. IEEE Trans On Antennas and Propagation,1992,40(6):634 — 641
    [22]C. C. Lu, W. C. Chew. Fast algorithm for solving hybrid integral equations [J]. IEEE Trans. On Antennas and Propagation,1993,140(6):445 — 460
    [23]J. M. Song, W. C. Chew. Fast multipole method solution of three dimension integral equation [J]. IEEE Antennas and propagation Symposium,1995:1528 — 1531
    [24]C. C. Lu and W. C. Chew. A multilevel algorithm for solving boundary — value scattering. Micro. Opt. Tech. Lett.,1994,7(10):466 — 470
    [25]C. C. Lu, W. C. Chew. A Multilevel algorithm for solving a boundary integral equation of wave scattering [J]. Microwave and Optical technology Letters,1994, 7(10):466 — 470
    [26]C. C. Lu, W. C. Chew. A Coupled Surface — Volume Integral Equation Approach for the Calculation of Electromagnetic Scattering from Composite Metallic and Material Targets [J].IEEE Trans. On Antennas and Propagation,2000,48(12): 1866 — 1868
    [27]W. C. Chew. An NZalgorithm for the multiple scattering solution of N scatters [J]. Microwave Opt. Tech. Lett,1989,2:380 — 383.
    [28]Wang, YM. and W. C. Chew, An efficient algorithm for solution of a scattering problem [J], Microwave Opt. Tech. Lett.1990,3:102 — 106.
    [29]Y. M. Wang, W. C. Chew. Application of the fast recursive a lgorithm to a large inhomogeneous scatterer for TM polarization. Micro. Opt. Tech. Lett.,1991, 4(4):155-157
    [30]S. M. Rao, G K Cothard. Application of finite integral technique to electromagnetic scatting by two — dimensional cavity-backed aperture in a ground plane. IEEE Trans,1998,46(5):679 — 685
    [31]Cui Suomin. A hybrid method for EM scattering from a finned cylinder. Chinese Journal of Electronics,1995,4(1):81—84
    [32]Cui Suomin. Hybrid method for EM scattering by large bodies with cracks and gaps. Microwave and Optical technology Let.1996,12(5):295 — 298
    [33]Louis N. Hybrid solutions for Large Impedance coated bodies of revolution. IEEE Trans. On Antennas and Propagation,34(11):1319—1386
    [34]R. C. Hansen. Geometric theory of diffraction. New York IEEE Press,1981.
    [35]Thiele GA. A hybrid technique for combining moment with a geometrical theory of diffraction. IEEE Trans.1975,23(1):62 — 69
    [36]Medgyeai Mitschang L. N, Wang D. S. Hybrid solution for scattering for scattering from perfectly conducting bodies of revolution. IEEE Trans.1983,31(4):570 — 583
    [37]Chia T. T., Burkhoder R. J. The application of FTTD in hybrid methods for cavity scattering analysis. IEEE Trans,1995,43(10):1082 — 1090
    [38]Burside W. D. A technology to combine the geometrical theory of diffraction and the moment method. IEEE Trans,1975,23(6):551 — 558
    [39]Wang D. S. Current — base hybrid analysis for surface wave effects on large scatterers. IEEEE Trans.,1991,39 (7):839 — 850
    [40]J. Huang and Z. Wang, Extrapolation algorithms for solving mixed boundary integral equations of the Helmholtz equation by mechanical quadrature methods. SIM J. Sci. Comput.,31(2009),4115-4129.
    [41]Jing, Y. F.;Huang, T. Z.;Duan, Y.;Lai, S. J.;Huang, J. A novel integral method for weak singularity arising in two-dimensional scattering problems. IEEE Transaction on Antennas and Propagation,2010,58(8)
    [42]R Mittra, A look at some challenging problems in computational electromagnet-ttic, Antennas and Propagation Magazine, IEEE,2004,46(5):18-32
    [43]A. Taflove, S. C. Hagness, "Computational electrodynamics the finite-difference time-domain " M, Artech House Boston London,2005.
    [44]Staker S W, Holloway C L, Bhobe A U, Piket-May M, Alternating-direction implicit (ADI) formulation of the finite-difference time-Domain(FDTD) method:algonthm and material dispersionimplementation, IEEE Transactionson Electromagnetic Compati-bility,2003,45(2):156-166
    [45]Qing Huo Liu, Large-scale simulations of electromagnetic and acoustic Measure-ments using the pseudospectral time-domain(PSTD) algorithm, IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):917-926
    [46]IcPyo Hong, Namll Yoon, HanKyu Park, Numerical dispersive characteristics and stability condition of the multi-resolution time-domain(MRTD) method, Interna-tional smposium on Electromagnetic Compatibility Proceedings,1997:455-458
    [47]李忠元《电磁场边界元法》北京工业出版社1988
    [48]朱峰“用于电磁散射的T-MATRIX方法及其相关的减元理论”西南交通大学博士论文1997:9
    [49]K F Sabet, J C Cheng, L P B Katehi, Efficient wavelet-based modelingof printed circuit antenna arrays, IEE Microwave Antennas Propagation,1999(146):289-304
    [50]R L Wagner, W C Chew, A study of wavelet for the solution of electromagnetic integral equations, IEEE Trans. Antennas Propagation,1995:802-810
    [51]F X Canning, Improved impedance matrix localization method, IEEE Trans. Antennas Propagation,1993:659-667
    [52]Ain Li, Leung Tsang, Pak, K, S, Chi Hou Chan, Bistatic Scattering and emissiveti.es of random rough dielectric lossy surface with the physics-based two-grid method in conjunction with the sparse-matrix canonical grid method, IEEE Transactions on Antennas and Propagation,2000,48(1):1-11
    [53]Mori A, De Vita F, Freni A, Amodification of the canonical grid series expansion in order to increase the efficiency of the SMCG method, IEEE Geoscience and Rem-Ote Sensing Letters,2005,2(1):87-89
    [54]Bocheng Chen, Ip Wh, The study on the two characters in a kind of Markov chain's CRM model,Internation Conference on Services Systems and Services Mangement, 2005,1:230-232
    [55]Tran T V, McCowen A, Animproved pulse-basis conjugate gradient FFTmethod for the thin conducting plate problem, IEEE Transactions on Antennas and Propagation,1993,41(2):185-190
    [56]Yuan Zhuang,Ke-Li Wu,Chen Wu, Litva, J, A combined full-wave CG-FFT method for ri-gorous analysis of large microstrip antenna arrays, IEEE Transaction on Antennas and Propagation,1996,44(1):102-109
    [57]Catedra, M F, Gago, E, Nuno, L, A numerical scheme to obtain the RCS of threnndimensional bodis of resonant size using the conjugate gradient method and the fast Fourier transform, IEEE Transaction on Antennas and Propagation,989 37(5):528-537
    [58]Quek F K H, Kirbas C, Charbel F T, AIM:attentionally based interaction model for the interpretation of vascular angiography, IEEE Transactions on Information Techology in Biomedicine,1999,3(2):151-157
    [59]Bindiganavale S S,Volakis J L, Anastassiu, H, Scattering from planar structures containing small features using the adaptive integral method(AIM), IEEE Transactions on Antennas and Propagation,1998,46(12):1867-1878
    [60]Wei-Bin Ewe, Le-Wei Li,Mook-Seng Leong, Fast solution of mmixed dielectric/ conducting scattering problem using volume-surface adaptive Integral method, IEEE Transactions on Antennas and Propagation,2004,52(11):3071-3077
    [61]Ting-Li Guo, Jian-Yang Li, Qi-Zhong Liu, Analysis of arbitrarily shaped dielectric radomes using adaptive integral method based on volume integralequation, IEEE Transactions on Antennas and Propagation,2006,54(7):1910-1916
    [62]Engheta N, Murphy W D, Rokhlin V, Vassiliou M. S, The fast mutipole method (FMM) for electro-magnetic scattering problems, IEEE Transactionson Antennas and Propagation,1992,40(6):634-641
    [63]Geng N, Sullivan A, Carin L, Fast multipole method for scattering from an arbitray PEC target above or buried in a lossy half space, IEEE T Transactionson Antennas and Propagation,2001,49(5):740-748
    [64]R. Coifman, V Rokhin, S Wandzura, The fast multiple method for the wave equation:A pedestrian prescription, IEEE Antennas Propagation Magazine,1993:7-12
    [65]Wei Bing Lu, Tie Jun Cui,Effeiciency Analysis of a Novel FMM-CG-FFT Algorithm for Full-Wave Simulation of Finite-Sized Periodic Structures,IEEE on Antennas and Propagation Society International Symposium,2006:4027-4030
    [66]J Song,C Lu, W C Chew, Multilevel fast multiple algorithm for electromagnetic scattering by large complex objects, IEEE Trans. Antennas Propagation,1997: 1488-1493
    [67]Zhiqin Zhao, Ling Li,Smith J,Carin L, Analysis of scattering from very large three-dimensional rough surfaces using MLFMM and ray-based analyses, IEEE on Antennas Propagation Magazine,2005,47(3):20-30
    [68]牛臻弋,复杂移动平台环境中天线辐射问题的快速算法研究[博士论文],东南大学,2006年
    [69]胡俊,聂在平,王军等,三维电大目标散射求解的多层快速多极子方法,电波科学报,2004,19(5):.509-514
    [70]Rui P L,Chen R S, Wang D X,Yung E K N, A Spectral Multigrid Method Combined with MLFMM for Solving Electromagnetic Wave Scattering Problems, IEEE Transactionson Antennas and Propagation,2007,55(9):2571-2577
    [71]Velamparambil S, Weng Cho Chew, Jiming Song,10 million unknowns:is it that big, IEEE on Antennas and Propagation Magazine,2003,45(2):43-58
    [72]Graglia R D, Wilton D R, Peterson A F, Higher order interpolatory vector bases for computational electromagnetics, IEEE Transactions on Antennas and Propagation,1997,45 (3):329-342
    [73]Gang Kang, Jiming Song, Weng Cho Chew, Donepudi K C, Jian-Ming Jin, A novel grid-robust higher order vector basis function for the method of moments, IEEE Transactions on Antennas and Propagation,2001,49(6):908-915
    [74]Wildman R A, Weile D S, An accurate broad-band method of moments using higher order basis functions and tree-loop decomposition, IEEE Transactions on Antennas and Propagation,2004,52(11):3005-3011
    [75]Donepudi K C, Jian-Ming Jin, Weng Cho Chew, A higher order multilevel fast multipole algorithm for scattering from mixed conducting/dielectric bodies, IEEE Transactions on Antennas and Propagation,2003,51(10):2814-2821
    [76]Craeye C, A Fast Impedance and Pattern Computation Scheme for Finite Antenna Arrays, IEEE on Antennas and Propagation,2006,54(10):3030-3034
    [77]Stevanovic I, Mosig J R, Using symmetries and equivalent moments in improving the efficiency of the subdomain multilevel approach, Antennas and Wireless Propagation Letters,2005,4:158-161
    [78]Ivica Stevanovik, Juan R, Mosig, Subdomain Multilevel Approach with Fast MBF Interactions, IEEE, Antennas and Propagation Society International Symposium, 2004(1):367-370
    [79]C.A.巴拉尼斯,天线理论-分析与设计,北京-电子工业出版社(第一版),1988,6
    [80]James R M, On the use of Fourier series/FFT's as global basis functions in thesolution of boundary integral equations for EM scattering, IEEE Transactions on Antennas and Propagation,1994,42(9):1309-1316
    [81]Wei Bing Lu, Tie Jun Cui, Xiao Xing Yin, Zhi Guo Qian, Wei Hong, Fast algorithms for large-scale periodic structures using subentire domain basis functions, IEEE Transactions on Antennas and Propagation,2005,53(3):1154-1162
    [82]Wei Bing Lu, Tie Jun Cui, Zhi Guo Qian, Xiao Xing Yin, Wei Hong, Accurate analysis of large-scale periodic structures using an efficient sub-entire-domain basis function method, IEEE Transactions on Antennas and Propagation,2004,52(11): 3078-3085
    [83]R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill Book Co. New York,1961,pp,223-230
    [84]Yan-Fei Jing;Ting-Zhu Huang;Yong Duan, A Novel Integration Method for Weak Singularity Arising in Two-Dimensional Scattering Problems,IEEE Transactions on Antennas and Propagation,2010,58(8);2725-2731
    [85]J. Huang and Z. Wang, Extrapolation algorithms for solving mixed boundary integral equations of the Helmholtz equation by mechanical quadrature methods. SIAM J. Sci. Comput.,31(2009),4115-4129
    [86]A. Sidi and M. Israrli, Quadrature methods for periodic singular Fredholm integral equation. J. Sci. Comp.,3 (1988),201-231.
    [87]段勇.微分方程数值解讲义,电子科技大学应用数学学院内部教材
    [88]R. Mittra, Computer Techniques for Electromagnetics. New York:Pergamon,1973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700