基于分数阶变分PDE的图像建模与去噪算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像处理过程中,保持图像的边缘、纹理等重要结构特征是非常重要的。要保持这重要的图像信息,在图像处理时就要对图像中的卡通、边缘、纹理及噪声等不同成分进行区分和处理,也就需要对图像的不同成分进行合适的数学建模。
     本论文结合图像去噪问题的研究,利用小波分析理论与方法、函数空间图像建模理论与方法以及新的数学工具如分数阶导数等,探索对图像中的不同成分的新的建模方法,并在此基础上利用正则化理论和方法、算子分裂法、变分法等提出新的图像去噪变分PDE模型和算法。论文结合图像去噪提出的基于分数阶变分PDE的图像建模理论和方法,可以进一步推广到图像分割、超分辨率重建等其它图像处理领域,具有重要的理论意义和广泛的实际应用前景。
     本文取得的主要成果及创新点包括:
     (1)利用负指数Sobolev空间对图像的纹理进行多尺度建模,并用正交小波变换下Sobolev空间中的多尺度范数来进行刻画,在此基础上提出了负指数Sobolev空间中的多尺度变分PDE图像去噪模型。针对提出的多尺度变分模型,提出了三种数值算法,从理论上分析并证明了算法收敛的充分条件。数值实验表明,利用负指数Sobolev空间对纹理和进行多尺度建模,可以更好地对图像中不同尺度的纹理和噪声进行区分和刻画,所提出的多尺度变分PDE图像去噪模型能在去有效提高峰值信噪比的同时更好地保持图像纹理等细节信息,在本文所提出的三种去噪算法中,基于算子分裂思想提出的交替投影算法是最快速稳定的算法。
     (2)利用分数阶导数对图像进行建模,在此基础上提出了分数阶变分PDE图像去噪模型及算法。
     首先,利用Fourier变换域定义的分数阶导数对图像进行建模,提出一种连续形式的分数阶变分PDE图像去噪模型,并设计了求解模型的离散梯度下降算法。
     其次,利用空域中的Grumwald-Letnikov分数阶导数对图像进行建模,分别从连续和离散两个角度提出新的分数阶图像去噪变分模型及算法。从连续建模角度,利用Grumwald-Letnikov分数阶导数和特定卷积积分等价关系,建立了一种连续形式的基于卷积积分的分数阶图像去噪变分模型,并设计了相应的离散梯度下降算法。从离散建模角度,将离散意义下的总变分和有界变差空间进行了推广,构造新的离散意义下的分数阶总变分和分数阶有界变差空间(BVα空间),研究了分数阶总变分及其共轭算子的性质,利用分数阶有界变差空间对图像进行建模,建立了离散意义下的分数阶图像去噪变分模型。对所建立的离散分数阶变分模型,设计了空间投影算法,并对算法的收敛性进行了分析,给出并证明了算法收敛的充分条件。
     数值实验表明,利用分数阶导数对图像进行建模,可以在有效改善峰值信噪比同时,较好地抑制“阶梯效应”,保持图像的纹理细节。在所提出的三种算法中,针对离散模型提出的空间投影算法是计算量最小、速度最快的算法。
     (3)将负指数Sobolev空间中的多尺度图像建模和基于分数阶导数的图像建模进行耦合,提出了统一的分数阶多尺度变分图像去噪模型,设计了求解分数阶多尺度变分模型的交替投影算法,对算法的收敛性进行了分析,并给出了算法收敛的充分条件。数值实验表明,耦合模型综合了两种建模方法的优点,在峰值信噪比改善、纹理保持以及“阶梯效应”抑制方面比耦合前的两种模型都具有更好的效果。
     在统一的多尺度分数阶变分模型基础上,对模型进行进一步改进,并利用图像的局部方差等统计信息,对图像的“纹理区域”和“非纹理区域”进行区分,利用小波系数的幅值和函数正则性之间的关系分析图像各个尺度的正则性,在此基础上提出了参数自适应选择方法以及自适应交替投影算法。数值实验表明,自适应算法在图像的“非纹理区域”具有良好的去噪效果和“阶梯效应”抑制能力,在“纹理区域”具有良好的纹理保持能力,是一种快速高效的图像去噪方法。
     (4)基于f=u+v+w和f=u+uv两种图像分解形式,利用提出的分数阶导数图像建模和负指数Sobolev空间中的多尺度图像建模方法,分别对加性噪声去噪和乘性噪声去噪问题,提出新的分数阶图像去噪变分模型及算法。
     首先,基于f=u+v+w的图像分解形式,利用分数阶导数,构造了新的Gμα空间,并在此基础上提出了针对加性噪声去噪的两种分数阶变分模型:第一,利用BV_α、G_μ~α空间和负指数Sobolev空间分别对图像的卡通、纹理及噪声进行建模,提出了新的分数阶变分模型及算法;第二,利用BVα空间、Gμα空间以及齐次BesOv空间B∞-1.∞,分别对图像卡通、纹理以及噪声分别进行建模,提出新的分数阶变分模型及算法。数值实验表明,利用分数阶、多尺度函数空间对图像卡通、纹理及噪声分别建模,使得对图像不同成分的建模更加精细,所提出的分数阶多尺度噪模型在峰值信噪比改善、纹理保持以及“阶梯效应”的抑制方面都有较好的效果。
     其次,基于f=u+uv的图像分解形式,针对噪声分别分服从Gauss分布和Gamma分布的乘性噪声去噪问题,利用BV_α空间和负指数Sobolev空间对图像的不同成分进行建模,建立了相应的分数阶多尺度图像去噪变分模型,提出了模型参数的自适应选择方法,并设计了相应的数值算法。数值实验表明,对于乘性噪声去噪问题,本文提出的分数阶多尺度变分模型及算法在峰值信噪比改善、图像细节保持以及“阶梯效应”的抑制方面同样具有较好的效果。
In image processing, it is important to preserving useful structures such as edges and textures. To preserve these important structures, we need to distinguish and deal with these different components of image such as cartoon, edge, texture and noise separately, and then we need modeling these components appropriately.
     In this paper, using wavelet analysis theory and methods, Function space image mod-eling methods and fractional calculus, new methods for modeling different components of image are proposed. Based on these works and using regularization theory and methods and variational methods, new fractional-order variational PDE models and algorithms are proposed for image denoising. The fractional-order variational PDE based image model-ing theory and methods can be applied in other field of image processing such as image segmentation, super-resolution reconstruction, have important theoretical significance and application values.
     The main results achieved and innovations include:
     (1)Based on multi-scale modeling the texture of image in negative Sobolev space and using the orthogonal wavelet transform based multi-scale norm in negative Sobolev space to characterize the norm of texture, a new multi-scale variational PDE model in negative Sobolev space is proposed. For solving the proposed model, this paper gives three kinds of numerical algorithms, and the sufficient conditions for convergence of these algorithms are theoretically analyzed and proved. Numerical experiments show that using the multi-scale modeling method in negative Sobolev space for the texture of image, we can distinguish and describe the texture and noise better at different scales. The proposed multi-scale variational PDE model can preserve texture efficiently while improve the PSNR of image, and the alternating projection algorithm based on the operator splitting method is is the most rapid and stable one of the three proposed algorithms.
     (2) Modeling the image by using fractional-order derivative, Fractional-order Varia-tion PDE models and algorithms are proposed for image denoising.
     First of all, using the fractional derivative defined in Fourier transform domain, a fractional-order variation model is established and the corresponding discrete gradient de-scent algorithm is proposed。
     Secondly, based on Grumwald-Letnikov fractional-order derivative, this paper pro-pose two models from the point of view continuous modeling and discrete modeling. From the point of view continuous modeling, using the relation between Griimwald-Letnikov fractional-order derivative and certain convolution integral, a convolution integral based fractional-order variation model and the corresponding algorithm are proposed. From the point of view Continuous modeling, based on the Grumwald-Letnikov fractional-order difference, this paper extend the discrete function space of bounded variation (BV space) to the discrete fractional-order function space of bounded variation BV_a at first and then using BV_a space for image modeling, a new fractional-order variation model and the corresponding projection algorithm are proposed. For the convergence of the projection algorithm, an efficient condition is proved.
     Numerical experiments show that using the fractional-order variation to model the image, we can preserve the finer scale details such as textures and edges, restrain the "blocky effect" and improve the PSNR effectively. In the proposed three kinds of algo-rithms, the the cost of computation of projection algorithm is minimum and the speed of taht is the fastest.
     (3) Coupling the multi-scale modeling method in negative Sobolev space and the fractional-order derivative based image modeling method, a uniform multi-scale fractional-order variational PDE model for image denoising and the corresponding alter-nating projection algorithm are propoesd. The convergence of the alternating projection algorithm is analyzed and an efficient condition is proved in this paper. Numerical experi-ments show that the coupled model combines the advantages of both models, it have better results in the improvement of the PSNR, preserving of textures, as well as restraining of the "blocky effect".
     Based on the uniform multi-scale fractional-order variational PDE model, by using image statistical information such as local variance of image to distinguish of "texture area" and "non-texture area" of image and the relationship between wavelet confidences and the regularity of function, the adaptive multi-scale fractional-order variational PDE model and the corresponding adaptive alternating projection algorithm for image denoising are proposed. Numerical results show the adaptive fractional-order model can not only remove noise and restrain "blocky effect" in the "non-texture area" effectively, but also preserve the finer scale details such as texture in the "texture area" efficiently and is a fast and effective method for image denoising.
     (4) Based on two kinds of image decomposition of iamge such as f= u+v+w and f= u+uv, making use of the fractional-order derivative based image modeling and multi-scale modeling method in negative Sobolev spaces, new fractional-order variational denoising models and algorithms are proposed for additive and multiplicative noise respectively.
     First of all, based on image decomposition form as f= u+v+w,using fractional-order derivative, this paper constructs a new space denote G(_μ~α), and then proposes two models: first, modeling cartoon, texture and noise of image with BV_a space, G(_μ~α) and Multi-scale negative Sobolev space respectively, and propose a new fractional-order variation PDE model and algorithm. Secondly, modeling cartoon, texture and noise with BV_a space, G(_μ~α) and Besov space B(_-1,∞~∞) respectively, and propose a new fractional-order variation model and algorithm. Numerical results show that the new models are effective for improving PSNR, preserving texture and restraining "blocky effect"
     Secondly, based on image decomposition form as f= u+uv, multiplicative noise re-moving problems whose noise follow the Gauss law and Gamma Law are considered. New multi-scale fractional-order multi-scale models are propose. This paper gives the adaptive parameter selection method and designs the corresponding numerical algorithms. Numer-ical experiments show that for multiplicative noise removing, fractional-order multi-scale models are effective for improving PSNR, preserving texture and restraining "blocky ef-fect" also.
引文
[1]冈萨雷斯等著.数字图象处理(第二版)[M].北京,电子工业出版社,2003.
    [2]Mallat S.著,杨力华等译.信号处理的小波导引[M].北京,机械工业出版社,2002.
    [3]Hiriart J.B., Lemarechal C. Convex Analysis and Minimization Algorithms [M]. Volume I, Springer-Verlag, Berlin, Heidelberg,1993.
    [4]Stoer J., Bulirsch R. Introduction to Numerical Analysis [M]. Springer-Verlag New York, Inc., third edition,2002.
    [5]Aubert G., Kornprobst P. Mathematical Problems in Image Processing [M]. Springer:New York, Berlin, Heidelberg,2002.
    [6]Meyer Y. Wavelets and Operators [M]. Cambridge Studies in Advanced Mathematics, Vol.37, Cambridge Univ. Press, Cambridge,1992
    [7]Acar R., Vogel C.R. Analysis of bounded variation penalty methods for ill-posed problems [J]. Inverse Problems,1994,10(6):1217-1229.
    [8]Pereverzev S.V. Optimization of Projection Methods for Solving Ill-posed Problems [J]. Com-puting,1995,55(2):113-124
    [9]Hanke M., Croetsch C.W. Nonstationary Iterated Tikhonov Regularization [J]. Journal of Opti-mization Theory and Applications,1998,98(1):37-53
    [10]Besdok E., Yuksel M.E. Impulsive noise suppression from images with Jarque-Bera test based median filter [J], AEU-International Journal of Electronics and Communications,2005,59(2): 105-110.
    [11]Chen T., Ma K.K., Chen L.H. Tri-state median filter for image denoising [J]. IEEE Transaction on Image Processing,1999,8(12):1834-1838.
    [12]Yang X.H., Peng S.T. Adaptive fuzzy multilevel median filter [J]. IEEE Transaction on Image Processing,1995,4(5):680-682.
    [13]Wang Z., Zhang D. Progressive switching median filter for the removal of impulse noise from highly corrupted images [C]. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing,1999,46(1):78-80.
    [14]Sun T., Neuvo Y. Detail-preserving median based filters in image processing[J]. Pattern Recog-nition Letters,1994,15(4):341-347.
    [15]Donoho D.L., Johnstone J.M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994,81(3):425-455.
    [16]Donoho D.L., Johnstone J.M. Adapting to unknown smoothness via wavelet shrinkage [J]. Jour-nal of the American Statistical Association,1995,90(432):1200-1224.
    [17]Donoho D.L. Denoising by soft thresholding [J]. IEEE Transactions on Information Theory, 1995,41(3):613-627.
    [18]Starck J.L., Candes E.J., Donoho D.L. The curvelet transform for image denoising [J].IEEE Transations on Image Processing,2002,11(6):670-680.
    [19]Pennec E.L., Mallat S. Sparse Geometric Image Representations With Bandelets [J]. IEEE Transactions on Image Processing,2005,14(4):423-438.
    [20]Starck J.L., Donoho D.L., Candes E.J. Astronomical image representation by the curvelet trans-form [J]. Astronomy and Astrophysics,2003,398(2):785-800.
    [21]Candes E.J. Ridgelets:theory and applications [D]. Stanford:Stanford University,1998.
    [22]Candes E.J., Donoho D.L. Curvelets:a surprisingly effective non-adaptive representation for object with edges [R]. Technical report, Stanford:Stanford University,1999.
    [23]Pennec E.L., Mallat S. Image compression with geometrical wavelets [C]. Proceedings of the IEEE International Conference on Image Processing. Vancouver:2000:661-664.
    [24]Do M.N., Vetterli M. Contourlets,Beyond wavelets [M]. Welland G.V., Ed. New York:Aca-demic,2003
    [25]Donoho D.L. Wedgelets:nearly-minimax estimation of edges [J]. The Annals of Statistics, 1999,27(3):859-897.
    [26]Vetterli M. Wavelets,approximation and compression [J]. IEEE Signal Processing Magazine, 2001,18(5):59-73.
    [27]Emmanuel J., David C., Donoho D.L. Ridgelets:a key to higher-dimensional intermittency [J]. Phil Trans R Soc Lond A,1999,357 (1760):2495-2509.
    [28]Devore R.A. Nonlinear approximation [J].Acta Numerica,1998,7:51-150.
    [29]Candes E.J. Harmonic analysis of neural networks[J]. Applied and Computational Harmonic Analysis,1999,6(2):197-218.
    [152]Rajpoot K., Rajpoot N., Noble J.A. Discrete wavelet diffusion for image denoising [J]. Lecture Notes in Computer Science,2008,5099:20-28
    [154]Liang L., Feng X., Yin H. Variational image restoration and decomposition with curvelet shrink-age [J]. Journal of Mathematical Imaging and Vision,2008,30(2):125-132
    [32]Gabor D. Information theory in electron microscopy [J]. Laboratory investigation,1965,14: 801-807.
    [33]Jain A.K. Partial differential equations and finite-difference Methods in Image Processing,part I:Image representation [J]. Journal of optimization Theory and Applications,1977,23(1):65-91.
    [34]Koenderink J.J. The structure of images [J]. Biological cybernetics,1984,50(5):363-370.
    [35]Witkin A.P. Scale space filtering [C]. Proceedings of the International Joint Conference on Ar-tificial Intelligence,1983:1019-1021.
    [36]Perona P., Malik J. Scale space and edge detection using anisotropic diffusion [J]. IEEE Trans-actions on pattern Analysis and machine intelligence,1999,12(7):629-639.
    [37]Scherzer O., Weickert J. Relations between regularization and diffusion filtering [J]. Journal of Mathematical Imaging and Vision,2000,12(1):43-63.
    [38]Whitaker R.T, Pizer S.M. A multi-scale approach to nonuniform diffusion [J]. CVGIP:Image Understanding,1993,57(1):99-110.
    [39]Galic I., Weickert J., Welk M., Bruhn A., Belyaev A., Seidel H.P. Image compression with anisotropic diffusion [J]. Journal of Mathematical Imaging and Vision,2008,31(2):255-269
    [40]Weickert J. Multiscale texture enhancement.Computer analysis of images and patterns [J]. Lec-ture Notes in Computer Science,1995,970:230-237.
    [41]Carmona R.A., Zhong S.F. Adaptive smoothing respecting feature directions [J]. IEEE Trans-actions on Image Processing,1998,7(3):353-358.
    [42]Chen Y M., Vemuri B.C., Wang L. Image denoising and segmentation via nonlinear diffusion [J]. Computers and Mathematics with Application,2000,39(5-6):131-149.
    [43]Torkamani A.F., Tait K.E.. Image recovery using the anisotropic diffusion equation [J]. IEEE Transactions on Image Processing,1996,5(11):1573-1578.
    [44]Wu Z.Y., Herman G.T., Browne J.A. Edge preserving reconstruction using adaptive smoothing in wavelet domain [C]. Nuclear Science Symposium and Medical Imaging Conference,1993: 1917-1921.
    [45]Segall C.A., Acton S.T. Morphological anisotropic diffusion [C]. Proceeding of the IEEE Inter-national Conference on Image Processing,1997:26-29.
    [46]Yu Y, Acton S.T. Speckle reducing anisotropic diffusion [J]. IEEE Transactions on Image Pro-cessing,2002, 11(11):1260-1270.
    [47]Gao G., Zhao L., Zhang J., Zhou D., Huang J. A segmentation algorithm for SAR images based on the anisotropic heat diffusion equation [J]. Pattern Recognition,2008,41(10):3035-3043
    [48]Perona P. Orientation diffusions [J]. IEEE Transactions on Image Processing,1998,7(3):357-365.
    [49]Sapiro G. Geometric Partial Differential Equations and Image Analysis [M]. Cambridge Uni-versity Press.2001.
    [50]Kimia B., Tenenbaum A., Zucker S.W. Toward a computational theory of shape:An overview [J]. Lecture Notes in Computer Science,1990.427:402-407.
    [51]Malladi R., Sethian J.A. Image processing, flows under min/max curvature and mean curva-ture[J]. Graphical Models and Image Processing,1996,58(2):127-141.
    [52]Caselles V., Catte E, Coll T., Dibos F. A geometric model for active contours in image processing [J]. Numerische Meathematik,1993,66(1):1-31.
    [53]Malladi R., Sethian J.A., Vemuri B.C. A fast level set based algorithm for topology-independent shape modeling [J]. Journal of Mathematical Imaging and Vision,1996,6(2):269-289.
    [54]Evans L.C., Spruck J. Motion of level sets by mean curvature I [J]. Journal of Differential Geometry,1991,33(3):635-681.
    [55]Evans L.C., Spruck J. Motion of level sets by mean curvature Ⅱ [J]. Journal of Transactions of the American Mathematical Society,1992,330:321-332.
    [56]Evans L.C., Spruck J. Motion of level sets by mean curvature III [J]. Journal of Geometric Analysis,1992,2:121-150.
    [57]肖亮.基于变分PDE和多重分形的图像建模理论、算法与应用[D].南京理工大学,南京,2003.
    [58]Mumford D., Shah J. Optimal approximation by Piecewise smooth functions and associated Variational Problems [J]. Communication on Pure and Applied Mathmetics,1989,42(5):577-685
    [59]Chambolle A., Dal Maso G. Discrete approximation of the Mumford Shah functional in dimen-sion two [J]. Mathematical Modelling and Numerical Analysis,1999,33(4):651-672.
    [60]Chambolle A. Image segmentation by variational methods:Mumford and Shah functional and the discrete approximations [J]. SIAM Journal on Applied.Mathematics,1995,55(3):827-863.
    [61]Morini M., Negri M. Mumford Shah functional as limit of discrete Perona Malik energies [J]. Mathematical Models and Methods in Applied Sciences 2003,13(6):785-805.
    [62]Osher S., Fedkiw M. Level Set Methods and Dynamic Implicit Surfaces [M]. Springer:New York, Berlin, Heidelberg,2003.
    [63]Carriero M., Leaci A., Tomarelli F. Calculus of variations and image segmentation [J]. Journal of Physiology-Paris,2003,97(2-3):343-353.
    [64]Chambolle A., Lions P.L. Image recovery via total variation minimization and related problems [J]. Numerische Mathematik,1997,76(2):167-188.
    [65]Chan T.F., Vese L.A. Active contours without edges [J]. IEEE Transactions on Image Process-ing,2001,10(2):266-277.
    [66]Chan T.F., Vese L.A. Variational image restoration and segmentation models and approxima-tions [R]. UCLA CAM Report,97-47,1997.
    [67]Chambolle A., DeVore R.A., Lee N.Y., Lucier B.J. Nonlinear wavelet image processing:Vari-ational problems, compression, and noise removal through wavelet shrinkage [J]. IEEE Trans-actions on Image Processing,1998,7(3):319-335.
    [68]Osher S., Burger M., Goldfarb D., Xu J., Yin W. An iterative regularization method for total variation based image restoration [J]. Multiscale Modeling and Simulation,2005,4(2):460-489.
    [69]Burger M., Osher S., Xu J., Gilboa G. Nonlinear inverse scale space methods for image restora-tion [J]. Lecture Notes in Computer Science,2005,3752:25-36.
    [70]Burger M., Gilboa G., Osher S., Xu J. Nonlinear inverse scale space methods [J]. Communica-tions in Mathematical Sciences,2006,4(1):175-208.
    [71]Barbu T., Barbu V, Biga V, Coca D. A PDE variational approach to image denoising and restoration [J]. Nonlinear Analysis,2009,10(3):1351-1361
    [72]DeVore R., Lucier B. Fast wavelet techniques for near-optimal image processing [C]. IEEE Military Communications Conference,1992,1129-1135.
    [73]Cohen A., DeVore R., Petrushev P., Xu H. Nonlinear approximation and the space BV (R2) [J]. American Journal of Mathematics,1999,121(3):587-628.
    [74]Cohen A., Dahmen W., Daubechies I., DeVore R. Harmonic analysis of the space BV [J]. Rev. Mat. Iberoamericana,2003,19(1):235-263.
    [75]Shi Y., Rei C., Wang H. A novel PDE based image restoration:Convection-diffusion equation for image denoising [J]. Journal of Computational and Applied Mathematics,2009,231(2): 771-779
    [76]Sawatzky A., Brune C, Muller J., Burger M. Total Variation Processing of Images with Pois-son Statistics [C]. Proceedings of the 13th International Conference on Computer Analysis of Images and Patterns,2009, LNCS 5702:533-540.
    [77]Bar L., Sochen N., Kiryati N. Convergence of an Iterative Method for Variational Deconvolution and Impulsive Noise Removal [J]. Multiscale Modeling and Simulation,2008,6(3):983-994.1
    [78]Ruding L., Osher S., Fatemi E. Nonlinear total variation based noise removal algorithms [J]. PhysicaD,1992,60(1-4):259-268.
    [79]邹谋炎.反卷积和信号复原[M],北京,国防工业出版社,2001.
    [80]Blomgren P.V. Color TV:Total Variation Method for Restoration of Vector Valued Images [D]. Angeles:UCLA,1998.
    [81]Chen Y., Levine S., Rao M. Variable exponent, linear growth functionals in image restorati [J]. SIAM Journal on Applied Mathematics,2006,66(4):383-406.
    [82]张红英,彭启琮.全变分自适应图像去噪模型[J].光电工程,2006,33(3):50-53.
    [83]Steidl G., Weickert J., Brox T., Mrazek P., Welk M. On the equivalence of soft wavelet shrink-age, total variation diffusion, total variation regularization, and SIDEs [J]. SIAM Journal on Numerical Analysis,2004,42(2):686-658.
    [84]Plonka G., Ma J. Nonlinear regularized reaction-diffusion filters for denoising of images with textures [J]. IEEE Transaction on Image Processing,2008,17(8):1283-1294.
    [85]Hahn J., Lee C.O. A nonlinear structure tensor with the diffusivity matrix composed of the image gradient [J]. Journal of Mathematical Imaging and Vision,2009,34(2):137-151.
    [86]Bresson X., Chan T.F. Non-local unsupervised variational image segmentation models [R]. UCLA CAM Report,08-67,2008.
    [87]Mingqiang Zhu. Fast Numerical Algorithms for Total Variation Based Image Restoration [D]. University of California, Los Angeles,2008.
    [88]Xiu N., Zhang J. Some recent advances in projection-type methods for variational inequalities [J]. Journal of Computational and Applied Mathematics,2003,152(1-2):559-585.
    [89]Vogel C.R., Oman M.E. and others. Fast, robust total variation-based reconstruction of noisy, blurred images [J]. IEEE Transactions on Image Processing,1998,7(6):813-824.
    [90]Vogel C.R., Oman M.E. Iterative methods for total variation denoising [J]. SIAM Journal on Scientific Computing,1996,17(1):227-238.
    [91]Savage J., Chen K. An improved and accelerated nonlinear multigrid method for total-variation denoising [J]. International Journal of Computer Mathematics,2005,82(8):1001-1015.
    [92]Noor M.A. New extragradient-type methods for general variational inequalities [J]. Journal of Mathematical Analysis and Applications,2003,277(2):379-394.
    [93]Nesterov Y. Dual extrapolation and its applications to solving variational inequalities and related problems [J]. Mathematical Programming,2007,109(2):319-344.
    [94]Nikolova M. Minimizers of cost-functions involving nonsmooth data fidelity terms [J]. SIAM Journal on Numerical Analysis,2002,40(3):965-994.
    [95]Iusem A.N. On the convergence properties of the projected gradient method for convex opti-mization [J]. Computational and Applied Mathematics,2003,22(1):37-52.
    [96]Tadmor E., Nezzar S., Vese L. Multiscale hierarchical decomposition of images with applica-tions to deblurring, denoising and segmentation [J]. Communications in Mathematical Sciences, 2008,6(2):281-307
    [97]Li W., Sun X., Wang Y., Wang J. A Bound Constrained Regularization for Total Variation-Based Image Denoising [J]. Journal of Information and Computing Scienc,2008,3(2):104-110
    [98]Chan T.F., Marquina A., Mulet P. High-order total variation-based image restoration [J]. SLAM J. Sci. Comput.,2000,22(2):503-516.
    [99]Chan T.F., Esedoglu S., Park F.E. A fourth order dual method for staircase reduction in texture extraction and image restoration problems [R]. UCLA CAM Report,05-28,2005.
    [105]You Y.L., Kaveh M. Fourth-order partial differential equations for noise removal [J]. IEEE Transactions on Image Processing,2000,9(10):1723-1730.
    [101]Lysaker M., Lundervold A., Tai X.C. Noise removal using fourth-order partial differential equa-tion with applications to medical magnetic resonance images in space and time [J]. IEEE Trans-actions on Image Processing,2003,12(12):1579-1590.
    [102]Chen H., Song J., Tai X.C. A dual algorithm for minimization of the LLT model [J]. Advances in Computational Mathematics,2009,31(1):115-130.
    [103]Lu L., Wang M., Lai C.H. Image denoise by fourth-order PDE based on the changes of laplacian [J]. Journal of Algorithms and Computational Technology,2008,2(1):99-110.
    [104]Didas S., Weickert J., Burgeth B. Properties of Higher Order Nonlinear Diffusion Filtering [J]. Journal of Mathematical Imaging and Vision,2009,35(3):208-226.
    [105]Lysaker M., Tai, X.C. Iterative image restoration combining total variation minimization and a second-order functional [J]. International Journal of Computer Vision,2006,66(1):5-18.
    [168]Stephan Didas. Higher Order Variational Methods for Noise Removal in Signals and Images [D]. Department of Mathematics Saarland University, Saarbrcken, April 2004.
    [107]Nielsen M., Florack L., Deriche R. Regularization, scale-space and edge detection filters [J]. Journal of Mathematical Imaging and Vision,1997,7(4):291-307.
    [108]Hintermuller, M., Stadler G. An infeasible primal-dual algorithm for TV-based inf-convolution-type image restoration [J]. SIAM Journal on Scientific Computing,2006,28(1):1-23.
    [109]Jia R.Q., Zhao H., Zhao W. Convergence analysis of the Bregman method for the variational model of image denoising [J]. Applied and Computational Harmonic Analysis,2009,27(3): 367-379.
    [110]Shao W.Z., Wei Z.H. Edge-and-corner preserving regularization for image interpolation and reconstruction [J]. Image and Vision Computing,2008,26(12):1591-1606.
    [111]Zhikov V.V. A Note on Sobolev Spaces [J]. Journal of Mathematical Sciences,.2005,129(1): 3593-3595.
    [112]Alves C.O., Bertone A.M., Goncalves J.V. A variational approach to discontinuous problems with critical Sobolev exponents [J]. Journal of Mathematical Analysis and Applications 2002, 265(1):103-127.
    [113]Jaffard S. Pointwise Regularity Criteria [J]. Comptes rendus-Mathematique,2004,339(11): 757-762.
    [114]Alliney S. A property of the minimum vectors of a regularizing functionaldefined by means of the absolute norm [J]. IIEEE Transactions on Signal Processing,1997,45(4):913-917.
    [115]Chambolle A., Lions P.L. Image recovery via total variation minimization and related problems [J]. Numerische Mathematik,1997,76(2):167-188.
    [116]Blomgren P., Mulet P., Chan T.F., Wong C.K. Total variation image restoration:numerical meth-ods and extensions [C]. Proceedings of the IEEE International Conference on Image Processing, 1997,3:384-387.
    [117]Meyer Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations [M], volume 22 of University Lecture Series. AMS, Providence,2001.
    [118]Vese L., Osher S. Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing [J]. Journal of Scientific Computing,2003,19(1):553-572.
    [119]Osher S., Sole A., Vese L. Image decomposition and restoration using total variation minimiza-tion and H~(-1)norm. Multiscale Modeling and Simulation,2003,1(3):349-370.
    [120]Lieu L., Vese L. Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev space [R]. UCLA CAM Report,05-33,2005.
    [121]Aujol J.F., Aubert G., Blanc-Feraud L., Chambolle A. Decomposing an image:Application to SAR images [J]. Lecture Notes in Computer Science,2003,3:297-312.
    [122]Aujol J.F., Chambolle A. Dual norms and image decomposition models [J]. International Jour-nal on Computer Vision.2005,63(1):85-104.
    [124]Daubechies I., Teschke G. Variational image restoration by means of wavelets:Simultaneous decomposition, deblurring, and denoising [J]. Applied and Computational Harmonic Analysis, 2005,19(1):1-16.
    [124]Daubechies I., Teschke G. Wavelet based image decomposition by variational functional [C]. Proceedings of SPIE,2004,5266:94-105.
    [125]Garnett J., Le T., Vese L. Image Decompositions Using Bounded Variation and Generalized Homogeneous Besov Spaces [R]. UCLA CAM Report,05-57,2005.
    [126]Garnett J, Jones P., Le T., Vese L. Modeling oscillatory components with the homogeneous spaces BMO-α and W_(-α,p) [R]. UCLA CAM Report,07-21,2007.
    [127]Kindermann S., Osher S., Xu J. Denoising by bv-duality [R]. UCLA CAM Report,05-21, 2005.
    [128]Mumford D., Didas B. Stochastic models for generic images [J]. Quarterly of applied mathe-matics,2001,59(1):85-111.
    [129]Le T.M., Lieu L.H., Vese L.A. (Φ, Φ*).Image Decomposition Models and Minimization Algo-rithms [J]. Journal of Mathematical Imaging and Vision,2009,33(2):135-148.
    [130]Dubois S., Lugiez M., Peteri R., Menard M. Adding a noise component to a color decomposition model for improving color texture extraction [C]. The 4th European Conference on Colour in Graphics, Imaging, and Vision, Barcelona:Espagne,2008.
    [131]Gilboa G., Sochen N., Zeevi Y. Variational Denoising of Partly-Textured Images by Spatially Varying Constraints [J]. IEEE Transactions on Image Processing,2006,15(8):2281-2289.
    [132]孙晓丽,宋国乡,冯象初.基于噪声—纹理检测算子的图像去噪方法[J],电子学报,2007,35(7):1372-1375.
    [133]Carter J.L. Dual methods for TV-based image restoration [R]. UCLA CAM Report,02-13, 2005.
    [134]Chan T.F.,Golub G.H., Mulet P. A nonlinear Primal-dual Method Total Variation-based Image Restoration [J]. SIAM Journal on Scientific Computing,1999,20(6):1964-1977.
    [135]Chambolle A. An algorithm for total variation minimization and applications [J]. Journal of Mathematical Imaging and Vision,2004,20(1):89-97.
    [136]Yu G., Qi L., Dai Y. On Nonmonotone Chambolle Gradient Projection Algorithms for Total Variation Image Restoration [J]. Journal of Mathematical Imaging and Vision,2009,35(2): 143-154.
    [137]Wang Y, Yin W., Zhang Y. A Fast Algorithm for Image Deblurring with Total Variation Regu-larization [R]. UCLA CAM Report,07-22,2007.
    [138]Goldforb D., Yin W. Second-order cone programming methods for total variation-based image restoration [J]. SIAM Journal on Scientific Computing,2006,27(2):622-645.
    [139]Lions P.L., Mercier B. Splitting algorithms for the sum of two nonlinear operators [J]. SIAM Journal on Numerical Analysis,1979,16(6):964-979.
    [140]Chen G.H.G., Rockafellar R.T. Convergence rates in forward-backward splitting [J]. SIAM Journal on Optimization,1997,7(2):421-444.
    [141]Combettes P.L., Wajs V.R. Signal recovery by proximal forward-backward splitting [J]. Multi-scale Modeling and Simulation,2005,4(4):1168-1200.
    [142]MaaβP., Pereverzev S.V., Ramlau R., Solodky S.G. An Adaptive Discretization for Tikhonov-Phillips Regularization With a Posteriori Parameter Selection [J]. Numer.Math.2001,87(3): 485-502.
    [143]Aujol J.F., Gilboa G., Chan T.F., Osher S. Structure-texture image decomposition-modeling, algorithms, and parameter selection [J]. International Journal of Computer Vision,2006,67(1): 111-136.
    [144]Gilboa G., Osher, S. Nonlocal linear image regularization and supervised segmentation [J]. Multiscale Modeling and Simulation,2008,6(2):595-630.
    [145]Gilles J. Noisy image decomposition:a new structure, texture and noise model based on local adaptivity[J]. Journal of Mathematical Imaging and Vision,2007,28(3):285-295.
    [146]Guidotti P., Lambers J.V. Two new nonlinear nonlocal diffusions for noise reduction [J]. Journal of Mathematical Imaging and Vision,2009,33(1):25-37.
    [147]Kervrann C., Boulanger J. Local adaptivity to variable smoothness for exemplar-based image regularization and representation [J]. International Journal of Computer Vision,2008,79(1): 45-69.
    [148]Jones P.W., Le T.M. Local scales and multiscale image decompositions [J]. Applied and Com-putational Harmonic Analysis,2009,26(3):371-394.
    [149]Bollt E.M., Chartrand R., Esedolu S., Schultz P., Vixie K.R. Graduated adaptive image denois-ing:local compromise between total variation and isotropic diffusion [J]. Advances in Compu-tational Mathematics,2009,31(1):61-85.
    [150]Dong Y., Hintermuller M., Rincon M. Regularization Parameter Selection in Total Variation Based Image Denoising [C]. Proceedings in Applied Mathematics and Mechanics,2008,8(1): 10931-10932.
    [151]Maurel P., Aujol J.F., Peyre G. Locally Parallel Textures Modeling with Adapted Hilbert Spaces [C]. EMMCVPR 2009, LNCS 5681:429-442.
    [152]Rajpoot K., Rajpoot N., Noble J.A. Discrete wavelet diffusion for image denoising [J]. Lecture Notes in Computer Science,2008,5099:20-28.
    [153]Lu C. Image Decomposition Based on Curvelet and Wave Atom [C]. Proceedings of the 3rd International Symposium on Advances in Computation and Intelligence, LNCS,2009,5370: 687-696.
    [154]Liang L., Feng X., Yin, H. Variational image restoration and decomposition with curvelet shrinkage [J]. Journal of Mathematical Imaging and Vision,2008,30(2):125-132.
    [155]Rodieck R.W. Quantitative analysis of cat retinal ganglion cell response to visual stimuli [J]. Vision Research,1965,5(11):583-601.
    [156]Adam L. Fractional Calculus:History, Definitions and Applications for the Engineer [OL]. http://www.nd.edu/-msen/Teaching/UnderRes/FracCalc.pdf
    [157]Kulish V.V., Ease J.L. Application of fractional calculus to fluid mechanics [J]. Journal of Fluids Engineering Transactions of the ASME,2002,124(3):803-806.
    [158]Baeumer B., Benson D.A., Meerschaert M.M. Advection and dispersion in time and space [J]. Physica A:Statistical Mechanics and Its Applications,2005,350(2-4):245-262.
    [159]Ninness B. Estimation of 1/f noise [J]. IEEE Transactions on Information Theory,1998,44(1): 32-46.
    [160]Li C, Peng G. Chaos in Chen'S system with a fractional order [J]. Chaos, Solitons and Fractals, 2004,22(2):443-450.
    [161]Vinagre B.M., Petras I., Podlubny I., Chen Y.Q. Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control [J]. Nonlinear Dynam-ics,2002,29(1):269-279
    [162]Zhao H, Qiu G., Yao L., Yu J. Design of fractional order digital FIR differentiators using fre-quency response approximation [C]. Proceedings of International Conference on Communica-tions, Circuits and Systems,2005,2:1321-1325.
    [163]Tseng C.C. Design of FIR and IIR fractional order Simpson digital integrators [J]. Signal Pro-cessing,2007,87(5):1045-1057.
    [164]Hardy L. On the relationship between the Hausdorff dimension and the integration order[J]. Journal of Mathematics, Statistics, and Allied Fields.2007,1(2):1-7.
    [165]Pedersen K.S., Nielsen M. The Hausdorff Dimension and Scale-Space Normalization of Natural Images [J]. Journal of Visual Communication and Image Representation,2000,11(2):266-277.
    [166]Liang Y.S.,Su W.Y. The relationship between the fractal dimensions of a type of fractal functions and the order of their fractional calculus [J]. Chaos, Solitons and Fractals,2007,34(3):682-692.
    [167]Deng W. Short memory principle and a predictor-corrector approach for fractional differential equations [J]. Journal of Computational and Applied Mathematics,2007,206(1):174-188.
    [168]Didas S, Burgeth B., Imiya A., Weickert J. Regularity and Scale-Space Properties of Frac-tional High Order Linear Filtering [J]. Scale Space and PDE Methods in Computer Vision 2005, LNCS,3459:13-25.
    [169]Ingman D., Suzdalnitsky J. Control of damping oscillations by fractional differential operator with time-dependent order [J]. Computer Methods in Applied Mechanics and Engineering,2004 ,193(52):5585-5595.
    [170]Engheta N. Electrostatic "fractional" image methods for perfectly conducting wedges and cones [J]. IEEE Transactions on Antennas and Propagation,1996,44(12):1565-1574.
    [171]Agrawal O.P. Formulation of Euler-Lagrange equations for fractional variational problems [J]. Journal of Mathematical Analysis and Applications,2002,272(1):368-379.
    [172]Vasily E. Tarasov. Fractional Derivative as Fractional Power of Derivative [J]. International Journal of Mathematics,2007,18(3):281-299.
    [173]Feeny B.F., Lin G. Fractional Derivatives Applied to Phase-Space Reconstructions [J]. Nonlin-ear Dynamics,2004,38(1):85-99.
    [174]Hilfer R. Fractional Diffusion Based on Riemann-Liouville Fractional Derivatives [J]. J. Phys. Chem. B,2000,104(16):3914-3917.
    [175]Hany F. Discrete-Time Fractional Differentiation from Integer Derivatives [R]. TR2004-528, Dartmouth College, Computer Science,2004.
    [176]蒲亦非.分数阶微积分在现代信号分析与处理中应用的研究[D].四川大学,2006.
    [177]姚奎.分形函数与分数阶微积分:构造性方法的应用[D].浙江大学,2003.
    [178]Shekarforoush H. Noise Suppression by Removing Singularities [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING,2000,48(7):2175-2179.
    [179]Mathieu B., Melchior P., Oustaloup A., Ceyral C. Fractional differentiation for edge detection [J]. Signal Processing,2003,83(11):2421-2432.
    [180]Bai J.,Feng X.C. Fractional-Order Anisotropic Diffusion for Image Denoising [J]. IEEE Trans-actions on Image Processing,2007,16(10):2492-2502
    [181]蒲亦非.将分数阶微分演算引入数字图像处理[J].四川大学学报,2007,39(3):124-132.
    [182]蒲亦非,王卫星,周激流,王一扬,贾华丁.数字图像纹理细节的分数阶微分检测及其分数阶微分滤波器实现[J].中国科学(E辑),2008,38(12):2252-2272.
    [183]蒲亦非,王卫星.数字图像的分数阶微分掩模及其数值运算规则[J].自动化学报,2007,33(11):1128-1132.
    [184]杨柱中,周激流,黄梅,晏祥玉.用分数阶微分提取图像边缘[J].计算机工程与应用,2007,43(35):15-18.
    [185]Unser M. Splines, a perfect fit for signal and image processing [J]. IEEE Signal processing magazine,1999,16(6):22-38.
    [186]Unser M., Blu T. Fractional Splines and Wavelets [J]. SIAM Review,2000,42(l):43-67.
    [187]汪凯宇,肖亮,韦志辉.基于图像整体变分和分数阶奇异性提取的图像恢复模型[J].南京理工大学学报(自然科学版),2003,27(4):400-404.
    [188]刘红毅,韦志辉.基于分数阶样条小波与IHS变换的图像融合[J].南京理工大学学报(自然科学版),2006,30(1):82-84.
    [189]Le T., Chajrtrand R., Asaki T.T. Variation approach to reeonstructing Images corrupted by Poisson noise [R]. UCLA CAM Report,05-49,2005.
    [190]Rudin L.I., Lions P.L.,Ohser S.. Multiplicative denoising and deblurring:Theory and algorithms [C]. In S.Osher and N.Paragios, editors, Geometric Levele Sets in Imaging Vision, and GraPh-ics,2003:103-119.
    [191]Aubert G., Aujol J. A variational approach to remove multiplicative noise [J]. SIAM J. Appl. Math.2008,68(4):925-946.
    [192]韩春明.SAR图像斑点滤波研究[D].中国科学院研究生院,北京,2003.
    [193]Chitroub S., Houacine A., Sansal B. Statistical characterization and modeling of SAR images [J]. Signal Processing,2002,82:69-92.
    [194]Kuan D.T., Sawchuk A.A., Strand T.C., Chavel P. Adaptive restoration of images with speckle[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1987,35(3):373-383.
    [195]Lee J.S. Digital image enhancement and noise filtering by use of local statistics [J]. IEEE Trans-actions on Pattern Analysis and Machine Intelligence,1980,2(2):165-168.
    [196]Lopes A., Touzi R., Nezry E. Adaptive speckle filters and scene heterogeneity [J]. IEEE Trans-actions on Geoscience and Remote Sensing,1990(6),28:992-1000.
    [197]Frost V.S., Stiles J.A., Sanmugan K.S., Holtzman J.C. A model for radar images and its ap-plication to adaptive digital filtering of multiplicative noise [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1982,4:157-165.
    [198]Touzi R. A review of speckle filtering in the context of estimation theory [J]. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2392-2404.
    [199]Chellappa R.. Markov Random Fields:Theory and Applications [M]. New York:Academic, 1993.
    [200]Datcu M., Seidel K., Walessa M. Spatial information retrieval from remote sensing images-Part I:Information theoretical perspective [J]. IEEE Transactions on Geoscience and Remote Sensing,1998,36:1431-1445.
    [201]Walessa M., Datcu M. Model-based despeckling and information extraction from SAR images [J]. IEEE Transactions on Geoscience and Remote Sensing,2000,38(5):2258-2269.
    [202]Lee J.S., Jurkevich I., Dewaele P., Wambacq P., Oosterlinck A. Speckle filtering of synthetic aperture radar images:A review [J]. Remote Sensing Rev.,1994,8:313-340.
    [203]谢美华,王正明.基于正则化变分模型的SAR图像增强方法[J].红外与毫米波学报,2005,24(6):467-471.
    [204]王新楼,乔明,邹谋炎.一种基于偏微分方程的SAR图像去噪方法[J].电子与信息学报,2005,27(9):1366-1369.
    [205]赵侠,王正明.SAR图像相干斑抑制和特征增强的自适应正则化变分方法[J].红外与毫米波学报,2007,26(2),112-116
    [206]Shi J. and Osher S. A nonlinear inverse scale space method for a convex multiplicative noise model [J]. SIAM Journal on Imaging Sciences,2008,1(3):294-321.
    [207]Durand S., Fadili J., Nikolova M. Multiplicative Noise Cleaning via a Variational Method In-volving Curvelet Coefficients [C]. Proceedings of Scale Space and Variational Methods in Com-puter Vision:Second International Conference, Norway,2009, LNCS 5567:282-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700