变分水平集理论及其在医学图像分割中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医学图像分割是医学图像处理中的一个关键技术,其任务就是从医学图像中提取感兴趣的目标——解剖组织,是服务于临床医生的计算机辅助诊断的一个重要组成部分。
     变分水平集方法,作为一类基于无参数几何活动轮廓模型的曲线演化图像分割方法,其实质是把一个低维空间上描述的问题嵌入到高一维的空间上分析,具备处理拓扑结构变化的轮廓演化能力,数值计算上也能获得稳定的结果。
     因此,变分水平集方法成为目前十分热门的一类图像处理方法,特别是很好地适用于拓扑结构复杂多变、强噪声和低对比度的医学图像分析领域。本文的重点就是围绕变分水平集方法在医学图像分割的应用来展开研究。
     本文的主要工作和创新点如下:
     (1)构造了一个基于能量函数模型改进的水平集分割新模型。
     综合基于区域信息的Chan-Vese(C-V)模型和基于边界信息的Li的模型的各自优势构造一个新的能量函数,然后通过变分法的分析以及水平集方法的应用来实现对CT图像的分割。新模型优于传统的水平集分割方法:首先将符号距离保持项引入C-V模型使得演化过程中无需重新初始化,提高了分割速度;演化轮廓也更加平滑,且对处理弱边界和强噪声有较好的鲁棒性;迭代中可选用多种格式如中心差分格式等而不再只是迎风格式,改善了方法的柔性。接着对分割后的图像采用了数学形态学方法提取肝脏轮廓,实验结果显示改进方法能自动准确实现肝脏提取任务。
     (2)提出了一种基于水平集演化方程改进的单参数调试的快速水平集演化模型。
     对于含有符号距离保持项的能量函数模型所对应的演化偏微分方程(PDE),用水平集函数梯度的模代换Dirac函数并且只保留长度项系数作为唯一的调试参数,构造出无需重新初始化且具有全局优化的新的单参数演化模型。该方法降低了对初始轮廓的依赖性,加上仅一个参数需调整使得分割处理更为方便。算法中停止迭代判定式的引入总结出了模型中的单参数取值规律,可以获得所期望的理想分割精度,并且能实现图像的自动分割。实验结果表明,该方法以更快的分割速度和更好的鲁棒性可应用于的复杂医学图像分割。
     (3)建立了基于数值算法改进的一类基于半隐差分的水平集分割新方法。
     针对改进C-V模型的无需重新初始化的新模型,数值演化中构造一类半隐式的有限差分格式,其收敛过程是无条件稳定的。该格式与加性算子分裂(AOS)格式相比,前者在迭代中无需矩阵求逆过程,缩短每次迭代时间,而后者的分解过程中要处理复杂的矩阵方程,致使分割速度提高有限。新的分割算法利用停止迭代判定式实现自动分割,使得分割效率更为明显提高。对合成图像、医学图像和视频图像的实验结果表明,该方法迭代步数更少,分割更快更准确,甚至能够满足视频跟踪实时性的需求。新方法更好的适应性和交互性为医学图像视频识别、医学图像三维重建提供了应用参考。
     (4)提出了一种从能量建模和数值算法上均有创新的基于全局变分的分割方法。
     首先利用图像区域信息建立基于后验概率的能量函数项,然后参照测地活动轮廓(GAC)模型建模方式,利用图像梯度信息得到基于全局变分的能量项,综合构造出一个新的图像分割模型。理论上借用凸函数的全局最小化的优化思想证明了新模型最小化解的存在性。在数值方法上运用全变分范数(TV-norm)的对偶公式构造了一个新的迭代格式,该格式不需求解PDE,也使得演化过程无需设置初始轮廓并且成功避开了重新初始化矫正过程。实验显示该方法收敛稳定、分割准确度好、参数调整简单并且分割速度快,能更好地处理低对比度医学模糊图像。
Medical image segmentation is a key technique and extracts the objective of interest, that is, the abnormal anatomic structures from medical images. It is an important component of computer-aided diagnosis used by the clinic doctors.
     The variational level set method is a class of curve evolution methods based on the geometry active contour model without parameters. The level set segmentation, essentially, embeds the geometrical evolution problem of lower dimension into higher dimension. And it is numerically stable and capable of describing the topology change of the contour. And so it can segment the medical image with complex topological changes, high noise and lower contrast.
     This dissertation is deeply developed around the improvement of level set segmentation method for the complicated medical images. The main contributions can be summarized as follows:
     (1) An improved level set segmentation model without re-initialization is developed in the energy function respect. Liver segmentation on computed tomography (CT) images is a challenging task due to the anatomic complexity and the imaging system noise. So, we develop a region-based level-set approach, which has many advantages over the conventional active contour models by combining C-V model and Li's model. First, the improved model can get much smoother contour by adding a signed distance preserving term to evolution PDE and has good robustness to the presence of weak boundaries and strong noise. Second, the difference scheme can be chosen freely and enhance the algorithm flexibility. Third, we can obtain accurate extracted liver image by morphological filters. Therefore, our algorithm can be applied to detect the internal malignant structure of liver image. This modified level set function speeds up the segmentation process significantly. Experimental results show that the proposed method gives automatic and accurate liver structure segmentation.
     (2) A new level set method for fast segmentation based on a single parameter is presented in the evolving PDE respect. The traditional level set methods for image segmentation need inevitably too many parameter adjustment and have usually lower computationally implementation. To solve this problem, the proposed method improves the Chan-Vese (C-V) PDE model based on the Mumford- Shah Model, by adding a penalized energy term and replacing the dirac function with the norm of level function gradient, and so it constructs a new PDE model with better globe optimization and no re-initialization. Besides, only the parameter of the length term is reserved in the model and an evolution criterion is introduced for the sake of the value rules of this single parameter as well as the accuracy of segmentation and semi-automation. The experimental results of synthesized and biomedical images show that the new method is faster and more robust. Moreover, the new method has more extensive adaptability on account of the zero level set function being set anyplace freely and the single parameter adjustment convenience.
     (3) A new iteration algorithm for an improved level set method is proposed. At the beginning, to the given method based on C-V model, the adding operator split (AOS) algorithm is introduced for the evolution. And then we develop new semi-implicit schemes to shorten the time of every loop without matrix-inversion. An evolutional criterion for ending segmentation is introduced during the iterating process. Experimentations for synthesized, biomedical images and video sequences show that the new approach is faster and more accurate than the traditional level set methods, and satisfy the real time requirement. Moreover, the initial level set curve can be set freely and the parameter can be adjusted conveniently, and so the proposed approach can be applied in practice more flexibly and interactivity.
     (4) A fast global minimization segmentation model based on total variation is presented around function modeling and algorithm constructing. First, an Active region contour model is developed by Maximum A-posterior Probability (MAP), and then a total variation model based on gradient information is constructed by the hint of geodesic active contour (GAC) model. So a new segmentation model is given by combining the two models. We establish theorems with proofs to determine the existence of the global minimum of this active contour model. From a numerical point of view, we propose a new practical way to solve the propagation problem toward object boundaries through a dual formulation of the total variation norm. It avoids the usual drawback of initializing and re-initializing. We apply our segmentation algorithms on medical images, and the model is found the convergence steady, good adaptability, high precision and well processing to lower contrast medical image.
引文
[1]Zhang Y J.A survey on Evaluation Methods for Image Segmentation[J].Pattern Recognition,1996,29(8):1335-1346.
    [2]Pham D L,Xu C and Prince J L.A Survey of Current Methods in Medical Image Segmentation[J],Annual Review of Biomedical Engineering,2000,2:315-338.
    [3]Duncan J S,Ayache N.Medical Image Analysis:Progress over Two Decades and the Challenges Ahead[J],IEEE Transactions on patter analysis and machine intelligence,2000,22(1):181-204.
    [4]Pal N R,Pal S K.A Review on Image Segmentation Techniques[J],Pattern Recognition,1993,26(9):1277-1294
    [5]章毓晋.图像工程(第二版)[M].北京:清华大学出版社,2007.
    [6]林瑶,田捷.医学图像分割综述[[J].模式识别与人工智能,2002,15(2):192-204.
    [7]陈健,田捷,薛健等.多速度函数水平集算法及在医学分割中的应用[J].软件学报,2007,18(4):842-849.
    [8]Chen G;Gu L,Qian L,et al.An Improved Level Set for Liver Segmentation and Perfusion Analysis in MRIs[J].IEEE Transactions on information technology in Biomedicine,2009,13(1):94-103.
    [9]Vishvjit S N,Thomas O B.On Detecting Edges[J],IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):699-711.
    [10]Loannis M,Ralph B and Richard K.An Edge Detection Technique Using the Facet Model and Parameterized Relaxation Labeling[J],IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(4):328-341.
    [11]Staib L H,Duncan J S.Boundary Finding with Parametrically Deformable Models[J],IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(11):1061-1075.
    [12]Goshtasby A.Design and Recovery of 2-D and 3-D Shapes Using Rational Gaussian Curves and Surfaces[J],International Journal of Computer Vision,1993,10(3):233-256.
    [13]Wu M-F,Sheu H-T.Representation of 3D surfaces by two-variable Fourier Descriptors[J],IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(8):858-863.
    [14]Hummel A.Representations based on zero-crossings in scale-space[C],Proceeding IEEE Computer Vision and Pattern Recognition Conference,1986:204-209.
    [15] Perona P, Malik J. Scale Space and Edge Detection Using Anisotropic diffusion[J], IEEE Trans On Pattern Analysis and Machine Intelligence, 1990,12(7): 629-639.
    [16] Liang P, Wang Y F. Local scale controlled anisotropic diffusion with local noise estimate for image smoothing and edge detection[C], International Conference On Computer Vision,1998: 193-200.
    [17] Falcao A X, Udupa J K, Samarasekera S, et al. User-steered Image Segmentation Paradigms: Live Wire and Live Lane[J], Graphic models and Image Processing, 1998, 60(4): 233-260.
    [18] McInerney T, Terzopoulos D. Deformable Models in Medical Image Analysis: A Survey[J], Medical Image Analysis, 1996, 1(2): 91-108.
    [19] Kass M, Witkin A P and Terzopoulos D. Snakes: Active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321-331.
    [20] Mclnerney T. Topology Adaptive Deformable Surfaces for Medical Image Volume Segmentation[J]. IEEE Transcations on medical imaging, 1999, 18(10): 840-850.
    [21] Osher S, Sethian J A. Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton- Jacobi formulation[J]. Journal of Computational Physics, 1988, 79 (1): 12-49.
    [22] Sahoo P K, Soltani S, Wang A K C, et al. A Survey of Thresholding Techniques[J]. Computer Vision, Graphics and Image Processing, 1988, 41(1): 233-260.
    [23] Pohlman S, Powell K A, Obuchowski N A, et al. Quantitative classification of breast tumors in digitized mammograms[J]. Medical Physics, 1996, 23: 1337-1345.
    [24] Lei T, Sewchand W. Statistical approach to X-Ray CT imaging and its applications in image analysis - part II: A new stochastic model-based image segmentation technique for X-Ray CT image[J]. IEEE Transactions on Medical Imaging , 1992, 11(1): 62-69.
    [25] Liang Z, MacFall J R and Harrington D P. Parameter estimation and tissue segmentation from multispectral MR images[J]. IEEE Transactions on Medical Imaging, 1994, 13: 441-449.
    
    [26] Li S Z. Markov random field modeling in computer vision[M]. Springer-verlag, 1995.
    [27] Held K, Kops E R, Krause B J, et al. Markov random field segmentation of brain MR images[J]. IEEE Transactions on Medical Imaging, 1997, 16(6): 878-886.
    [28] Reed T R, Hans J M and Buf D. A review of recent texture segmentation and feature extraction techniques [J]. CVGIP: Image Understanding, 1993, 57(3): 359-372.
    [29] Weian D, Sitharama S I. A New Probabilistic Relaxation Scheme and Its Application to Edge Detection[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(4): 432-437.
    [30] Michael W H, William E H. Relaxation Method for Supervised Image Segmentation[J], IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(9): 946-962.
    [31] Guptal L, Sortrakul T. A Gaussian-mixture-based image segmentation algorithm [J], Pattern Recognition, 1988, 31(3): 315-326.
    [32] Sethian J A. Numerical methods for propagating fronts, in Variational Methods for Free Surface Interfaces[C], Proceedings of the Sept, 1985 Vallambrosa Conference, Eds. P. Concus and R. Finn, Springer-Verlag, NY, 1987.
    [33] Osher S, Sethian J A. Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton- Jacobi formulation [J]. Journal of Computational Physics, 1988, 79(1): 12-49.
    [34] Dervieux A, Thomasset F. A finite element method for the simulation of Rayleigh-taylor instability [J]. Lecture Notes in Mathematics, 1979, 771: 145-158.
    [35] Dervieux A, Thomasset F. Multifluid incompressible flows by a finite element method[J]. Lecture Notes in physics, 1981, 141: 158-163.
    [36] Sethian J A. An analysis of flame propagation[D]. PhD. Dissertation, University of California, Berkeley, California, 1982.
    [37] Sethian J A. Numerical methods for propagating fronts: In variational methods for free surface interfaces[M], Springer-Verlag, 1987.
    [38] Crandall M G, Lion P L. Viscosity solutions of Hamilton-Jacobi equations[J]. Transactions of the American Mathematical Society, 1983, 277(1): 1-42.
    [39] Chopp D L, Computing minimal surfaces via level set curvature flow [J]. Journal of Computational Physics, 1993, 106(1): 77-91.
    [40] Adalsteinsson D, Sethian J A. A fast level set method for propagating interfaces [J]. Journal of Computational Physics, 1995, 118(2): 269-277.
    [41] Sussman M, Smereka P and Osher S. A level set approach for computing solutions to incompressible two phase flow[J]. Journal of computional physics, 1994, 114(1): 146-159.
    [42] Sethian J A. A fast marching level set method for monotonically advancing fronts[C]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 1591-1595.
    [43] Helmsen J, Puckett E, Colella P, et al. Two new methods for simulating photolithography development in 3D[C]. Proceedings of the international society for optical engineering, 1996,2726:253-261.
    [44] Sethian J A. Fast marching methods[J]. SIAM review, 1999, 41(2): 199-235.
    
    [45] Osher S, Fedkiw R. Level set methods: An overview and some recent results[R], Report CAM, University of California Los Angeles, Los Angeles, California, 2000.
    [46] Tsai Y R. Rapid and accurate computation of the distance function using grids [J]. Journal of computational physics, 2002,178(1): 175-195.
    [47] Li C, Kao C-Y and Ding Z. Minimization of Region-Scalable Fitting Energy for Image Segmentation[J]. IEEE Transactions on Image Processing, 2008, 17(10): 1940-1949.
    [48] Bertelli L, Sumengen B, Manjunath B S, et al. A Variational Framework for Multiregion Pairwise-Similarity-Based Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8): 1400-1414.
    [49] Grady L, Alvino C V. The Piecewise Smooth Mumford-Shah Functional on an Arbitrary Graph[J]. IEEE Transactions on Image Processing, 2009, 18(11): 2547-2561.
    [50] Ciofolo C, Barillot C. Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control[J]. Medical Image Analysis, 2009, 13(3): 456-470.
    [51] Zhou H, Yuan Y, Lin F, et al. Level set image segmentation with Bayesian analysis[J]. Neurocomputing, 2008, 71(10-12): 1994-2000.
    [52] Wang X-F, Huang D-S. A Novel Density-Based Clustering Framework by Using Level Set Method[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(11): 1515-1531.
    [53] Badshah N, Chen K. On Two Multigrid Algorithms for Modeling Variational Multiphase Image Segmentation[J]. IEEE Transactions on Image Processing, 2009, 18(5): 1097-1106.
    [54] Fussenegger M, Roth P, Bischof H. et al. A level set framework using a new incremental, robust Active Shape Model for object segmentation and tracking[J]. Image and Vision Computing, 2009, 27(8): 1157-1168.
    [55] Bresson X, Esedoglu S and Osher S. Fast global minimization of the active contour/snake model[J]. J. Mathematics Imaging Visual, 2007, 28(2): 151-167.
    [56] Shi Y, Karl W C. A Real-Time Algorithm for the Approximation of Level-Set-Based Curve Evolution[J]. IEEE Transactions on Image Processing, 2008, 17(5): 645-656.
    
    [57] Sethian J A. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Sciences [M]. Cambridge, U.K.: Cambridge University Press, 1996.
    
    [58] Osher S, Fedikiw R. Level set methods: An overview and some recent results[J]. Journal of computational physics, 2001, 169(2): 475-502.
    [59] Fulmanski P, Laurain A, Scheid J-F, et al. A Level Set Method in Shape and Topology Optimization for Variational Inequalities[J]. International Journal of Applied Mathematics and Computer Science, 2007, 17(3): 413-430.
    [60] Tanguy S, Menard T and Berlemont A. A Level Set Method for vaporizing two-phase flows[J]. Journal of Computational Physics, 2007, 221(3): 837-853.
    [61] Shuai Y, Sun H and Xu G. SAR Image Segmentation Based on Level Set With Stationary Global Minimum[J]. IEEE on Geoscience and Remote Sensing Letters, 2008, 5(4): 644-648.
    [62] Ma H , Yang Y Two Specific Multiple-Level-Set Models for High-Resolution Remote-Sensing Image Classification[J]. IEEE Journal on Geoscience and Remote Sensing Letters, 2009, 6(3): 558-561.
    
    [63] http://comsol.cntech.com.cn/ or http://video.comsol.cn/article_8.html
    [64] Tsai R, Osher S. Level set methods and their applications in image science [J]. Communications in Mathematical Sciences, 2003, 1(4): 623-656.
    [65] Lions P L, Osher S. Geometric Level set methods in imaging, vision, and graphics[M], Springer-Verlag, New York, 2003.
    [66] Malladi R, Sethian J A and Vemuri B. Shape modeling with front propagation: a level set approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158-174.
    [67] Richard Tai Y H, Osher S. Total variation and level set based Methods in image science[D]. Los Angles: University of Cambridge, 2005.
    [68] Kass M, Witkin A and Terzopoulos D. Snakes: Active contour models[ J ]. International Journal of Computer Vision, 1987, 1(4): 321-331.
    [69] Cohen L D, Cohen I. Finite-element methods for active contour models and balloons for 2D and 3D images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1131-1147.
    [70] Caselles V, Kimmel R and Sapiro G. Geodesic active contours [C]. Proceedings 5th International Conference on Computer Vision, 1995: 694-699.
    [71] Kichenassamy S, Kumar A, Olver P, et al. Gradient flows and geometric active contour models[C]. Proceedings of 5th International Conference on Computer Vision, 1995: 810-815.
    [72] Malladi R, Sethian J A and Vemuri B C. Shape modeling with front propagation: A level set approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2): 158-175.
    [73] Siddiqi K, Lauziere Y B, Tannenbaum A, et al. Area and length minimizing flows for shape segmentation [J]. IEEE Transactions on Image Processing, 1998, 7(3): 433-443.
    [74] Mumford D, Shah J. Optimal approximation by piecewise smooth functions and associated variational problems[J]. Communications on Pure and Applied Mathematics, 1989, 42 (5): 577-685.
    [75] Chan T F, Vese L. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
    [76] Chan T F, Vese L A. Image segmentation using level sets and the p iecewise-constant Mumford-Shah model [R]. Technique Report CAM00-14 University of California, Los Angeles, CA, USA, http: / /www. math. ucla. edu / app lied / cam, 2000.
    [77] Chan T F, Vese L A. Image segmentation using level sets and the piecewise constant Mumford-Shah model[J]. Journal of Computational Mathematics, 2006, 24(3): 435-443.
    [78] Vese L A, Chan T F. A multiphase level set framework for image segmentation using the mumford and shah model [J]. International Journal of Computer Vision, 2002, 50(3): 271-293.
    [79] Chan T F, Sandberg B Y and Vese L A. Active contours without edges for vector-valued images[J]. Journal of Visual Communication and Image Representation, 2000, 11(2): 130-141.
    [80] Tsai A, Yezzi A and Willsky A. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification[J]. IEEE Transactions on Image Processing, 2001, 10 (8): 1169-1186.
    [81] Li C, Xu C, Gui C, et al. Level set evolution without re-initialization: a new variational formulation [C]. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, 1: 1-7.
    [82] Gao S, Bui T D. Image Segmentation and Selective Smoothing by Using Mumford-Shah Model[J]. IEEE Transactions on Image Processing, 2005, 14(10): 1537-1549.
    [83] Pricea J R, Aykaca D and Wallb J. Improvements in level set segmentation of 3D small animal imagery [C]. Proceedings of SPIE, 2007, 651233: 1-10.
    [84] Xie Q, Chen X, Ma L, et al. Segmentation for CT image based on improved level-set approach [C]. The 1st international congress on image and signal processing, 2008, 3: 725-728.
    [85] Law Y N, Lee H K and Yip A M. A multiresolution stochastic level set method for Mumford-Shah image segmentation[J]. IEEE Transactions on Image Processing, 2008, 17(12):2289-2300.
    [86]Wei M,Zhou Y and Wan M.A fast snake model based on non-linear diffusion for medical image segmentation[J].Computerized Medical Imaging and Graphics,2004,28(3):109-117.
    [87]Oliveira A,Ribeiro S,Girald G,et al.Loop Snakes:The Generalized Model[C].Proceedings of the 9th International Conference on Information Visualization,2005,1:975-980.
    [88]Chopp D L,Computing minimal surfaces via level set curvature flow[J].Journal of Computational Physics,1993,106(1):77-91.
    [89]Adalsteinsson D,Sethian J A.A fast level set method for propagating interfaces[J].Journal of Computational Physics,1995,118(2):269-277.
    [90]Sethian J A.A fast marching level set method for monotonically advancing fronts[J].Proceedings of the National Academy of Sciences,1996,93(4):1591-1595.
    [91]Weickert J,Romeny B H and Viergever M A.Efficient and Reliable Schemes for Nonlinear Diffusion Filtering[J].IEEE Transactions on Image Processing,1998,7(3):398-410.
    [92]Lefohn A E,Kniss J M,Hansen C D,et al.A Streaming Narrow-Band Algorithm:Interactive Computation and Visualization of Level Sets[J].IEEE Transactions on visualization and computer graphics,2004,10(4):422-433.
    [93]Cates J E,Lefohn A E and Whitaker R T.GIST:an interactive,GPU-based level set segmentation tool for 3D medical images[J].Medical Image Analysis,2004,8:217-231
    [94]Song T,Lee V S,Rusinek H,et al.Andrew Lainel Segmentation of 4D MR renography images using temporal dynamics in a level set framework[C].ISBI,2008,1:36-40.
    [95]Suri J S,Liu K,Singh S,et al.Shape Recovery Algorithms Using Level Sets in 2-D/3-D Medical Imagery:A State-of-the-Art Review[J].IEEE Transactions of information technology bicmedicine,2002,6(1):8-28
    [96]钱芸,张英杰.水平集的图像分割方法综述[J].中国图象图形学报.2008,13(1):7-13
    [97]Sethian J A.Level Set Methods and Fast Marching Methods[M].Cambridge University Press,1999.
    [98]Osher S,Fedkiw R.Level Set Methods and Dynamic Implicit Surfaces[M].springer-Verlag,2002.
    [99]Aubert G,Kornprobst P,Mathematical problems in image processing:Partial Differential Equations and the Calculus of Variation[M],Applied Mathematical Sciences,Springer-Verlag,147,2002.
    [100]Chan T F,Shen J.Image processing and analysis:Variational,PDE,Wavelet and Stochastic Methods[M].SIAM,Baker & Taylor,2004.
    [101]张直,陈刚.基于偏微分方程的图像处理[M].北京,高等教育出版社,2004.
    [102]王大凯,侯榆青,彭进业.图像处理的偏微分方程方法[M].北京,科学出版社,2008.
    [103]冯象初,王卫卫.图像处理的变分和偏微分方程方法[M].北京,科学出版社,2009.
    [104]梅玉林,拓扑优化的水平集方法及其在刚性结构、柔性机构和材料设计中的应用[博士学位论文].大连:大连理工大学.2003.11.
    [105]简江涛,形变模型技术研究及其在医学图像分割中的应用[博士学位论文].合肥:中国科技大学.2006.10.
    [106]金大年.基于水平集的医学图像分割算法研究[硕士学位论文].广州:第一军医大学.2005.7.
    [107]徐盛.基于曲线演化的图像分割技术及其应用研究[硕士学位论文].上海:华东师范大学.2006.7.
    [108]白洁,基于水平集人机交互模型的医学图像分割[硕士学位论文].青岛:青岛大学.2006.7.
    [109]陈金男.基于水平集方法的图像分割研究[硕士学位论文].秦皇岛:燕山大学.2007.7.
    [110]陈波,赖剑煌.用于图像分割的活动轮廓模型综述[J].中国图象图形学报,2007,12(1):11-20.
    [111]Han X,Hibbard L S and Brame S.A morphing active surface model for automatic re-contouring in 4D radiotherapy[C].Proceeding Of SPIE,2007,65123H:1-9.
    [112]Sapiro G.Geometric partial differential equations and image analysis[M].Cambridge University Press,2001.
    [113]Zhao H K,Chan T,Merriman B,et al.A variational level-set approach to multiphase motion[J].Journal of Computational Physics,1996,127(1):179-195.
    [114]Tsai A.Yezzi A.Willsky A.A curve evolution approach to smoothing and segmentation using the Mumford-Shah functional[C].IEEE Conference on Computer Vision Pattern Recognition,2000,1:119-124.
    [115]孙文杰,陈允杰,汤杨等.一种改进的活动区域轮廓模型-无需水平集重新初始化[J].计算机工程与应用,2008,44(2):8-11(转49).
    [116]Shen J.A Stochastic-Variational Model for Soft Mumford-Shah Segmentation[J].International Journal of Biomedical Imaging,2006,92329:1-14.
    [117]Ayed I B,Mitiche A.A Region Merging Prior for Variational Level Set Image Segmentation[J].IEEE Transactions on image processing,2008,17(12):2301-2311.
    [118]Bernard O,Friboulet D,Thrvenaz P,et al.Variational B-spline level-set:a linear filtering approach for fast deformable model evolution[J].IEEE Transactions on image processing,2009,18(6):1179-1191.
    [119]李俊,杨新,施鹏飞.基于Mumford-Shah模型的快速水平集图像分割方法[J].计算机学报,2002,25(11):1175-1183.
    [120]何传江,唐利明.几何活动轮廓模型中停止速度场的异性扩散[J].软件学报,2007,18(3):600-607.
    [121]Yezzi A,Kichenassamy S,Kumar A,et al.A geometric snake model for segmentation of medical imagery[J].IEEE Transactions on Medical Imaging,1997,16(2):199-209.
    [122]Gao L,David H,Brian S K,et al.Automatic liver segmentation technique for three-dimensional visualization of CT data[J].Radiology,1996,201(2):359-364.
    [123]Mala K,Sadasivam V.Automatic segmentation and classification of diffused liver diseases using wavelet based texture analysis and neural network[C].Annual IEEE IEEE INDICON 2005:216-219.
    [124]Gletsos M,Mougiakakou S G.A computer-Aided Diagnostic system to characterize CT Focal Liver Lesions:Design and Optimization of a Neural Network Classifier[J].IEEE Transactions on Information Technology in Biomedicine,2003,7(3):153-162.
    [125]Nikou C,Galatsanos N P and Likas A C.A Class-Adaptive Spatially Variant Mixture Model for Image Segmentation[J].IEEE Transactions on Image Processing,2007,16(4):1121-1130.
    [126]Huang S,Wang B and Huang X.Using GVF snake to segment Liver from CT images[C].Proceedings of the 3rd IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors,2006:145-148.
    [127]Serra J.Image analysis and mathematical morphology[M].London:Academic press,1982.
    [128]吴敏金.图像形态学[M].上海:上海科学技术文献出版社,1991.
    [129]赵春晖.数字形态滤波理论及其算法研究[M].北京:高等教育出版社,2002.
    [130]崔屹.图像处理与分析:数学形态学方法及应用[M].北京:科学出版,2002.
    [131]才辉.数学形态学连通性理论及应用研究[博士学位论文].浙江大学,2009.
    [132]Yan P,Zhou X,Wong M,et al.Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images Information Technology in Biomedicine[J].IEEE Transactions on Publication,2008,12(1):109-117.
    [133]Sum,K W,Cheung P Y S.Vessel Extraction Under Non-Uniform Illumination:A Level Set Approach[J].IEEE Transactions on Biomedical Engineering,2008,55(1):358-360.
    [134]Tan S,Yao J,Ward M M,et al.Computer Aided Evaluation of Ankylosing Spondylitis Using High-Resolution CT[J].IEEE Transactions on Medical Imaging,2008,27(9):1252-1267.
    [135]Kadoury S,Cheriet F and Labelle H.Personalized X-Ray 3-D Reconstruction of the Scoliotic Spine From Hybrid Statistical and Image-Based Models[J].IEEE Transactions on Medical Imaging,2009,28(9):1422-1435.
    [136]Chen T,Babb J,Kellman P,et al.Semiautomated Segmentation of Myocardial Contours for Fast Strain Analysis in Cine Displacement-Encoded MRI[J].IEEE Transactions on Medical Imaging,2008,27(8):1084-1094.
    [137]Liao C-C,Xiao F,Wong J-M,et al.A multiresolution binary level set method and its application to intracranial hematoma segmentation[J].Computerized Medical Imaging and Graphics,2009,33(6):423-430.
    [138]Chen Y,Zhang J and Macione J.An improved level set method for brain MR images segmentation and bias correction[J].Computerized Medical Imaging and Graphics,2009,33(7):510-519.
    [139]Uberti M G,Boska M D and Liu Y.A semi-automatic image segmentation method for extraction of brain volume from in vivo mouse head magnetic resonance imaging using Constraint Level Sets[J].Journal of Neuroscience Methods,2009,179(2):338-344.
    [140]Mansouri A R,Konrad J.Multiple motion segmentation with level sets[J].IEEE Transactions on Image Processing,2003,12(2):201-220.
    [141]Mukherjee D P,Ray N,Acton S T.Level set analysis for leukocyte detection and tracking [J].IEEE Transactions on Image Processing,2004,13(4):562-572.
    [142]于慧敏,尤育赛.基于水平集的多运动目标检测和分割[J].浙江大学学报(工学版),2007,41(3):412-417.
    [143]Shi Y,Karl W C.A Real-Time Algorithm for the Approximation of Level-Set-Based Curve Evolution[J].IEEE Transactions on Image Processing,2008,17(5):645-656.
    [144]Mahmoodi S.Shape-Based Active Contours for Fast Video Segmentation[J].IEEE Journal on Signal Processing Letters,2009,16(10):857-860.
    [145]Lu T,Neittaanm K P,Tai X C.A parallel splitting up method and its application to Navier-Stokes equations[J].Applied Methematics Letters,1991,4(2):25-29.
    [146] Kuhne G, Weickert J, Beier M, et al. Fast implicit actiove contour models [M]. Lecture Notes in Computer Science 2449, Springer-Verlag, 2002: 133-140.
    [147] Chan T, Esedoglu S, Nikolova M. Alogorithms for finding global minimizers of image segmentation and denoising models[J]. SIAM Journal on Application Mathematics, 2006, 66(5): 1632-1648.
    [148] Bresson X, Esedoglu S, Osher S. Fast global minimization of the active contour/snake model[J]. Journal of Mathematical Imaging and Vision, 2007, 28(2): 151-167.
    [149] Chan T, Golub G, Mulet P. A nonlinear primal-dual method for total variation-based image restoration[J]. SIAM Journal on Scientific Computing, 1999, 20(6): 1964-1977.
    [150] Carter J. Dual methods for total variation-based image restoration[Ph.D. thesis], UCLA 2001.
    [151] Chambolle A. An algorithm for total variation minimization and applications [J]. Journal of Mathematical Imaging and Vision, 2004, 20(1-2): 89-97.
    [152] Aujol J F, Chambolle A. Dual norms and image decomposition models[J]. International Journal of Computer Vision, 2005, 63(1): 85-104.
    [153] Aujol J F, Gilboa G, Chan T, et al. Structure-texture image decomposition -modeling, algorithms, and parameter selection[J]. International Journal of Computer Vision, 2006, 67(1): 111-136.
    [154] Crandall M G, Ishii H, Lions P L. User's Guide to Viscosity Solutions of Second Order Partial Differential Equations[J]. Bulletin of the American Mathematical Society, 1992, 27(1), 1-67.
    [155] Hiriart-Urruty J.-B, Lemarechal C. Convex Analysis and Minimization Algorithms[M]. I. Fundamentals, Grundlehren Math. Wiss. 305, Springer-Verlag, New York, 1993.
    [156] Hiriart-Urruty J.-B, Lemarechal C. Convex Analysis and Minimization Algorithms[M]. II. Advanced Theory and Bundle Methods, Grundlehren Math. Wiss. 306, Springer-Verlag, New York, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700