热防护机理与烧蚀钝体绕流的涡方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
武器系统以及航天飞行器往往在超高温、高过载、高热流、强侵蚀等多项恶劣因素耦合的环境下工作;特别值得关注的,美国X-37B试飞的成功引起世界强国在近空间武器方面的争夺,导致飞行器服役环境愈加严酷,材料的行为及其变化非常复杂。极端环境下热防护机理与模拟理论是建立材料性能考核平台的理论基础,也是搞清这种环境下材料失效本质的前提;目前极端环境试验方法尚不能全过程地反映环境与材料的相互作用,模拟与真实情况之间还存在一定的差距,急需发展热防护理论与模拟方法。
     基于烧蚀学、材料学、计算流体动力学等多学科理论,本文分析了飞行器的几种热防护特例的机制,发展了涡方法,并对烧蚀圆柱绕流进行了非线性分析;为近空间飞行器热防护性能模拟表征与优化设计提供了理论依据。
     本文的主要研究成果有:
     (1)提出“零线烧蚀”,发展了“无烧蚀”概念;并开发了给定流场压力条件下热沉/辐射、发汗类材料零线烧蚀的反演软件,避免了商业软件中反复热解的不合理性,反演得到了零线烧蚀的极限条件。结果表明:无烧蚀是由材料的热物理属性与热环境共同决定,给出了几种无烧蚀防热材料(不考虑氧化)的许用时间表;炭渗铝发汗材料零线烧蚀仅适用于低热流情况。
     (2)基于热化学、材料物理学等理论,分析了SiO2/P复合材料(酚醛低含量、高含量两种)烧蚀及炭/炭喉衬的烧蚀,并提出了一种烧蚀控制机制判别方法,开发了固体火箭喷管喉衬烧蚀计算软件。
     (3)基于涡运动理论,发展了一种拉格朗日型流场计算的涡方法;在快速多极子展开法的基础上提出了一种逆向四叉树自适应网格划分技术;利用Fortran/Matlab联合编程分析了几个经典算例。结果表明:逆向四叉树划分技术提高了快速多极子展开法的效率;与已有的成果相比,本文所设计的粘性方程求解方法更加高效,即使将绕流边界划分为较少数量的平板,依然可以快速地得到光滑的边界新生涡和阻力系数曲线以及高精度的涡量云图和流场速度分布。
     (4)初步探索了涡方法向可压缩流场拓展的问题。给出了以涡量、胀量、密度、熵和焓为基本未知量的二维粘性非稳态可压缩控制方程组,在不同马赫数条件下探讨了对称、非对称旋涡对运动过程中涡量场与胀量场的演化规律。
     (5)基于涡运动理论、烧蚀理论和混沌理论,建立了烧蚀钝体绕流的数理模型,将涡方法应用于烧蚀绕流分析,对高温高压环境下圆柱的烧蚀与绕流耦合问题进行了数值模拟,并做了混沌识别分析。结果表明:在流场启动初期,烧蚀引起的圆柱外形尺寸改变很小,且流场中涡元还比较少,烧蚀圆柱与无烧蚀圆柱的涡量场并无明显差异;烧蚀圆柱流场的演化要远快于无烧蚀圆柱,旋涡脱落也早于无烧蚀圆柱;烧蚀、无烧蚀圆柱的阻力系数与升力系数演化趋势相同;无烧蚀圆柱的阻力系数、升力系数趋于稳定;随着烧蚀圆柱直径的不断减小,其阻力系数、升力系数震荡剧烈,非线性特征明显;圆柱的绕流与烧蚀是一个从有序到混沌、从混沌到噪声的过程。
The weapon system and spacecrafts flying in a harsh environment are generally coupled with extreme high temperature, high overload, high heat flux and strong erosion. Especially, the successful test flight of X-37B lead a new competition of near space weapons among world military powers, which puts the flight environment to a harsher level and makes the material behavior more complex. The thermal protection mechanism and relative simulation theory under extreme environment are the basis of establishing a material evaluation platform, as well as the premise of revealing the nature of materials failure. Currently, experiments under extreme environment cannot reflect the whole ablation process and there is still a gap between simulation and the real situation, so it's urgent to develop a new simulation theories and relative numerical method.
     The objection of this dissertation is to reveal the thermal protection mechanism of spacecraft on basis of multi-disciplinary theories and improve the vortex method which is used to solve the flow field; based on these, the nonlinear analysis can be carried out by taking the gaseous mixture flow past an ablating cylinder for an example. This study may provide theoretical basis for simulation characterization and optimization on thermal protective performance of near space crafts.
     The main research results are as follows:
     (1) Several mechanisms of thermal protection are studied. Firstly, a concept of'zero linear ablation'is presented for modifying'non-ablation'based on material science and heat transfer theory with the assumption of oxidation reaction can be neglect; Then the heat conditions of several materials are inversed when'zero linear ablation'is satisfied; and the thermal response of some self-transpiration material is also obtained which avoids the unreasonable re-pyrolysis in commercial software. Conclution can be drawn that both the thermo-physical attributes of thermal protection material and the thermal environment determinate'non-ablation'; the 'zero linear ablation'of self-transpiration material has a close relationship with heat flux, diaphoretic content and heating time, the'zero linear ablation'of aluminizing carbon only appears in low heat flux environment.
     (2) On basis of thermo-chemistry and materials physics, two thermal analysisi models of SiO2/P are given acoording to the contents of SiO2 with the zero linear ablation and linear ablation examples; an ablation model is proposed for calculating the ablation rate of a solid rocket nozzle throat which is making up of carbon fiber reinforced carbon matrix composites. From this model, a distinguishing method is put forward for determining the ablation control mechanism, and the relative software is also developed with a mixed programming technique; additionally, we talked about the affecting factors on ablation rate such as temperature and pressure of gaseous mixture in rocket engine, hydrogen concentration, activation energy and frequency factor. As indicated from the results, hydrogen concentration and activation energy may alter the ablation mechanism.
     (3) A Lagrange vortex method is developed. When solving the viscosity equation, the core spreading vortex method(CSVM) and particle strength exchange(PSE) method are advised to be used together, that is to simulate the vorticity by using CSVM near the boundary, whereas the PSE is adopted far away from the boundary; For the convection equation, the computational efficiencies between the N body method and the fast multipole expansion method (FMM) are compared, some examples are solved by using a Fortran/Matlab codes written with the newly proposed reverse quadtree adaptive grids technique. From the results we know, FMM performs better than the N body method, and the reverse quadtree adaptive grids technique may improve the efficiency of FMM; compared with former achievements, the improved vortex method gets a high performance, which may get smoth curves of boundary vorticity, high resolution vorticity contour and drag coefficient even in the case that the boundary is divided into less panels.
     (4) The compressible vortex method is primarily explored, the 2D viscosity unsteady compressible governing equations are given, which is expressed by vorticity, dilatation, density entropy and enthalpy, and the evolutions of vorticity and density under different Mach number are also studied in cases of symmetric and asymmetric.
     (5) Based on the theories of vorticity, ablation and chaos, works are carried out on simulation of the model built for solving the gaseous mixture flow past an ablating cylinder in a high temperature and high pressure environment and relative chaos indentification. Being different from the stable changes of the flow past a non-ablation cylinder, the drag and the lift coefficient curves have severe shocks when gaseous mixture flow past an ablating cylinder. The gaseous mixture flow past an ablating cylinder can be seen as a process changing from order to chaos, then to noise.
引文
[1]王希季.航天器进入与返固技术(下).中国宇航出版社,北京,2009.
    [2]杨炳渊.超高速防空导弹结构防热技术.上海航天,2002,4:41-45
    [3]张志成.高超声速气动热和热防护.国防工业出版社,北京,2003.
    [4]D. E. Nestler, A. R. Saydah et al. Heat Transfer to Steps and Cavities in Hypersonic Turbulent Flow. AIAA paper,1968, No.68-673.
    [5]张鲁民.载人飞船返同舱空气动力学.国防工业出版社,北京,2002.
    [6]范绪箕.气动加热与热防护系统.科学出版社,北京,2004.
    [7]童秉刚.航天飞机防热瓦缝隙气动加热的讨论.气动实验与测量控制,1990,4:1-8.
    [8]唐功跃,吴国庭,姜贵庆.缝隙流动分析及其热环境的工程计算,中国空间科学技术,1990,16:1-7.
    [9]陈火红. Marc有限元实例分析教程.机械工业出版社,北京,2002.
    [10]Keswani S. T., Andiroglu E., Campbell J. D., et al. Recession Behavior of Graphitic Nozzles in Simulated Rocket Motors. Journal of Spacecraft and Rockets,1985,22:396-397.
    [11]Alhama F., Campo A. Network Simulation of the Rapid Temperature Changes in the Composite Nozzle Wall of an Experimental Rocket Engine During a Ground Firing Test. Applied Thermal Engineering,2003,23:37-47.
    [12]Brown A. M. Temperature-dependent Model Test/analysis Correlation of X-34 FASTRAC Composite Rocket Nozzle. Journal of Propulsion and Power,2002,18:284-288.
    [13]Collins M. W., Stasiek J. The Application of a Transformational Zone Method to the Calculation of Radiation Heat Transfer Inside a Piston-cylinder System. International Journal of Heat and Fluid Flow,1992,13:380-389.
    [14]冯乐键,吴心平.烧蚀反应动力学参数的确定.推进技术,1988,(2):31-38.
    [15]刘叔渭.炭/炭复合材料喉衬的烧蚀计算.推进技术,1987,(2):14-21.
    [16]方丁酉,夏智勋,姜春林.C/C喉衬稳态烧蚀的工程计算.固体火箭技术,2000,23:24-27.
    [17]何洪庆,周旭.固体火箭喷管中的烧蚀控制机制.推进技术,1993,(4):36-41.
    [18]Kou K. K., Keswani S. T. A Comprehensive Theoretical Model for C-C Composite Nozzle Recession. Combustion Science and Technology,1985,42:145-164.
    [19]姜贵庆,杨希霓,李鸿权.再入端头烧蚀外形理论分析与计算.航天防科学技术报告,1990-08.
    [20]Mcvey D. E. Some Observations on the Influence of Graphite Microstructure on Ablation Performance. AIAA paper 70-155.
    [21]孙岳,黄海明.飞行器涂层侵蚀机理分析.科学技术与工程,2007,7:6146-6149.
    [22]任芬.犬向编织炭-炭复合材料和石墨的热机械剥蚀.910-3会议技术报告.
    [23]Humphery J. A. C.Fundamentals of Fuid Motion in Erosion by Solid Particle Impact. International Journal of Heat and Fluid Flow,1990,11:170-195.
    [24]Hiroshi Hatta, Keiji Suzuki, Tetsuro Shigei, et al. Strength Improvement by Densification of C/C. Composites Carbon.2001,39:83-90.
    [25]Kostopoulos V., Markopoulos Y. P., Pappas Y. Z., et al. Fracture Energy Measurements of 2-D Carbon/Carbon Composites. Journal of the European Ceram Society,1998,18:69-79.
    [26]黄海明.极端环境下炭基复合材料烧蚀研究.博士论文,哈尔滨:哈尔滨工业大学,2001.
    [27]张红波,尹健,熊翔.C/C复合材料烧蚀性能的研究进展.材料导报,2005,19:97-100.
    [28]王书贤,陈林泉,刘勇琼.C/C喉衬材料烧蚀试验方法研究.固体火箭技术,2007,30:170-172.
    [29]周来福.烧蚀模型表面温度分布测量.宇航计测技术,1993,12:47-51.
    [30]易法军,梁军,孟松鹤,杜善义.防热复合材料的烧蚀机理与模型研究.固体火箭技术,23:48-56.
    [31]黄海明,杜善义,吴林志等.C/C复合材料烧蚀性能分析.复合材料学报,2001,18:76-80.
    [32]易法军,梁军,孟松鹤等.防热复合材料的烧蚀机理与模型研究.固体火箭技术,2000,23:48-56.
    [33]韩杰才,张杰,杜善义.细编穿刺C/C复合材料超高温氧化机理研究.航空学报,1996,17:577-581.
    [34]韩杰才.多相C/C复合材料超高温力学性能与微结构演化.博十论文,哈尔滨:哈尔滨工业大学复合材料研究所,1992.
    [35]Soo S. L. Dynamic Interaction of gGranular Materials. Advances in the mechanics of the flow of granular materials,1983,11:675-698.
    [36]Koo J H, Lin S, Kneer M, et al. Comparison of Ablative Materials in a Simulated Solid Rocket Exhaust Environment. AIAA-1991-0978.
    [37]黄海明,徐晓亮,姜贵庆.固体火箭喷管烧蚀控制机制的判别.中国科学E辑,2009,39:1558-1563.
    [38]Zien T. F. Approximate Solution of Transient Heat Conduction in a Finite Slab. AIAA-1980-1472.
    [39]Dicristina V. Thermomechanical Erosion of Ablative Plastic Composites. AD-783310.
    [40]Matbieu R. D. Theoretical Analysis for the Mechanical Spallation of a Typical Charring Ablator During Reentry. AD-428046.
    [41]Ren F., Sun H. S., Liu L. Y. Theoretical Analysis for Mechanical Erosion of Carbon-base Material in Ablation. Journal of thermophysics and heat transfer,1996,10:593-597.
    [42]何洪庆,周旭,潘宏亮.喷管内衬炭/酚醛的烧蚀模型.固体火箭技术,1991,(1):43-49.
    [43]张尔升,王秋旺,陶文铨.具有移动边界平行平板通道内的层流对流换热.西安交通大学学报,2002,36:173-176.
    [44]孙再庸,何洪庆,蔡体敏.用改进的SIMPLE方法求解喷管流动.推进技术,1998,19:48-51.
    [45]李军伟,覃粒子,刘宇.结构参数对圆转矩形喷管换热的影响.推进技术,2005,26:489-494.
    [46]付鹏,蹇泽群,张钢锤,高波.发动机喷管喉衬烧蚀及热结构工程计算.固体火箭技术,2005.28:15-19.
    [47]王臣,梁军,吴世平,杜善义.高温烧蚀条件下C/C材料热力耦合场模拟.复合材料学报,2006.23:143-148.
    [48]刘丹平.半线性抛物型方程移动边界两相问题.河海大学学报,1996,24:108-111.
    [49]李希.多组分反应激波问题的移动边界解法.水动力学研究与进展,2004,19:190-194.
    [50]Ou Z. Y., Guo A. Analytic Solution of a Moving Boundary of Heat Transfer Problem. Journal of Lanzhou Railway University,2001,20:98-105.
    [51]李文深.热传导方程的移动边界问题.数学研究与评论,1991,11:71-77.
    [52]李伟,李固新.二维移动边界半线性抛物型方程边值问题分析近似解.信阳师范学院学报,1997,10:12-16.
    [53]王臣,梁军,杜善义.C/C复合材料表面烧蚀细观形貌损伤分析.固体火箭技术,2007,30:150-154.
    [54]李淑萍,李克智,李玉龙,袁秦鲁,沈学涛.冲击载荷损伤后C/C复合材料烧蚀性能的研究.材料工程,2009,(3):37-40.
    [55]王安龄,桂业伟,贺立新.炭化烧蚀材料热解膨胀和线膨胀对内部温度场影响研究.工程热物理学报,2004,25:24-26.
    [56]尹健,张红波,熊翔,黄伯云.烧蚀条件对混合基体C/C复合材料烧蚀性能的影响.材料科学与工程学报,2007,25:26-29.
    [57]王臣,梁军.C/C材料在热力耦合场作用下损伤失效分析.2006,失效分析与预防,1:1-5.
    [58]刘建军,李铁虎,郝志彪.喉衬热环境与C/C复合材料的烧蚀.航材料工艺,2005,(1):42-48.
    [59]韩杰才,徐强,张巍,孟松鹤.混杂C/C复合材料的烧蚀性能.稀有金属材料与工程,2007,36:805-807.
    [60]张开春.喷管内型面烧蚀对发动机能量的影响.固体火箭技术,1997,20:26-28.
    [61]白光辉,孟松鹤,张博明,梁军,杜善义.C/C材料体积烧蚀实验研究.宇航学报,2007, 28:812-815.
    [62]余晓京,何国强,刘洋,李江,王希亮.颗粒冲刷条件下绝热层二维烧蚀计算.固体火箭技术,2007,30:282-286.
    [63]Yu I. Dimitrienko. Thermomechanical Behavior of Composite Materials and Structures under High Temperatures:1. Materials. Composites Part A,1997,28:453-461.
    [64]Sumarce D., Krasulja M. Damage of Plain Concrete Due to Thermal Incompatibility of it's Phases. International Journal of Damage Mechanics,1998,7:129-141.
    [65]Oguni K., Ravichandran G. A. Micromechanical Failure Model for Unidirectional Fiber Reinforced Composites. International Journal of Solids and Structures,2001,38:7215-7233.
    [66]Palaninathan R., BinDu S. Modeling of Mechanical Ablation in Thermal Protection Systems. Journal of Spacecraft and Rockets,2005,42:971-979.
    [67]白光辉,孟松鹤,杜善义,张博明,梁军,刘洋.基于神经网络的炭/炭复合材料烧蚀性能预测.复合材料学报,2007,24:83-88.
    [68]Rosenhead L. The Formation of Bortices from a Surface of Discontinuity. Proc. Roy. Soc. London A.1931,134:170-192.
    [69]Chorin A. J. Numerical Study of Slightly Viscous Flow. Journal of Fluid Mechanics,1973, 57:785-796.
    [70]Chorin A. J. and Benard P. S. Discretization of a Hydrodynamics by the Method of Point Vortices. Journal of Computational Physics,1973,13:423-429.
    [71]Krasay R. Computation of Vortex Sheet Roll-up in Trefftz Plane. Journal of Fluid Mechanics, 1987,184:123-155.
    [72]Kuwahara K. and Takami H. Numerical Studies of Two Dimensional Vortex Motion by a System of Point Vortices. Journal of the Physical Society of Japan,1973,34:247-253.
    [73]Moore D. W. Finite Amplitude Waves on Aircraft Trailing Vortices. Aeronautical Quarterly, 1972,23:307-347.
    [74]Hald O. H. Convergence of Vortex Methods for Euler's Equations. SIAM Journal on Numerical Analysis,1979,16:726-755.
    [75]Beale J. T. and Majda A. Rates of Convergence for Viscous Splitting for the Navier-Stokes Equations. Mathematics of Computation,1981,37:243-259.
    [76]Beale J. T. and Majda A. Vortex Method I:Convergence in Three-dimension. Mathematics of Computation,1982,39:1-27.
    [77]Ghoniem A. F. and Ng K. K. Numerical Study of a Forced Shear Layer. Physics of Fluids, 1987,30:706-721.
    [78]Marchioro C. and Pulivirenti M. Vortex Methods in Two-dimensional Fluid Dynamics. Lecture Notes in Phys.,1984,203.
    [79]Leonard A. Vortex Methods for Flow Simulation. Journal of Computational Physics, 1980, 37:289-335.
    [80]Sarpkaya T. Computationla Methods with Vortices-the 1988 Freeman Scholar Lecture. Journal of Fluids Engineering,1989,111:5-52.
    [81]Spalart P. Vortex Methods for Separated Flows. NASA TM 100068,1988.
    [82]Leonard A. Computing Three Dimensional Incompressible Flows with Vortex Elements. Annual Review of Fluid Mechanics,1985,17:523-559.
    [83]Cottet G. H., Mas-Gallic S. and Raviart P. A. Vortex Methods for Incompressible Euler and Navier-Stokes Equations. Berlin:Springer-Verlag,1988.
    [84]Raviart P. A. Methods Particulaires. Lecture notes, Ecole dete danalyse numerique, Centre detude du Breausansnappe, France,1987.
    [85]Degond P. and Mas-Gallic S. The Weighted Particle Method For Convection-diffusion Equations. Part Ⅰ:the Case of an Isotropic Viscosity. Mathematics of Computation,1989,53: 485-507.
    [86]Degond P. and Mas-Gallic S. The Weighted Particle Method for Convection-diffusion Equations. Part Ⅱ:the Antisotroic Case, Mathematics of Computation,1989,53:509-525.
    [87]Koumoutsakos P. Inviscid Axisymmetrization of an Elliptical Vortex. Journal of Computational Physics,1997,138:821-857.
    [88]Koumoutsakos P. Simulation of Unsteady Separated Flows Using Vortex Methods. Ph.D. thesis, California Institute of Technology,1993.
    [89]Koumoutsakos P. and Leonard A. Improved Boundary Integral Method for Inviscid Boundary Condition Applications. AIAA Journal.1992,31:401-405.
    [90]Leonard A., Shiels D. Salmon J. K., Winckelmans G.S. and Ploumhans P. Recent Advances in High-resolution Vortex Methods for Incompressible Flows. AIAA 1997,97-2108.
    [91]Ploumhans P. and Winckelmans G. S. Vortex Methods for High-resolution Simulations of Viscous Flow past Bluff Bodies of General Geometry. Journal of Computational Physics, 2000,165:354-406.
    [92]Ploumhans P., Winckelmans G. S., Salmon J. K., Leonard A. and Warren M. S. Vortex Methods for Direct Numerical Simulation of Three-dimensional Bluff Body Flows: Application to the Sphere at Re=300,500 and 1000. Journal of Computational Physics,2002, 178:427-463.
    [93]Cottet G. H. Particle Methods for Direct Numerical Simulations of Three Dimensional Wakes. Journal of Turbulence,2002,3,038.
    [94]Poncet P. Vanishing of Mode B in the Wake Behind a Rotationally Oscillating Circular Cylinder, Physics of Fluids,2002,14:2021-2023.
    [95]Koumoutsakos P. and Leonard A. High-resolution Simulations of the Flow Around an Impulsively Started Cylinder Using Vortex Methods. Journal of Fluid Mechanics,1995,296: 1-38.
    [96]Koumoutsakos P. and Shiels D. Simulations of the Viscous Flow Normal to an Impulsively Started and Uniformly Accelerated Flat Plate. Journal of Fluid Mechanics,1996,328: 177-227.
    [97]Salmon J. K.,Warren M. S. and Winckelmans G. S. Fast Parallel Tree Codes for Gravitational and Fluid Dynamical N-body Problems. The International Journal of Supercomputer Applications and High Performance Computing,1994,8:129-142.
    [98]Ogami Y. and Akamatsu T. Viscous Flow Simulation Using the Discrete Vortex Model-The Diffusion Velocity Method. Computers & Fluids,1991,19:433-441.
    [99]Clarke N. R. and Tutty O. R. Construction and Validation of a Discrete Vortex Method for the Two-dimensional Incompressible Navier-Stokes Equations. Computers & Fluids,1994,23: 751-783.
    [100]Ogami Y. and Ayano Y. Flow Around a Circular Cylinder Simulated by the Viscous Vortex Model-The Diffusion Velocity Method. Computational Fluid Dynamics Journal,1995,4: 383-399.
    [101]Strickland J. H., Kempka S. N. and Wolfe W. P. Viscous Diffusion of Vorticity in Unsteady Wall Layers Using the Diffusion Velocity Concept. In Proceedings of the Forum on Vortex Methods for Engineering Applications, Sandia National Labs.,1995.
    [102]Rivoalen E. and Huberson S. Numerical Simulation of Axisymmetric Viscous Flows by Means of a Particle Method. Journal of Computational Physics,1999,152:1-31.
    [103]Beaudoin A., Huberson S. and Rivoalen E. Simulation of Anisotropic Diffusion by Means of a Diffusion Velocity Method. Journal of Computational Physics,2003,186:122-135.
    [104]Greengard C. The Core Spreading Vortex Method Approximates the Wrong Equation. Journal of Computer Physics,1985,61:345-348.
    [105]Rossi L. F. Resurrecting Core Spreading Vortex Method:A New Scheme that is Both Deterministic and Convergent. SIAM Journal on Scientific Computing,1996,17:370-397.
    [106]Rossi L. F. Merging Computational Elements in Vortex Simulations. SIAM Journal on Scientific Computing,1997,18:1014-1027.
    [107]Shiels D. Simulation of Controlled Bluff Body Flow with a Viscous Vortex Method. PhD. Thesis, California Institute of Technology,1998.
    [108]Nakajima T. and Kida T. A remark of Discrete Vortex Method(Derivation from Navier-Stokes Equation). Transactions of the Japan Society of Mechanical Engineers,1990,56B: 3284-3291.
    [109]Nakajima T. and Kamemoto K. Numerical Simulation of Flow Around a Sphere with Vortex Blobs. Journal of Wind Engineering & Industrial Aerodynamics,1993,46-47:363-369.
    [110]Huang M. J. Diffusion via Splitting and Remeshing via Merging in Vortex Methods. International Journal for Numerical Methods in Fluids,2005,48:521-539.
    [111]Huang M. J. The Physical Mechanism of Symmetric Vortex Merger:A New View Point. Physics of Fluids,2005,17:1-7.
    [112]Shankar S. and Van Dommelen L. A New Diffusion Procedure for Vortex Methods. Journal of Computational Physics,1996,127:88-109.
    [113]Fishelov D. A New Vortex Scheme for Viscous Flows. Journal of Computational Physics, 1990,86:211-224.
    [114]Anderson C. and Greengard C. On Vortex Method. SIAM Journal on Numerical Analysis, 1985,22:413-440.
    [115]Fishelov D. Simulation of Three-dimensional Turbulent Flow in Non-cartesian Geometry. Journal of Computational Physics,1994,115:249-266.
    [116]Bemard P. S. A Deterministic Vortex Sheet Method for Boundary Layer Flow. Journal of Computational Physics,1995,117:132-145.
    [117]Cottet G. H. and Koumoutsakos P. Vortex Method:Theory and Practice. Cambridge University Press,2000.
    [118]Hockney R. W. The Potential Calculation and Some Applications. In:Methods of Computational Physics, Academic press. New York,1970:135-212.
    [119]Fornberg B. A Numerical Study of 2-D Turbulence. Journal of Computational Physics,1977, 25:1-31.
    [120]Christiansen J. P. Numerical Simulation of Hydrodynamics by the Method of Point Vortices. Journal of Computational Physics,1973,13:363-379.
    [121]Almgren A. S., Buttke T. and Colella P. A Fast Adaptive Vortex Method in Three Dimensions. Journal of Computational Physics,1994,113:177-200.
    [122]Russo G. and Strain J. Fast Triangulated Vortex Methods for the 2-D Euler Equations. Journal of Computational Physics,1994,111:291-323.
    [123]Strain J. Fast Adaptive 2D Vortex Methods. Journal of Computational Physics,1997,132: 108-122.
    [124]Carrier J., Greengard L. and Rokhlin V. A Fast Adaptive Multipole Algorithm for Particle Simulations. SIAM Journal on Scientific and Statistical Computing,1988,4:669-686.
    [125]Anderson C. R. An Implementation of the Fast Multipole Method without Multipoles. SIAM. Journal on Scientific and Statistical Computing,1992,13:923-947.
    [126]Steinhoff J., Ramachandran K. and Suryanarayanan K. The Treatment of Convected Vortices in Compressible Potential Flow. AGARD-CP-342.
    [127]Ghoniem A. F. Development and Application of Vortex Methods:a Review and Some Extensions. AIAA Journal,1988, 1:685-669.
    [128]Ogami Y., Hiroki I. et al. Particle Method for Isentropic Compressible Flow Simulation. Computational Fluid Dynamics Journal,1996,5:341-360.
    [129]Ogami Y. and Cheer A. Y. Simulations of Unsteady Compressible Fluid Motion by an Interactive Cored Particle Method. SIAM Journal on Applied Mathematics,1995,55: 1204-1226.
    [130]Ogami Y., Fujiwara Y. and Hosokawa T. Numerical Simulation of Compressible Fluids Using the Particle Method. JSME International Journal Series B,1991,57:2684-2689.
    [131]Ogami Y., Fujiwara Y. and Hosokawa T. Accuracy and Stability of a Deterministic Particle Method for Diffusion Equation. JSME International Journal Series B,1991,57:4092-4099.
    [132]Ogami Y. and Cheer A. Y. Grid-free Particle Method Applied to the Equations of Unsteady Compressible Fluid Motion. AIAA Journal,1993,31:1155-1157.
    [133]Ogami Y. and Cheer A. Y. On the Solitons Created by the Dispersion Error of the Particle Method. JSME International Journal Series B,1993,59:3460-3465.
    [134]Ogami Y., Arimoto I., Fujiwara Y. and Hosokawa T. Numerical Simulation of One-dimensional Viscous Compressible Fluid Motion Using Particle Method. JSME International Journal Series B,1996,62:4084-4089.
    [135]Ogami Y. Study of Accuracy and Stability of the Particle Method for Compressible Viscous Flows in Unsteady Motion and its Application. JSME International Journal Series B,1998,64: 1973-1980.
    [136]Wu J. Z. and Wu J. M. Interactions Between a Solid Surface and a Viscous Compressible Flow Field. Journal of Fluid Mechanics,1993,254:183-211.
    [137]Wu J. Z., Wu J. M. and Wu C. J. A Viscous Compressible Flow Theory on the Interaction Between Moving Bodies and Flow Field in the(ω,θ) Framework. Fluid Dynamics Research, 1988,3:203-208.
    [138]夏南,尹协远.同心圆管间无粘可压缩旋转流动的稳定性研究.应用数学和力学,1988,9:617-628.
    [139]居江宁.可压缩流动离散涡方法.博十论文,上海理工大学,上海,2000.
    [140]Bethe H. A., Adams M. C. A Theory for the Ablation of Glassy Materials. Journal of Aero/Space Sciences.1959,26(6):560-564.
    [141]Adams M. C. Recent Advances in Ablation. American Rocket Society Journal,1959,29(9): 621-625.
    [142]Hidalgo H., Kadanoff. Comparision Between Theory and Flight Ablation Data. AIAA Journal, 1963,1(1):41-44.
    [143]Becher N., Rosensweig R. E. Theory for the Ablation of Fiber Glass- Reinforced Phenolic Resion. AIAA Journal,1963,1(8):1802-1804.
    [144]Becher N., Rosensweig R. E. Ablation Mechanism in Plastics with Inorganic Resinforcement. American Rocket Society Journal,1961,31(4):523-539.
    [145]姜贵庆,刘连元.高速气流传热与烧蚀热防护.国防工业出版社,北京,2003.
    [146]童秉纲,尹协远,朱克勤.涡运动理论.中国科技大学出版社,合肥,1994.
    [147]苏焕勋.面积扩散涡旋法无滑移边界条件之研发.硕士论文,台湾大学,台湾,2007.
    [148]Perlman M. On the Accuracy of Vortex Methods. Journal of Computational Physics,1995,59: 200-223.
    [149]周志勇.涡方法用于桥梁截面气动弹性问题的数值计算.同济大学博士后研究工作报告,2010.10.
    [150]Greengard L., Rokhlin V. A Fast Algorithm for Particle Simulations. Journal of Computational Physics,1987,73:325-348.
    [151]Van Dommelen L. L., Rundensteiner E.A. Fast, Adaptive Summation of Point Forces in the Two-dimensionai Poisson Equation. Journal of Computational Physics,1989,83:126-147.
    [152]陈立杰.快速面积扩散涡旋法之开发与平行化.硕士论文,台湾大学,台湾,2008.
    [153]杨素哲.确定性涡方法的数学格式及其在桥梁抗风中的应用.博士论文,同济大学,上海,2007.
    [154]刘秉止,彭建华.非线性动力学.高等教育出版社,北京,2004.
    [155]Grassberger P., Procaccia I. Measuring the Strangeness of Strange Attractors. Physica D,1983, 9:189-208.
    [156]Keenan J. A., Candler G. V. Simulation of Ablation in Earth Atmospheric Entry. AIAA Report, 93-2789.
    [157]高铁锁,董维中,张巧芸.高超声速再入体烧蚀流场计算分析.空气动力学学报.2006,24:41-45.
    [158]李海燕,罗万清,石卫波. Newton型迭代法在求解烧蚀边界条件控制方程中的应用.空气动力学学报.2010,28:456-461.
    [159]陆振波,蔡志明,姜可宇.基于改进的C-C方法的相空间重构参数选择.系统仿真学报, 2007,19:2527-2538.
    [160]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉大学出版社,武汉,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700