用于脉冲星导航的X射线光子计数探测器及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,基于X射线脉冲星自主导航技术成为国内外的研究热点。X射线脉冲星自主导航系统的核心器件之一就是X射线光子计数探测器。对于X射线脉冲星自主导航用的X射线探测器最关键的两个技术指标就是灵敏度和时间分辨率:一是因为X射线脉冲星源的辐射强度非常微弱,再者是X射线脉冲星自主导航的定位精度依赖于X射线脉冲星的脉冲到达时间的测量精度。
     本文在分析X射线脉冲星自主导航原理、国内外研究现状和比较各种X射线探测器工作原理与性能的基础上,提出了一种基于MCP的X射线光子计数探测器(MCP-based X-ray photon counting detector, MCP-XPCD)和基于MCP的X射线光子计数成像探测器(MCP-based X-ray photon counting imaging detector,MCP-XPCID)的方案,并研制出了原理样机。MCP-XPCD主要由输入窗、CsI光电阴极、微通道板MCP、蛇形微带线电荷收集阳极,及电子读出系统组成。MCP-XPCID与MCP-XPCD的区别就是将电荷收集阳极换成了具有空间分辨的楔条型位敏阳极(WSA)。
     搭建了基于X射线脉冲星自主导航的地面模拟系统,主要由X射线脉冲辐射源、MCP-XPCD、电子读出系统和数据处理系统四部分组成。该系统可以产生周期可调的单光子X射线辐射,探测系统可以记录每个光子的到达时间,通过长时间的采集依据脉冲轮廓的构造方法可以还原X射线源的脉冲轮廓,为进一步计算脉冲到达时间TOA,进而验证导航算法做了必要的准备。
     对影响探测器灵敏度和时间分辨的光电阴极和电荷收集阳极进行了分析,制作了对软X射线灵敏度高的CsI阴极探测器,研制出了大面积的时间特性较好的蛇形微带线电荷收集阳极。对探测器的灵敏度测试结果表明:带有800nm厚的反射式CsI阴极的探测器积分灵敏度最高,可以到达260A/W/cm~2。对探测器在0.25nm(4.94keV)处的光谱灵敏度和最小可探测功率的测试结果表明:光谱灵敏度为460A/W/cm~2,最小可探测功率为5.4×10-16W/cm~2,相应的光子数密度为0.68ph/s/cm~2,远好于AXUV100G的最小可探测功率3.2×10-13W/cm~2和相应的光子数密度403ph/s/cm~2。对影响探测器时间特性的因素的实验分析结果表明:阴极电压、阳极加速电压越高,探测器的渡越时间弥散越小,时间分辨越好,实验中得到了1.1ns的最好时间分辨率。对整个探测系统(探测器+电子学)的死时间进行了测量,整个探测系统的死时间约为100ns,因此目前探测系统整体的时间分辨率为100ns。
     在搭建的X射线脉冲星导航地面模拟系统上,依据X射线脉冲星脉冲轮廓的构建方法获取了模拟X射线脉冲星源的脉冲轮廓。从探测器的输出信号的时间特性、MCP的增益电压和探测器的灵敏度三方面分析了其对获取X射线脉冲星脉冲轮廓的影响,结果表明探测器输出波形越好、时间分辨率越高,构造的脉冲轮廓形状越稳定,随时间的漂移越小,信噪比越高;MCP的增益电压越高、脉冲轮廓的信噪比越高;探测器的灵敏度越高,脉冲轮廓的信噪比越高。在模拟系统上,MCP-XPCD在X射线光子数密度为0.067ph/s/cm~2(远小于探测器噪声等效功率对应的光子数密度0.68ph/s/cm~2)的条件下采集1084s得到了X射线脉冲脉冲轮廓。该结果表明只要累积时间足够长,即使光子数密度为~10-5ph/s/cm~2量级,MCP-XPCD也是能够采集到X射线脉冲轮廓。
     在搭建的MCP-XPCID系统上,对X射线光子计数成像系统进行了研究,目前得到了优于150μ m的空间分辨率。
     分析了X射线脉冲星脉冲累积的模型,在此基础上提出了三次样条平滑算法和基于HARR小波的X射线脉冲轮廓消噪算法,提高了累积脉冲轮廓的信噪比。在小波域,对Taylor的计算脉冲到达时间的频域算法进行了改进,提高了脉冲到达时间的测量精度。
Currently, X-ray pulsar-based autonomous navigation (XNAV) becomes aresearch focus in navigation field. One of the core components of XNAV system isX-ray photon counting detector. The sensitivity and time resolution are two keytechnical specifications of X-ray photon counting detector for XNAV, because the fluxof pulsar radiation is very faint and the positioning precision depends on the precisionof measurement on pulse TOA (time of arrival).
     A MCP-based X-ray photon counting detector and X-ray imager are proposedbased on analysis of theory of XNAV and comparison of different X-ray detector’sworking principle and performance, and a prototype is developed. The photoncounting detector is composed of input window, photocathode (CsI), serpentinemicro-strip line anode and electronic readout system. As for X-ray imager, thedifference is the anode substituted with wedge and strip anode which is a positionsensitive anode.
     X-ray pulsar-based navigation simulation system is set up, which is composed ofX-ray pulse resource, X-ray photon counting detector, electronic readout and dataprocessing unit. The X-ray resource can produce single photon radiation, and theX-ray resource’s period can be tuned between1.5ms and300ms. The TOA ofindividual photon be recorded by the X-ray counting detector, and considerable dataof photon TOA can be recorded through the detector works long enough. At last,X-ray pulse profile can be reconstructed according to pulsar pulse profile foldingmethod. Once the pulse profile is reconstructed, we can calculate the pulse TOA andverify the pulsar navigation algorithm.
     High sensitive CsI photocathode detector and high time-resolution serpentinemicro-strip line anode are developed. The sensitivity of the detector is tested, andthe result show integral sensitivity of reflective photocathode which thickness is800nm is highest, and can reach260A/W/cm~2, and the spectral sensitivity at0.25nm is460A/W/cm~2. The NEP (noise equivalent power) of the MCP-based X-ray photoncounting detector is also tested and compared with AXUV100G Si PN detector. Theresults indicate that the NEP of MCP-based detector is5.4×10-16W/cm~2, andcorresponding photon number density is0.68ph/s/cm~2, but for AXUV100G, the NEPis3.2×10-13W/cm~2and corresponding photon number density is403ph/s/cm~2, so thecapability of detection of weak light of MCP-based detector is far better thanAXUV100G.. The time performance of the MCP-based detector is also analyzed, thehigher voltage applied on photocathode and anode, the better time resolution is get.The best time resolution of detector is1.1ns in our experiment. Additional, we test thedead time of whole detection system, and the dead time is100ns which originprincipally from the dead time of TDC circuit. So the time resolution of wholedetection system is100ns.
     The pulse profile acquiring experiment is carried out on the X-ray pulsar-basednavigation simulation system, and the result show that the better waveform,the highertime resolution, the higher gain voltage and the higher sensitivity of the detector, thehigher SNR of pulse profile can be get. The X-ray pulse profile can be reconstructedusing MCP-based detector when the photon number density of X-ray is0.067ph/s/cm~2which is greatly less than the NEP of the detector, this result show that the pulseprofile can be get when the photon number density is about10-5ph/s/cm~2if theintegratal time is long enough.
     The X-ray photon counting imaging experiment is also carried out, and theresult show the spatial resolution of the X-ray imager is better than150μm.
     In order to improve the SNR of integral pulse profile, a cubic spline smoothingalgorithm and HARR wavelet de-noise algorithm are proposed. Experiment resultsshow those algorithm can improve the SNR of the pulse profile. In the wavelet field,we modify the pulse TOA algorithm which is proposed by Taylor, and the precision ofthe measurement of TOA is improved.
引文
[1]齐悦.宇宙中的灯塔—脉冲星[J].China Academic Journal Electronic Publishing House,1994~2008, p50~55
    [2] Hewish A., Bell J et al. Observation of a rapidly pulsar radio source[J]. Nature,1968,217:709~713
    [3] Taylor J H., Millisecond Pulsars: Nature’s most stable clocks[C]. Proceedings of the IEEE, Las Vegas, Nevada,1991,1054~1062
    [4]Tony T., DARPA.http://govinfo.library.unt.edu/moontomars/docs/050304,2007
    [5] Sheikh S I., The use of variable celestial X-ray sources for spacecraft navigation [D].University of Maryland,2005
    [6] Wood K S. Using the Unconventional Stellar Aspect(USA)Experiment on ARGOS to Determine AtmosphericParameters by X-ray Occultation[C].In Proceedings of International Society of OpticalEngineering(SPIE),Nashville,Tennessee,2002:258~265
    [7]杨廷高,南仁东,金乘进.脉冲星自主导航概述[C].年全国时间频率学术交流会,2005:461~466
    [8] Chester T J. Navigation using X-ray pulsars[R].NASA Technical Reports N81-27129,1981:22~25.
    [9] Sheikh S I. Spacecraft navigation using X-ray pulsars [J]. Journal of guidance, control, and dynamics.2006:49~63.
    [10] Sheikh S I. Recursive Estimation of Spacecraft Position Using X-ray Pulsar Time of Arrival Measurements.The61st annual meeting of the institute of navigation,2005
    [11] Paul G., John C., et al. XNAV beyond the moon. Proceedings of the63rd Annual Meeting of the Institute ofNavigation,2007:423~431
    [12] Sheikh S I., Ray P S., et al. Relative navigation of spacecraft utilizing bright, aperiodic celestial sources.Proceedings of the63rd annual meeting of the institute of navigation,2007:444~453
    [13]徐玉朋.神舟二号飞船X射线探测器的数据系统[D].中国科学院高能物理研究所,2001
    [14]刘薇.基于MOGA的HXMT天文卫星巡天扫描智能规划模型[D.中国科学院空间科学与应用研究中心,2006
    [15]卢方军.空间高能天文观测与脉冲星导航[C].X射线脉冲星自主导航专题研讨会,西安,2008年9月,p113
    [16]南仁东.500m球反射面射电望远镜FAST[J].中国科学G辑物理学力学天文学,2005年,Vol.35,p449~466
    [17]杨廷高,南仁东,金乘进,甘恒谦.脉冲星自主导航概述[C].2005年全国时间频率学术交流会,2005年
    [18]郑伟,李黎.脉冲星导航及其在深空探测中的应用[C].2005年航天测控技术研讨会论文集,2005年11月.
    [19]费保俊,孙维瑾,肖昱等.X射线脉冲星自主导航(XNAV)的基本测量原理[J].装甲兵工程学院学报,2006,20(3):59~63
    [20]费保俊,肖昱等.XNAV中的相对论效应(I):引力和Doppler频移[J].装甲兵工程学院学报,2006,20(4):91~95
    [21]熊凯,魏春岭,刘良栋.基于脉冲星的空间飞行器自主导航技术研究[J].航天控制,2007,25(4):36~40
    [22]仲崇霞,杨廷高.小波域中的维纳滤波在综合脉冲星时算法中的应用[J].物理学报,2007,56(10):6157~3136
    [23]郑伟,孙守明,汤国建.基于X射线脉冲星的深空探测自主导航方法[J].中国空间科学技术,2008,28(5):1~6
    [24]帅平,李明,陈绍龙,黄震.X射线脉冲星导航系统原理与方法[M].北京,中国宇航出版社,2009
    [1]帅平,李明,陈绍龙,黄震.X射线脉冲星导航系统原理与方法[M].中国宇航出版社,北京,2009,381~382
    [2]帅平,陈绍龙,吴一帆,张春青,李明.X射线脉冲星导航技术研究进展[J].空间科学学报,2007,27(2),169~176
    [3]李建勋.基于X射线脉冲星的定时与自主定位技术研究[D].西安理工大学,2008,94~95
    [4] Sheikh S I., Pines D J. Spacecraft navigation using X-ray pulsars. Journal of guidance, control, and dynamics,2006,29(1),49~63
    [5]郑伟,孙守明,汤国建.基于X射线脉冲星的深空探测自主导航方法.中国空间科学技术,2008(5),1~6
    [6] Li J X., Ke X Z. Study on autonomous navigation based on pulsar timing model. Science in China Series G:Physics, Mechanics&Astronomy,2009(2):303~309
    [7] Sheikh S I. The use of variable celestial X-ray sources for spacecraft navigation[D]. University of Maryland,2005
    [8] Moyer T D. Formulation for observed and computed values of deep space network data types. California: JPLPublication,2000,8~9
    [9] Lorimer D R. Binary and millisecond pulsars at the new millennium [J]. Living reviews in relativity,2001,4:5
    [10] Thomas J B. reformulation of the relativistic conversion between coordinate time and atomic time.Astronomical Journal,1975,80(5):05~411
    [11] Backer D C., Hellings R W. Pulsar timing and general relativity [J]. Annu Rev Astron Astrophys,1986,24:537~575
    [12] Martin C F., Torrence M H., Misner C W. Relativistic effects on an earth-orbiting satellite in the barycentercoordinate system.[J]. Geo-phy Res,1985,90(B1):9403~9410
    [13] Pulsar Timing http://www.cv.nrao.edu/course/astr534/PulsarTiming.html
    [14] Moyer T D. Transformation from Proper Time to Earth to Coordinate Time in Solar System BarycentricSpace-Time Frame of Reference—Part one[J]. Celestial Mechanics,1981,23:33~56
    [15] Moyer T D. Transformation from Proper Time to Earth to Coordinate Time in Solar System BarycentricSpace-Time Frame of Reference—Part two[J]. Celestial Mechanics,1981,23:57~68
    [16]李建勋,柯熙政.基于脉冲星定时模型的自主导航定位方法.中国科学G辑:物理学,力学,天文学,2009,39(2):311~317
    [17] Huang Z., Li M., Shuai P. On time transfer in X-ray pulsar navigation.Science in China Series E:Technological Sciences,2009,52(5):1413~1419
    [18] Hellings R W. Relativistic effects in astronomical timing measurements. Astron J,1986,91(3):650~659
    [19]李黎.基于X射线脉冲星的航天器自主导航方法研究,国防科技大学,2006
    [20]帅平,陈忠贵,曲广吉.关于X射线脉冲星导航的轨道力学问题.中国科学E辑:技术科学,2009,39(3):556~561
    [21] Graven P H., Collins J T., Sheikh S I., et al. XNAV for Deep Space Navigation [C].31st annual AAS guidanceand control conference,1-6February,2008, Breckenridge, Colorado
    [22] Graven P H., Collins J T., Sheikh S I., Hanson J E. Spacecraft navigation using X-ray pulsars.7th internationalESA conference on guidance, navigation&control systems,2-5June,2008, TRALEE, COUNTY KERRY,IRELAND
    [23] Xiong K., Wei C L., Liu L D., The use of X-ray pulsars for aiding navigation of satellites in constellations.Acta Astronautica,2009,64:427~436
    [24] Catherine L., Thornton James S B. Radiometric tracking techniques for deep-space navigation[C]. JPLPublication00~11, Jet Propulsion Laboratory, Pasadena, California,2000
    [25] Charpak G., Sauli F. High-resolution electronic particle detectors [J]. Annual review of Nuclear Science,1984,34:285~350
    [26] Mathieson E. Induced charge distribution in proportions detectors,http://www.inst.bnl.gov/gasnobledet/mathieson’s_book.pdf,2008
    [27] Da Rocha J G V., Lanceros-Mendez S.,3-D Modeling of Scintillator-based X-ray detectors[J]. SensorsJournal,2006, IEEE6(5):1236~1242
    [28]唐道润,江少恩,伍登学.用于激光等离子体测量的X光量热计.强激光与粒子束,2005,17(5):715~718
    [29]张兴华,赵宝升,缪震华等.紫外单光子成像系统的研究.物理学报,2008,57(7):4238~4243
    [30]张兴华,赵宝升,刘永安等.紫外单光子成像系统增益特性研究.物理学报,2009,58(3):1779~1784
    [31] http://jp.hamamatsu.com/product/sensor-etd/pd007/index_en.html
    [32] Ota N., Nurakami T., Sugizaki M, et al. Thick and large area PIN diodes for Hard X-ray astronomy[J].Nuclear Instruments and Methods in Physics Research Section A,1999,436:291~296
    [33] Fedotv M G. CCD detectors for X-ray synchrotron radiation application[J]. Nucl Instrum Meth A,2000,448:192~195
    [34] Soltau H., Kemmer J., Meidinger N., et al. Fabrication, test and performance of very large X-ray CCDSdesigned for astrophysical applications [J]. Nucl Instrum Meth A,2000,439:547~559
    [35] Smith D R., Gow J., Holland A D. Proton Irradiation of Swept-Charge Devices for the Chandrayaan-1X-raySpectrometer (C1XS).
    [36] Hollanda A D., Hutchinsona I B., Smitha D R., Pool P. Proton damage in the E2V swept charge device.Nuclear Instruments and Methods in Physics Research A,2004,521:393~398
    [37] Lowe B G., Holland A D., Hutchinson I B., Burt D J., Pool P J. The swept charge device, a novel CCD-basedEDX detector: first results. Nuclear Instruments and Methods in Physics Research A,2001,458:568~579
    [38] Ray P S., Wood K S., Phlips B F. Spacecraft Navigation Using X-ray Pulsars. NRL REVIEW,2006,95~102
    [1] Graven P H., Collins J.T., Sheikh S I., Hanson J E. Spacecraft navigation using x-ray pulsars.7th internationalESA conference on guidance, navigation&control systems,2-5June2008,TRALEE, COUNTYKERRY,IRELAND
    [2]徐栋国,齐伟光. X线影像设备原理与应用.南京:南京大学出版社,1996
    [3]乌孟斯基,特拉别兹尼科夫等著,方正知译. X射线学.北京:中国工业出版社,1961
    [4]晋勇,孙小松等.X射线衍射分析技术.北京:国防工业出版社,2008
    [5]赛尔曼著,冯炳中译. X射线与镭物理学基础.上海:上海科学技术出版社,1959
    [6]季达依哥罗茨基著,垄尧圭译. X射线结构分析.北京:科学出版社,1960
    [7]麦振洪.薄膜结构X射线表征.北京:科学出版社,2007
    [8] EPN http://www.jb. man. ac.Uk/research/pulsar/resources/epn/browser.Html
    [9]安毓英,刘继芳,李庆辉.光电子技术.北京:电子工业出版社,2010,90~119
    [10] http://henke.lbl.gov/optical_constants/
    [11] http://www.ird-inc.com/sxuvresstab.html
    [12]安毓英,刘继芳,李庆辉.光电子技术.北京:电子工业出版社,2010,129~130
    [13] Fazini S., Mandi L., Bo i evi I., Jak i M. Application of WDX spectrometry:3d elements and theircompounds.First Spirit Workshop,24-26.October2010, Plitvice Lakes, Croatia
    [1] Steinberg A M., Kwiat P G., Chiao R Y. Measurement of the Single-Photon Tunneling Time. Physical ReviewLetters,1993,71(5):708~711
    [2] Moreau E., Robert I., Gérard J M., et al. Single-mode solid-state single photon source based on isolatedquantum dots in pillar microcavities. Appl. Phys. Lett.,2001,79(18):2865~2867
    [3] Michler P., Kiraz A., Becher C., et al. A Quantum Dot Single-Photon Turnstile Device.Science,2000,290(22):2282~2285
    [4] Charles S., David F., Jelena V., et al. Indistinguishable photons from a single-photon device. Nature,2002,419(10):594~597
    [5] Michael Bass. Handbook of optics.New York San Francisco Washington, D.C.1995
    [6]安毓英.光电探测原理.西安:西安电子科技大学出版社,2004
    [7] Becker W., Zander C., Sauer M., et al. Time-resolved detection and identification of single analyte moleculesin microcapillaries by time-correlated single-photon counting. Rev. Sci. Instrum.,1999,70(3):1835~1841
    [8] Gompf B., Günther R., Nick G., et al. Resolving Sonoluminescence Pulse Width with Time-Correlated SinglePhoton Counting. Physical Review Letters,1997,79(7):1405~1408
    [9]王光明.30.4nm极紫外成像探测器的研制.西安:西安光学精密机械研究所,2006,13.
    [10]李景镇.光学手册.西安:陕西科技出版社,2010
    [11] Grande M., Maddison B J, Howe C J., et al.The C1XS X-ray Spectrometer on Chandrayaan-1. Planetary andSpace Science,2009,57:717~724
    [12] Henke http://henke.lbl.gov/optical constants/filter2.html
    [13] Fried D L. Noise in photoemission current.Applied optics,4(1):79~80
    [14]赵菲菲.基于MCP的紫外光子计数探测器关键技术研究[D].中科院西安光机所,2010,52~54
    [15] Tremsin A S., Siegmund O. H. W.The quantum efficiency and stability of UV and soft X-ray photocathodes.Proc. of SPIE, Bellingham, WA,2005,5920:59200I-1~59200I-13
    [16] Lowney D. P., Heimann P. A., Padmore H A. Characterization of CsI photocathodes at grazing incidence foruse in a unit quantum efficiency x-ray streak camera. Review of scientific instruments,2004,75(10):3131~3137
    [17] Shchemelev V N., Savinov E P., Shchemelev V V. External photoelectric effect and high-efficiencyphotocathodes in the soft-x-ray region of the spectrum. Phys.Solid State,1997,39(9):1487~1492
    [18] Shchemelev V N., Savinov E P. Total quantum-current yield in the soft x-ray region. Phys.Solid State,1998,40(6):952~955
    [19] Henke B L., Knauer J P., Premaratne K.The characterization of x-ray photocathodes in the0.1-10keV photonenergy region. J. Appl. Phys.,1981,52(3):1509~1520
    [20] Boutboul T., Akkerman A., Gibrekhterman A., et al.An improved model for ultraviolet-and x-ray-inducedelectron emission from CsI. Journal of applied physics,1999,86(10):5841~5849
    [21] HATFIELD J V., BELL S., NEAVES P. I. A Wedge and Strip Particle Detector Based on a Current-Modeapproach. Circuits&Systems,1995,1:193~196
    [22] OGLETREE D F., BLACKMAN G S., HWANG R Q., et al. A new pulse counting low-energy electrondiffraction system based on a position sensitive detector. Rev. Sci. Instrum.,1992,63(1):104~113
    [23] WIZA J L. MICRO-CHANNEL PLATE DETECTORS. Nucl.Instr. and Meth.,1979,162:587-601.
    [24] Jagutzki O., Barnstedt J., Spillmann U., et al. Fast position and time sensitive read-out of image intensifiersfor single photon detection. Proc. SPIE,1999,3764:61~69
    [25] Siegmund O., Vallerga J., Tremsin A. Characterization of Microchannel Plate Quantum Efficiency. Proc.SPIE,5898:1~11
    [26] Siegmund O H W., Vallerga J., Wargelin B. Background events in microchannel plates.IEEE Trans. Nucl.Sci.,1988,35(1):524~528
    [27] Jagutzki O., Lapington J S., Worth L B C., et al. Position sensitive anodes for MCP read-out using inducedcharge measurement. Opt. Soc. Am. A,1986,3(12):2139~2145
    [28] Siegmund O H W. Microchannel plate detector technologies for next generation UV Instruments.Ultraviolet-Optical Space Astronomy Beyond HST, ASP Conference Series,1999,164:374~391
    [29] Michael Baumer, Zhongtian Dai. Anode readouts. LAPD Collaboration Meeting, ANL, October15-16,2009
    [30] Reto Schletti, Peter Wurz, Stefan Scherer. Fast microchannel plate detector with an impedance matched anodein suspended substrate technology. Review of scientific instruments,2001,72(3):1634~1639
    [31] Peter Wurz, Lukas Gubler. Impedance-matching anode for fast timing signals. Rev.Sci. Instrum.,1994,65(4):871~876
    [32]徐锐敏.微波技术基础.北京:科学出版社,2009
    [33] Altmann J., Kohler S., Lahmann W. Fast current amplifier for background-limited operation of photovoltaicInSb detectors. J. Phys. E: Sci. Instrum.,1980,13:1275~1277
    [34] Anghinolfia F., Jarrona P., Martemiyanovb A N., et al. NINO: an ultra-fast and low-power front-endamplifier/discriminator ASIC designed for the multigap resistive plate chamber. Nuclear Instruments andMethods in Physics Research A,2004,533:183~187
    [35]杨涛,赵波,张弛.一种无延迟线的恒比定时器.核电子学与探测技术,2002,22(30):244~246
    [36]范义晨,张岳华.恒比定时器在无源雷达时差定位系统中的应用.现代雷达,2009,31(2):81~84
    [37]刘鹏,栗苹,陈慧敏,闫晓鹏.脉冲激光引信恒比定时浮动阈值电路.探测与控制学报,2009,31(3):19~23
    [38] Lamptona M. A timing discriminator for space flight applications.Rewiew of scientific instruments,1998,69(8):3062~3065
    [39] Ghioni M., Cova S., Samori C., Zappa F. True constant fraction trigger circuit for picosecond photon-timingwith ultrafast microchannel plate photomultipliers. Rev. Sci. Instrum.,1997,68(5):2228~2237
    [40] Fallu-Labruyere A., Tan H., Hennig W., Warburton W K. Time Resolution Studies using Digital ConstantFraction Discrimination. Elsevier Science,2001,1~4
    [41] John Vallerga, Jason McPhate. Optimization of the Readout Electronics for Microchannel Plate Delay LineAnodes. Space Science Laboratory, University of California, Berkeley, CA94720-7450
    [42] Spencer D F., Cole J., Drigert M., Aryaeinejad R.A high-resolution, multi-stop, time-to-digital converter fornuclear time-of-flight measurements. Nuclear Instruments and Methods in Physics Research A,2006,556:291~295
    [43] Shimizu K., Kaneta M., Lin H J. A Time-to-Digital Converter with Small Circuitry.IEEE,2009,109~110
    [44]陈炳权.基于F P GA中专用进位连线的精密TDC设计.湘潭大学自然科学学报,2008,30(1):51~55
    [45] Jinyuan Wu and Zonghan Shi.The10-ps Wave Union TDC: Improving FPGA TDC Resolution beyond ItsCell Delay.2008IEEE Nuclear Science Symposium Conference Record
    [46] Bogdana M., Frischa H., Heintz M. A96-channel FPGA-based Time-to-Digital Converter (TDC) and fasttrigger processor module with multi-hit capability and pipeline. Nuclear Instruments and Methods in PhysicsResearch A2005,554:444~457
    [47]安毓英.激光探测原理.西安电子科技大学出版社,2004
    [48]吴治华.原子核物理实验方法(3)北京:原子能出版社,1997
    [49] Field C., Hadig T., David W.G.S. Leith, et al. Development of Photon Detectors for a Fast Focusing DIRC.5thInternational workshop on Ring Imaging Cherenkov Counters (RICH),2004
    [50]顾牡,王迪,倪晨,刘小林,黄世明,刘波.一种基于微通道板的脉冲X射线时间谱仪.光学学报,2008,28(4):813~816
    [51] Va’vra J., Benitez J., Leith D W G S., Mazaheri G., Ratcliff B., Schwiening J.A30ps timing resolution forsingle photons with multi-pixel Burle MCP-PMT. Nuclear Instruments and Methods in Physics Research A,2007,572:459~462
    [1]胡慧君,赵宝升,盛立志,鄢秋荣.基于X射线脉冲星导航的地面模拟系统研究.物理学报,2011,60(2):029701-1~029701-8
    [2]胡慧君,赵宝升,盛立志,赛小锋,鄢秋荣,陈宝梅,王朋.用于脉冲星导航的X射线光子计数探测器研究.物理学报,2012,61(1)
    [3]胡慧君,赵宝升,盛立志,鄢秋荣,杨颢,陈宝梅.X射线脉冲星累积脉冲轮廓泊松噪声去除的研究.光学学报,2011,31(8)
    [4]胡慧君,赵宝升,盛立志,鄢秋荣,杨颢,陈宝梅.一种基于泊松分布的提高X射线脉冲星脉冲轮廓信噪比的方法.中国科学G:物理学力学天文学,2011,41(8):1015~1020
    [5] Baosheng ZHAO, Huijun HU, Lizhi SHENG, Qiurong YAN, Yongan LIU, Ding CHEN. An X-ray Detector forX-ray Pulsar Based Navigation and Timing.29th International Congress on High-Speed Imaging andPhotonics.Proc. ICHSIP-29, ISBN978-4-905149-01-9, F06-1-6,2010
    [6]赵文锦,刘德林,丁继华,朱志军.超高速光电倍增管的研制及其时间特性测试研究.光电子技术,2008,28(4):266~269
    [7]陈宝梅,赵宝升,胡慧君,盛立志,鄢秋荣. X射线脉冲星导航系统中脉冲轮廓的探测与拟合.光学学报,2011,31(5):0534002-1~0534002-6
    [8]谢振华,许录平,倪广仁.基于最大似然的X射线脉冲星空间定位研究.宇航学报,2007,28(6):1605~1608
    [9] Chen B M., Zhao B S., Hu H J., et al. X-ray photon-counting detector based on a micro-channel plate for pulsarnavigation. COL,2011,9(6):060401-1~060401-4
    [10]帅平,李明,陈绍龙,黄震. X射线脉冲星导航系统原理与方法[M].中国宇航出版社,北京,2009,144~146
    [11] Moyer T D.Transformation from Proper Time to Earth to Coordinate Time in Solar System BarycentricSpace-Time Frame of Reference—Part one[J]. Celestial Mechanics,1981,23:33~56.
    [12] Backer D C., Hellings R W. Pulsar Timing and General Relativity. Annual Review ofAstronomy andAstrophysics,1986,24:537~575
    [13]帅平,李明,陈绍龙,黄震. X射线脉冲星导航系统原理与方法[M].中国宇航出版社,北京,2009,388~390
    [14] Sheikh S I. The Use of Variable Celestial X-Ray Sources for Spacecraft Navigation [D].Maryland: Universityof Maryland,2005.
    [15] Sala J., Urruel A A.,Villares X. Feasibility Study for a Spacecraf t Navigation System Relying on PulsarTiming Information[R]. Universitat Politecnica de Catalunya,2004:6214
    [16]毛悦,宋小勇,柴飞.脉冲星TOA测量误差及几何精度分析.测绘科学技术学报,2009,26(2):140~143
    [17] Sheikh S I., Pines D J. Spacecraft Navigation Using X-Ray Pulsars[J]. Jouranl of guidance, control, anddynamics,2006,29:49~63
    [1]帅平,李明,陈绍龙,黄震. X射线脉冲星导航系统原理与方法[M].中国宇航出版社,北京,2009,414~418
    [2]李建勋.基于X射线脉冲星的定时与自主定位技术研究[D].西安理工大学,2008,96~97
    [3] Miao Z H., Zhao B L., Zhang X H., et al. A single photon imaging system based on wedge and strip anode[J].CHIN. PHYS. LETT.,2008,25(7):2698~2701
    [4]张兴华,赵宝升,缪震华,等.紫外单光子成像系统的研究.物理学报,2008,57(7),4238~4243
    [5]张兴华,赵宝升,刘永安,等.紫外单光子成像系统增益特性研究.物理学报,2009,58(3):1779~1783
    [6] Zhang X H., Zhao B S., Zhao F F., et al. An ultraviolet photon counting imaging detector system based on Geinduction readout mode. Nuclear Instruments and Methods in Physics Research A,2009,610:724~727
    [7] Yang H., Zhao B S., Sheng L Z., et al. A single photon counting detector based on one-dimensional vernieranode. CHIN. PHYS. LETT.,2010,27(5):058501-1~058501-4
    [8]鄢秋荣,赵宝升,杨颢.一维游标位敏阳极光子计数探测器.物理学报,2010,59(9):6164~6170
    [9]刘永安,鄢秋荣,盛立志,等.电荷云尺寸对紫外光子计数成像探测器性能的影响.物理学报,2011,60(4):048501-1~048501-6
    [10] Liu Y A., Yan Q R., Sai X F., Imaging properties of a tetra wedge readout. Chin. Phys.B,2011,20(6):068503-1~068503-6
    [11] Edgar M L., Smith A., Lapington J S. Long range effects of gain depression in microchannel plates. SPIE,EUV, X-Ray, and Gamma-Ray Instrumentation forAstronomy III,1992,1743:283~294
    [12] Martin C., Jelinsky P., Lampton M., Malina R F. Wedge-and-strip anode for centroid-finding positionsensitive photon and particle detectors.Rev.Sci.Instrum.,1981,52(7):1067~1074
    [13] Siegmund O H W., Lampton M., Bixier J., Chakrabarti S., et al. Wedge and strip image readout systems forphoton-counting detectors in space astronomy. J. Opt. Soc. Am. A.,1986,3(12):2139~2145
    [14]刘永安,赵菲菲,胡慧君,等.采用金阴极的光子计数成像探测器的性能.光学学报,2011,31(1):0123002-1~01230002-5
    [15] Fraser G., Pearson J., Smith G C., et al.The gain characteristics of micochannel plates for X-ray photoncounting[J].IEEE T., Nucl. Sci.,1983,35(1):455~460
    [16]缪震华,基于楔条形阳极探测器的单光子成像系统[D].中科院西安光机所,2008,131~132
    [17]张兴华,紫外光子计数成像系统关键技术研究[D].中科院西安光机所,2009,58~59
    [18] Siegmund O H W., Clothier S., Thomton J.et al. Application of the wedge and strip anode to position sensingwith microchannel plates ans proportional counters, IEEE Trans. Nucl. Sci.,1983, NS-30:503~507
    [1] Taylor J H. Millisecond pulsars: nature's most stable clocks. Proc. IEEE,1991,79(7):1054~1064
    [2]仲崇霞,杨廷高.小波域中的维纳滤波在综合脉冲星时算法中的应用.物理学报,2007,56(10):6157~6163
    [3]帅平,李明,陈绍龙,黄震. X射线脉冲星导航系统原理与方法.中国宇航出版社,北京,2009,428~429
    [4] Sheikh S I, Pines D J. Spacecraft Navigation Using X-Ray Pulsars. Journal of Guidance, Control, andDynamics,2006,29(1):49~63
    [5]杨廷高.用脉冲星钟作航天器时间标准.时间与频率学报,2007,30(2):125~131]
    [6] Carew J D., Wahba G., Xie X H., Nordheim E V., Meyerand M E. Optimal spline smoothing of fMRI timeseries by generalized cross-validation. NeuroImage,2003,18:950~961
    [7] Gu C, Qiu C F. PENALIZED LIKELIHOOD REGRESSION: A SIMPLE ASYMPTOTIC ANALYSIS.Statistica Sinica,1994,4:297~304
    [8] Huson H M., A natural identity for exponential families with applications in multiparameter estimation.Ann.Statist.,1978,6:473~484
    [9]胡慧君、赵宝升、盛立志、鄢秋荣.基于X射线脉冲星导航的地面模拟系统研究.物理学报,2011,60(2)
    [10]谢振华,许录平,倪广仁.基于双谱的脉冲星累积脉冲轮廓时间延迟测量.物理学报,2008,57(10):6683-6688
    [11] Luisier F, Vonesch C, Blu T, Unser M, Fast interscale wavelet denoising of Poisson-corrupted images[J].Signal Processing,2010,90(2):415~427
    [12] Abdourrahmane M.A, Dominique P, Gregoire M, Smooth Sigmoid Wavelet Shrinkage for Non-ParametricEstimation[C].Acoustics, Speech and Signal Processing. Las Vegas, Nevada, April2008,3265~3268
    [13] Huson H M, A natural identity for exponential families with applications in multiparameter estimation [J].Ann. Statist.,1978,6:473~484
    [14]张子平、程锦荣,电子偶素三光子湮灭的变权重舍选法M.C.模拟[J].原子与分子物理学报,1995,12:322-326
    [15]张茁生,任品毅.自适应二进小波去噪法[J].工程数学学报,2009,26(6):969~976
    [16] Daubechies I. The wavelet transform, time frequency localization and signal anlysis[J].IEEE, Informationtheory,1900,36:961~1005
    [17] Pan Q., Zhang L., Dai G., et al. Two denoising methods by wavelet transform [J].IEEE Trans on SingnalProcessing,1999,47:3401~3406
    [18]刘明才.小波分析及其应用.北京:清华大学出版社,2005
    [19]刘宗昂,杨莘元,王丽安.一种新的小波去噪算法[J].弹箭与制导学报,2009,29:286~289
    [20]范磊,黄双华.一种基于小波去噪的脉冲噪声抑制方法[J].舰船电子工程,2008,28:104~106
    [21]乐剑,陈蓓.一种低信噪比雷达信号分选方法[J].电子对抗,2008(6):22~26
    [22]林雪原,徐进,石晓辉.一种基于小波技术的GPS/SINS组合导航技术及试验[J].海军航空工程学院学报,2009,24:69~96
    [23]闫敬文,屈小波.超小波分析及应用.北京:国防工业出版社,2008
    [24] EPN http://www.jb.man ac.Uk/research/pulsar/resources/epn/browser.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700