离心压缩机末级扩压器与排气蜗壳集成优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离心压缩机因其可靠性高、体积小、质量轻等诸多优点而在国民经济各部门发挥着举足轻重的作用,但同时也消耗着大量的能源。为了满足各个工业领域对离心压缩机高负荷、高效能等日益苛刻的需求,就需要不断的提高离心压缩机研究和设计水平。由于离心压缩机结构复杂,元件数量多,以往的研究大多是将各元件分开考虑,研究其内部的流动现象;近年来,随着计算机水平的提高,越来越多的科研工作者开始关注离心压缩机级各元件之间的相互匹配,以期通过集成优化的方式来提高压缩机的整体设计水平。
     本文研究对象是某公司生产的百万吨乙烯项目中的丙烯压缩机和裂解气压缩机的末级结构。利用CAD软件Pro/E,CFD软件NUMECA建立起压缩机末级完整的三维流场的数值模拟分析平台。通过对丙烯压缩机末级不同D_4/D_2方案的整级模型进行数值模拟,详细地分析其内部流动特征,得出对应于该模型的最佳D_4/D_2值,并通过匹配不同的排气蜗壳结构,研究上下游元件的相互影响。按照动量矩守恒方法设计出适合末级结构的内包式等宽蜗壳,并通过降低无叶扩压器高度的方法,使末级效率提高1.8%,效果显著。通过对裂解气压缩机的末级结构进行数值模拟,发现大流量模型级中无叶扩压器的流道长度对整级性能的影响没有中、小流量模型级明显。蜗壳的方位、出口隔板倒角大小等因素对整级性能都有一定的影响。
     本文的研究工作在一定程度上为无叶扩压器及排气蜗壳的流场分析和结构改进提供了有建设性的意见,所得出的结论为今后的基本级的优化提供了依据。
Centrifugal compressors play an important role in many fields for their special advantages such as high reliability,low volume and weight.At the same time,extensive application also means that they will consume a large amount of energy sources.In many industry fields,as the increasingly strict requirements of high load,high efficiency and some other special demands,more researches on centrifugal compressors are imperative.Because of the complex structure,previous works on centrifugal compressors mainly focused on one single part.With the development of computer technology,more and more researchers begin to pay attention to the matching of each part in order to improve the whole stage performance of the centrifugal compressor.
     This thesis focused on the last stages of two typical centrifugal compressors.A numerical analytic system was developed based on the commercial software Pro/Engineer and NUMECA.Several geometry models on propylene compressor with different D_4/D_2 were built and experimented numerically.Flow inside the last stage of centrifugal compressor was analyzed and the best value of D_4/D_2 was concluded.Different type volutes were combined with the same diffuser and impeller so as to find the influence between the upstream and downstream parts.According to the law of conservation of momentum torque,the internal volute with constant breadth was designed and the modification was proposed by reducing the length of vaneless diffuser.As a consequence,the efficiency of the last stage was successfully increased by 1.8%.The influence of the diffuser length on stage performance with big flow coefficient was less than the stage with small and middle flow coefficient,based on the simulation on the pyrolysis compressor.Other factors such as the volute orientation,the chamfer of the clapboard also have influence on the stage performance.
     The research results presented in this thesis may provide some guidelines for flow analysis and structure modifications of the volute and diffuser and the optimization of the whole stage.
引文
[1]黄钟岳,王晓放.透平式压缩机.北京:化学工业出版社,2004.
    [2]B.φ.里斯.离心压缩机械.北京:机械工业出版社,1986.
    [3]叶振邦,常鸿寿.离心式制冷压缩机.北京:机械工业出版社,1980.
    [4]杨策,马朝臣,王航,老大中.离心压缩机也轮设计方法研究进展.内燃机工程,2002,23(2).
    [5]徐忠.离心式压缩机原理.北京:机械工业出版社,1988.
    [6]ArndtN,Acosta A J.Experimental investigation of rotor-stator interaction in a centrifugal pump with several vaned diffusers.ASMB Journal of Turbomachinery,1990,122:98-108.
    [7]Daniel O.Baun,Lutz Kostner,Ronald D.Flack.Effect of Relative Impeller-to-Volute Position on Hydraulic Efficiency and Static Radial Force Distribution in a Circular Volute Centrifugal Pump.Journal of Fluids Engineering,ASME,VOLUME 122·NUMBER 3·SEPTEMBER 2000:598-605.
    [8]Fahua Gu,Abraham Engeda,Mike Cave,Jean-Luc Di Liberti.A Numerical Investigation on the Volute/Diffuser Interaction Due to the Axial Distortion at the Impeller Exit.Journal of Fluids Engineering,ASME,VOLUME 123·NUMBER 3·SEPTEMBER 2001:466-483.
    [9]Tarek Meakhail,Seung O.Park.A Study of Impeller-Diffuser-Volute Interaction in a Centrifugal Fan.ASME Journal of rurbomachinery,2005,127:84-90.
    [10]T.Steglich,J.Kitzinger,J.R.Seume,R.A.Van den Braembussche,J.Prinsier "Improved Diffuser/Volute Combinations for Centrifugal Compressors" ASME J.Turbomach.,Vol.130,Jan.2008.
    [11]刘瑞韬,徐忠.离心压缩机半开式叶轮与叶片扩压器级内流动的数值模拟.风机技术,2003,2:3-5.
    [12]吴苇,谢军龙,吴克启.斜流压缩机转子与蜗壳匹配的内流分析[M].FLUID MACHINERY,2004,32.
    [13]张莉,王启杰,陈汉平.离心压缩机无叶扩压器内部流场的PIV试验测量.风机技术,2004,6:18-22.
    [14]王企鲲、戴韧、陈康民.蜗壳进口周向来流的非均匀性对其流动影响的数值研究[J].上海理工大学学报,2004,26(3),208-211.
    [15]刘飞,蔡兆麟.离心压缩机级的数值试验及分析.通用机械,2005,3:72-75.
    [16]王企鲲,陈康民,等.多级离心压缩机无叶扩压器内气动性能的数值研究[M].FLUID MACHINERY.2006,34.
    [17]吴克启,杨静,薛永飞.两种轴向蜗壳内部流动的数值分析.华中科技大学学报[J],2006,34(6):96-98.
    [18]刘伟,齐维彪,王尚锦.离心压缩机圆形截面蜗壳内部三维流场的实验研究.流体机械,2006,34(11):1-3.
    [19]孙长辉、刘正先、王斗、罗惕乾.蜗壳变型线改进离心风机性能的研究.流体机械,2007,35(4):1-5.
    [20]赵远扬,李连生.束鹏程.压缩机的技术现状及其发展趋势.通用机械,2005,9:36-37.
    [21]John D.Anderson,JR.Computational Fluid Dynamics.清华大学出版社,2006.5.
    [22]刘顺隆,郑群.计算流体力学.哈尔滨:哈尔滨工程大学出版社,1998.
    [23]苏铭德,黄素逸.计算流体力学基础.第一版.北京:清华大学出版社,1997.
    [24]赵兴艳,苏莫明,张楚华等.CFD方法在流体机械设计中的应用.流体机械,2000,28(3):22-25.
    [25]王福军.计算流体动力学分析——CFD软件原理及应用.北京:清华大学出版社,2004.
    [26]姚征,陈康民.CFD通用软件综述.上海理工大学学报.2002,24(2):137-144.
    [27]王雅君.离心压缩机焊接式蜗壳流动分析与优化研究;(硕士学位论文).大连:大连理工大学,2007.12
    [28]Baldwin B S,Lomax H.Thin Layer Approximation and Algebraic Model for Separated Turbulent Flows.AIAA-78-257.
    [29]Spalart P.R.,and Allmaras S.R.,A one-equation turbulence model for aerodynamic flows,AIAA Paper 92-0439,1992.
    [30]周天孝,白文.CFD多块网格生成新进展.力学进展,1999,29(3):344-368.
    [31]Thompson J F,Weatherill N P.Aspects of numerical grid generation:current and art.AIAA 93-3539.
    [32]刘晶昌,孙茂,吴礼义.一种适于复杂形状物体绕流计算的网格生成方法.水动力学研究与进展,1995(10),A辑10卷5期.
    [33]IGG User Manual.IGG Version 4.9.2004.
    [34]AutoGrid~(TM) v5 User Manual.AutoGrid~(TM) v5 Version5.3,2006.
    [35]Chow,C Y.An Introduction to computational Fluid Mechanics.John Wiley & Sons,1979.
    [36]Brandt A.Multi-level adaptive solutions to boundary-value problems.Math Comput,1977,31:330-390.
    [37]刘超群.多重网格及其在计算流体力学中的应用.北京:清华大学出版社,1995.1-64.
    [38]高闯,谷传纲,王彤,肖军.叶轮和扩压器几何参数对离心压缩机末级性能和失速的影响[J].中国电机工程学报,2007,27(32):83-86.
    [39]Arttu Reunanen.Experimental and Numerical Analysis of Different Volutes in a Centrifugal Compressor:(Thesis for PhD).Finland:Lappeenranta University of Technology,2001.
    [40] J. M. Maguire A. Engeda G. J. Bruce. F. Gu. Compressor and Turbine Volute Design System. ASME Journal of Turbomachinery, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700