生物分子固定化材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固定化酶作为一种生物催化剂,它能在较为温和的反应条件下,高选择性、高效率地催化某些化学反应,并且不会对环境造成污染。酶的固定化是最具发展前景的生物技术前沿领域之一,在酶反应装置、生物燃料电池以及生物传感器中有着相当大的应用价值。目前,固定化技术主要有吸附法、共价键合法、物理包埋法和交联法等。本文综述了介孔材料的合成、表征及改性,用不同的方法制备了具有大孔径氨基功能化介孔SiO_2和氨基功能化介孔SiO_2膜,并研究了它们在生物分子固定化中的应用。以碳纳米粒子固定化酶,研究了它们在生物燃料电池方面的应用。
     主要研究工作如下:
     1.我们用微乳模板法制备了直径在17~34nm的介孔二氧化硅(LMCFs)。氨基功能团是通过TEOS在介孔二氧化硅上水解经共价健结合在孔道的内外表面。材料的结构以及化学性质经TEM,XRD,FT—IR和氮气吸附来表征。葡萄糖氧化酶的固定化是用戊二醛共价健连接材料和酶分子中的氨基。固定化的酶仍具有相当高的活性,并在热稳定性方面优于游离酶。固定化的酶可以通过简单的离心分离而被重复利用。
     2.用溶胶—凝胶法制备了有序的—NH_2功能化介孔SiO_2膜,用TEM、AFM、FT—IR和激光共聚焦显微镜对膜进行了表征。DNA通过共价键与膜表面的—NH_2结合。介孔膜有序的介孔结构、表面高密度的—NH_2功能化基团大大提高了DNA分子在基体上的固定质量和密度。用溴化乙锭作为荧光增强剂,通过荧光强度表征了吸附于表面的DNA的相对密度。
     3.我们制作了一个比较新型的生物燃料电池,电池的两个电极分别用葡萄糖氧化酶和漆酶。葡萄糖氧化酶被固定在碳纳米粒子修饰的阳极,氧化葡萄糖。漆酶用同样的方法固定在阴极,和氧气反应。通过检测电池的性能可证明用碳纳米颗粒修饰的酶电极能促进葡萄糖氧化酶和漆酶的直接电化学。
Immobilized enzyme is a type of biocatalyst, which can high-efficiently, high-selectively catalyze chemical reactions under mild conditions and doesn't pollute the environment. Enzyme immobilization is considered as one of very promising biotechnology, immobilized enzyme is of considerable interest for their applications as enzyme reactors, biological fuel cells and bio-sensors. Immobilization technology includes absorption, wrapping, covalently binding, and crosslinking methods, and so on. In this thesis, the synthesis, characterization, improment were summarized. Besides, ammo-functionalized mesostructured SiO_2 (AF-MCFs) materials and amino-functionalized mesostructured SiO_2 film were synthesized. Their application was also described. We used carbon nanoparticles to immobilize enzyme and fabricate biological fuel cells. The performance was measured. The main research work is as follows:
    1. Large mesopores cellular foam (LMCFs) materials with diameters ranging from 17 to 34 nm were synthesized using microemulsion templating. The amine functional groups were attached to channels of LMCFs materials via post-synthesis grafting. The structural and chemical properties of these prepared materials were characterized by TEM, XRD, FT-IR and nitrogen adsorption. The glucose oxidase (GOx) was immobilized by covalently couple enzyme molecules to the interior surface of amino-functionalized mesostructured cellular foams (AF-MCFs) materials, in which leaching of the enzyme is prevented. The immobilized enzyme exhibited the high catalytic activity and thermal stability for oxidation of glucose. It was found that GOx immobilized on AF-MCFs materials is re-useabie.
    2. Ordered amino-functionalized mesoporous organic-inorganic hybrid silica thin films were prepared by evaporation induced self-assembly (EISA) at acidic condition, and DNA molecules were covalently bound to these mesoporous substrates. These prepared materials were characterized by TEM. AFM. FT-IR and Laser Scanning Confocal Fluorescence Microscopy (LSCFM). The ordered mesoporous structure and highly dense covalent bonds help to increase the combining intensity and DNA density.
    3. We report the fabrication of a novel biofuel cell containing a glucose oxidase anode and a
引文
1. IUPAC Manual of Symbols and Terminology, Pure Appl.Chem., 1972(31 )578.
    
    2. Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal templating mechanism,Nature,1992,359,710-712.
    
    3. Tanev P.T., Pinnavaia T.J., A neutral templating route to mesoporous molecular sieves, Science,1995,267(10),865-867.
    
    4. Bagshaw S.A., Prouzet E., Pinnavaia T.J., Templating of mesoporous molecular sieves bu nonionic polyethylene oxide surfactants,Science, 1995,269(1): 1242-1244.
    
    5. Zhao D.Y., Feng J.L., Huo Q.S., Melosh N., Fredrickson G.H., Chmelka B.F., Stucky G.D., Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 1998,279,548-552.
    
    6. Zhao D.Y., Huo Q.S., Feng J.L., Chmelka B.F., Stucky G.D.,. Nonionic triblock and star diblock copolymer and oligomeric surfactant synthesis of highly ordered, hydrothermally stable mesoporous silica structure, J.Am.Chem.Soc, 1998, 120,6024-6036.
    
    7. Ryoo R., Kim J.M., Shin C.H., Disoredered molecular sieves with branched mesoporous channel network, J.Phys.Chem, 1996, 100, 17718-17721.
    
    8. Blin J.L., Leonard A., Su B.L., Well-ordered spherical mesoporous materials CMI-1 synthesized via an assembly of decaoxyethylens cetyl ether and TMOS,Chem.Mater.,2001,13,3542-3553.
    
    9. Huo Q., Margolese D.I., Ciesla U., Leon R., Study G.D.. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chem.Mater. 1994,6, 1176-1191
    
    10. Bagshaw S.A., Prouzet E., Pinnavaia T.J., Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science, 1995,269, 1242-1244.
    
    11. Zhao D., Huo Q., Feng J., et al., Tri - , tetra - , and octablock copolymer and nonionic surfactant synthesis of highly ordered, hydrothermally stable, mesoporous silica structures. J.Am.Chem. Soc, 1998, 120 (24): 6024-6036.
    
    12. Feng P., Bu X., Stucky G.D., et al. Monolithic Mesoporous Silica Templated by Microemulsion Liquid Crystals. J.Am.Chem.Soc.,2000,122 (5) : 994-995
    13. Kim S.S., Zhang W., Pinnavaia T. J., Science, 1998,282:1302-1305
    14.翟庆洲,王巍,江天肃,王媛,陈明贵,镧(Ⅲ)对SBA—15分子筛改性研究,无机材料学报,2004,19(5):1212-1216
    15.郑珊,高濂,郭景坤,温和条件下介孔分子筛MCM—41的修饰与表征,无机材料学报,2000,15(5):844—846
    16.申宝剑,任申勇,郭巧霞,茂锆金属配合物在介孔分子筛MCM-4l1的接枝研究,分子催化,2004,18(2)93—97
    17. Mokaya R.. Al Content Dependent Hydrothermal Stability of Directly Synthesized Aluminosilicate MCM-41. J.Phys.Chem.B, 2000,34,8279
    18.郑珊,高濂,郭景坤,纳米金团簇在氧化钛修饰的介孔分子筛MCM—41中的组装,无机材料学报,2002,17(2):332—336.
    19. Junges U., Schuth, G. Schmid, Y. Ucjida, R. Schlogl, Ber. Bunsen, Ges.Phys.Chem, 1997,101:163.
    20. Zhou W., Tomas J.M., Shephard D.S., G.Johnson B.F., zkaya D.O, Maschweyer T., Bell R.G., Ge Q., Science,1998,280:705
    21. Srdanov V.I., Alxneit I., Stucky G.D. et al., Optical Properties of GaAs Confined in the Pores of MCM-41. J.Phys.Chem. B, 1998, 102:3341
    22. Hirai T., Okubo H., Komasawa I., Size-Selective Incorporation of CdS Nanoparticles into Mesoporous Silica. J.Phys.Chem. B, 1999, 103:4228
    23. Zhao X.S.,Liu G.Q.,Hu X.,Micropor.Mesopor.Mater.,2000,41:37,2000,41:37
    24. Inumaru K.,Kiyoto J.,Yamanaka S., Molecular selective adsorption of onylphenol in aqueous solution by organo-functionalized mesoporous silica, Chem.Commun.,2000,11:903.
    25. Matsumoto A.,Tsutsumi K.,Schmacher K.,et al. Surface Functionalization and Stabilization of Mesoporous Silica Spheres by Silanization and Their Adsorption Characteristics. Langmuir,2002,18:4014
    26. Yiu H.H.P., Botting C.H., Botting N.P.,et al., Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve, Phys.Chem.Chem.Phys, 2001,3(15):2983
    27. Toshiyuki Yokoi, Hideaki Yoshitake, Takashi Tatsumi, Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-,di-and tri-amino-organoalkoxysilanes, J.Mater.Chem.,2004, 14:951-957.
    28. Yanqin Wang, Bodo Zibrowius, Chia-min Yang,Bernd Spliethoff, Ferdi Schiith, Synthesis and characterization of large-pore vinyl-functionalized mesoporous silica SBA-15, Chem.Commun.,2004,46-47
    29. Humphrey H.P.Yiu, Catherine H.Botting, Nigel P.Botting, Paul A.Wright, Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve, Phys.Chem.Chem.Phys., 2001, 3, 2983-2985
    30.范毅,冯钰锜,达世禄,施治国,徐丽,β-环糊精键合改性介孔硅胶的表征和吸附性能评价,应用化学,2004,21(9):878-880.
    31. Nanguo Liu, Roger A.Assink, Berernd Smarsly and C.Jeffrey Brinker, Synthesis and characterization of highly ordered functional mesoporous silica thin films with positively charheable -NH_2 groups, Chem.Commun.,23,1146-1147.
    32. Michael W., Mckittrick, Christopher W.Jones, Toward single-site functional materials-preparation of amino-functionalized surfaces exhibiting site-isolated behavior, Chem. Mater., 2003, 15, 1132-1139.
    33.蒋中华,张津.生物分子固定化技术及应用[M].北京:化学工业出版社,1998:215.
    34.董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,2003:501;143.
    35. Collinsn M. M, Howells A .R. Sol-Gel and Electrochemistry: Research at the Intersection. [J]. Anal Chem, 2000,72(21)
    36.粱汝萍,邱建丁,邹小勇,等.[J].高等学校化学学报,2003,24(5):793-797.
    37.粱汝萍,邱建丁,李红,等.[J].中山大学学报(自然科学版),2003,42(5):127-128.
    38. Jia J B, Wang B Q, Wu A G, et al. A Method to Construct a Third-Generation Horseradish Peroxidase Biosensor: Self-Assembling Gold Nanoparticles to Three-Dimensional Sol-Gel Network. [J]. Anal Chem, 2002, 74:2217-2223.
    39. J IA Hong-fei, XIE Yang, WANG Yu- xin. Biofuel cell. [J]. Battery (电池), 2000, 30 (2):86.
    40. Stuary Wilkinson. "Gastrobots"- benefits and challenges of microbial fuel cells in food powered robot applications. [J]. Autonomous Robots, 2000, 9: 99.
    41. Seiya Tsujimura, Akira Wadano, Kenji Kano, et al. Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase. [J]. Enzyme and Microbial Technology, 2001,29:225-231.
    
    42. Torimura M, Miki A, Wadano A, et al. Electrochemical investigation of cyanobacteria synechococcus sp. PCC7942-catalyzed photoreduction of exogenous quinines and photoelectrochemical oxidation of water. [J]. J. Electroanal. Chem., 2001, 496:21 ~28.
    
    43. Karyakin A A, Morozov S V, Karyakina E E, et al. Hydrogen fuel electrode based on bioelectrocatalysis by the enzyme hydrogenase. [J]. Electrochemistry Communications, 2002, 4:417.
    
    44. Evelyne Simon, Catherine M Halliwell, Chee Seng Toh, et ai. Immobilisation of enzymes on poly(aniline) -poly(anion) composite films. Preparation of bioanodes for biofuel cell applications. [J]. Bioelectrochemistry, 2002, 55:13.
    
    45. Ruzgas T, CsoEregi E, Emneus J, et al. Peroxidase-modified electrodes: Fundamentals and application. [J] .Anal. Chim. Acta, 1996, 330:123.
    
    46. Long Yi- Tao, Chen Hong- Yuan. Electrochemical regeneration of coenzyme NADH on a histidine modified silver electrode. [J]. J. Electroanal. Chem., 1997, 440:239.
    
    47. Catherine M Halliwell, Evelyne Simonb, Toh Chee- Seng, et al. Immobilisation of lactate dehydrogenase on poly(aniline) -poly (acrylate) and poly (aniline) -poly- (vinyl sulphonate) films for use in a lactate biosensor. [J]. Anal. Chim. Acta, 2002, 453:191.
    
    48. Evelyne Simon, Catherine M Halliwell , Toh Chee- Seng , et al. Oxidation of NADH produced by a lactate dehydrogenase immobilised on po'y (aniline) - / poly (anion) composite films. [J]. J. Electroanal. Chem, 2002, 538/ .539:253.
    
    49. Palmore G T R, Bertschy H, Bergens S H, et al. A methanol/ dioxygen biofuel cell that uses NAD +- dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. [J]. J. Electroanal. Chem., 1998,443:155.
    
    50. Catherine M Halliwell, Evelyne Simon, Chee- Seng Toh, et al. The design of dehydrogenase enzymes for use in a biofuel cell: the role of genetically introduced peptide tags in enzyme immobilization on electrodes. [J] .Bioelectrochemistry 2002, 55:21.
    
    51. Katz E. Riklin A, Heleg- Shabtai V, et al. Glucose oxidase electrodes via reconstitution of the apo-enzyme: tailoring of novel glucose biosensors. [J]. Anal. Chim. Acta, 1999, 385: 45.
    
    52. LI Xi-guang, GAO Ying, LU Tian- hong, et al. Electrocatalytic behavior of microperoxidase-11 adsorbed on activated carbon for reduction of oxygen and hydrogen peroxide. [J]. Chinese Journal of Applied Chemistry(应用化学), 2000 ,19 (3) :285.
    
    53. Willner I, Katz E, Patolsky F, et al. Biofuel cell based on glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. [J]. J. Chem. Soc, Perkin Trans., 1998,2:1 817.
    
    54. Tsujimura S, Tatsumi H, Ogawa J, et al. Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin oxidase as an enzyme and 2, 2 %-azinobis (3-ethylbenzothiazolin-6- sulfonate) as an electron transfer mediator. [J]. J. Electroanal. Chem., 2001, 496: 69.
    
    55. Tayhas G, Palmore R , Kim H H. Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell. [J]. J. Electroanal. Chem., 1999,464: 110.
    
    56. Willner I, Katz E. Integration of layered redox proteins and conductive supports for bioelectronic applications. [J]. Angew. Chem. Int. Ed., 2000, 39: 1180.
    
    57. Katz E, Willner I, Kotlyar A B. A non-compartmentalized glucose/ O2 biofuel cell by bioengineered electrode surfaces. [J]. J. Electroanal. Chem., 1999, 479: 64.
    
    58. Pardo- Yissar V, Katz E, Willner I, et al. Biomaterial engineered electrodes for bioelectronics. [J]. Faraday Discussions, 2000, 116: 119.
    
    59. Itamar Willner. Biomaterials for sensors, fuel cells, and circuitry. [J]. Science, 2002, 298:2047.
    1. Deere J., Magner E., Wall J. G, Hodnett B. K., Mechanistic and structural features of protein adsorption onto mesoporous silicates. J. Phys. Chem. B, 106 (2002) 7340.
    
    2. Nakano K.., Doi K.., Tamura K.., Katsumi Y., Tazaki M., Self-assembling monolayer formation of glucose oxidase covalently attached on 11-aminoundecanethiol monolayers on gold. Chem. Comm. (2003) 1544.
    
    3. Yiu H.H.P., Wright P. A., Botting N.P., Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces. J. Mol.Catal. B: Enzym. 15 (2001) 81.
    
    4. Feng X., Fryxell G.E., Wang L.Q., Kim A.Y., Liu J., Kemner K.M., Functionalized monolayers on ordered mesoporous supports. Science, 276, (1997) 923.
    
    5. Lei C, Shin Y, Liu J., Ackerman E., Entrapping enzyme in a functionalized nanoporous support. J. Am. Chem. Soc. 124 (2002) 11242.
    
    6. Takahashi H., T. Sasaki B. Li,, Miyazaki C, Kajino T., Inagaki S., Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent. [J]. Microporous Mesoporous Mater. 44-45 (2001) 755.
    
    7. Xue P., Lu G, Guo Y, Wang Y. Guo Y, A novel support of MCM-48 molecular sieve for immobilization of penicillin G acylase. J. Mol.Catal. B: Enzym. 30 (2004) 75.
    
    8. Antonietti M., Berton B., Goltner C, Hentze H.P., Synthesis of mesoporous silica with large pores and bimodal pore size distribution by templating of polymer lattices. [J]. Adv. Mater. 10(1998) 154.
    
    9. Schroden R. C, Daous M.A., Sokolov S., Melde B.J., Lytle J. C, Stein A., Caroajo M. C, Fernandez J.T. and Rodriguez E.E., Hybrid macroporous materials for heavy metal ion adsorptionBasis of a presentation given at Materials Discussion No. 5, 22-25 September 2002, Madrid, Spain. J. Mater. Chem. 12 (2002) 3261.
    
    10. Liu N., Assink R.A., Brinker C.J., Synthesis and characterization of highly ordered mesoporous thin films with -COOH terminated pore surfaces. Chem. Commun. (2003) 370.
    11. Liu N., Assink R.A., Smarsly B., Brinker C.J., Synthesis and characterization of highly ordered functional mesoporous silica thin films with positively chargeable -NH2 groups. Chem. Commun. (2003) 1146.
    
    12. Winkel P. S., Lukens W.W., Yang P., Margolese D.I., Lettow J.S., Ying J.Y., Stucky G.D., Siliceous mesostructured cellular foams with well-defined large mesopores via microemulsion templating. [J]. Chem. Mater. 12 (2000) 686.
    
    13. Winkel P. S., Glimka C.J. and Stucky G.D., Microemulsion Templates for Mesoporous Silica. Langmuir, 16(2000)356.
    
    14. Winkel P.S., Lukens W.W., Zhao D., Yang P., Chmelka B.F., Stucky G.D., Mater. Res. Soc. Symp.Proc, 576 (1999) 241.
    
    15. Winkel P.S., Lukens W.W., Zhao D., Yang P., Chmelka B.F., Stucky G.D., Mesocellular siliceous foams with uniformly sized cells and windows. J. Am. Chem. Soc, 121 (1999) 254.
    
    16. Sen T., Tiddy G.J.T., Casci J.L., and Anderson M.W., One-pot synthesis of hierarchically ordered porous-silica materials with three orders of length scale. Chem. Commun., (2003) 2182.
    
    17. Deere J., Magner E., Wall J.G., Hodnett B.K., Adsorption and activity of cytochrome c on mesoporous silicates. Chem. Comm. (2001) 465.
    
    18. Yokoi T., Yoshitake H., Tatsumi T., Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino- organoalkoxysilanes. J. of Mater. Chem. 14 (2004) 951.
    
    19. Bradford M.M., Anal. Biochem. 72 (1976) 248.
    
    20. Huerta L., Guillem C, Latorre J., Beltran A., Beltran D. and Amoros P., Large monolithic silica-based macrocellular foams with trimodal pore system. Chem. Commun. (2003) 1448.
    
    21. Deng W., Bodart P., Pruski M., Shanks B.H., Characterization of mesoporous alumina molecular sieves synthesized by nonionic templating. [J]. Microporous Mesoporous Mater. 52(2002) 169.
    
    22. Cabrera S., Haskouri J. E., Alamo J., Beltran A., Mendioroz S., Marcos M.D., Amoros P., Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore sizes. [J]. Adv. Mater. 5 (1999) 11.
    
    23. Gregg S. J., Sing K.S., In Adsorption, Surface Area and Porosity, Academic Press, New York, (1982).
    
    24. margolese D., Melero J. A., Christiansen S.C., Chmelka B.F., Stucky G.D. , Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups. Chem. Mater. 12(2000)2448.
    
    25. Zhu H., Jones D.J., Zajac J., Dutartre R., Rhomari M., Roziere J., Synthesis of Periodic Large Mesoporous Organosilicas and Functionalization by Incorporation of Ligands into the Framework Wall. Chem. Mater. 14 (2002) 4886.
    
    26. Yan H., Zhang K., Blanford C.F., Francis L. F. and Stein A., In Vitro Hydroxycarbonate Apatite Mineralization of CaO-SiO_2 Sol-Gel Glasses with a Three-Dimensionally Ordered Macroporous Structure. Chem. Mater. 13 (2001) 1374.
    
    27. Llusar M., Monros G, Roux C, Pozzo J.L., Sanchez C, One-pot synthesis of phenyl- and amine-functionalized silica fibers through the use of anthracenic and phenazinic organogelators. J. Mater. Chem. 13 (2003) 2505.
    
    28. Schroden R. C, Daous M. A., Sokolov S., Melde B. J.. Lytle J. C, Stein A., Carbajo M. C, Fernandez J. T., and Rodriguez E. E., Hybrid macroporous materials for heavy metal ion adsorptionBasis of a presentation given at Materials' Discussion No. 5, 22-25 September 2002. Madrid, Spain. J. Mater. Chem., 12 (2002) 3261.
    1. Golub T.R., Slonim D.K., Tamayo P., Huard C, gaasenbeek M., Mesirov J.P., Coller H., Loh M.L., Downing J.R., Caligiuri M.A., Bloomfied C.D. and Lander E. S., Science, 1999, 286: 531
    
    2. Porath D., Bezryadin A., Vries S.D. and Dekker C, Nature, 2000, 403: 635
    
    3. Noble D., DNA sequence on a chip, Analysis Chemistry,1995,67(5):201 A-203A
    
    4. Marshll A., Hodgson J., DNA chip: An array of possibilities, Nature Biotechnology, 1998,16:27-31
    
    5. Ramsay G.., DNA chip:state-of-the art. Nature Biotechnology, 1998,16:40-44
    
    6. Fodor S.P.A., Read J.L., Pirrung M.C., Stryer L., Lu A.T., Soiad D., Science, 1991, 251:767
    
    7. Heller M.J., Forester A.H., Tu E., Electrophoresis, 2000, 21,157
    
    8. Malysiak S., HauserN.C, Wurtz S., Hoheisel J.D., Nucleosides Nucleotides, 1999, 18: 1289
    
    9. Joseph Deere, Edmond Magner, J. Gerard Wall, B. Kieran Hodnett, Mechanistic and structural features of protein adsorption onto mesoporous silicates, J.Phys.Chem. B,2002,106:7340-7347
    
    10. Humphrey H.P. Yiu, Catherine H. Botting, Nigel P. Botting, Paul A. Wright, Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve, Phys.Chem.Chem.Phys.,2001.3:2983-2985
    
    11. Li C.Z., Long Y.T., Lee J.S., Kraatz H.B., Protein-DNA interaction: impedance study of MutS binding to a DNA mismatchElectronic supplementary information (ESI) available: details of the electrode pretreatment, the preparation of MutS binding solution and the process for DNA-MutS binding. AFM and EIS analysis for bare gold substrate, close-packed ds-DNA monolayer modified substrate ,Chem. Comm., 2004,4(5): 574-575
    
    12. Zhang G.J, Long Y.T, Lee J.S, Kraatz H.B. Protein-DNA interaction: impedance study of MutS binding to a DNA mismatchElectronic supplementary information (ESI) available: details of the electrode pretreatment, the preparation of MutS binding solution and the process for DNA-MutS binding. AFM and EIS analysis for bare gold substrate, close-packed ds-DNA monolayer modified substrate. Chem Commun 2004:574.
    13. Ihara T, Chikaura Y, Tanaka S, Jyo A. Colerimetric SNP analysis using oligonucleotide-modified nanoparticles. Chem Comman 2002: 2152.
    14. Cheran LE, Vukovich D, Thompson M. Imaging TOF-SIMS analysis of oligonucleotide microarrays. The Analyst. 2003: 126-129.
    1. Ikeda T., kano K., An electrochemical approach to the studies of biological redox reactions and their applications to biosensors, bioreactors, and biofuel cells. J. Biosci. Bioeng. 92 (2001)9.
    
    2. Palmore G.T.R., Whilesides G.M., ACS Symp. Series, 556 (1994) 271.
    
    3. Palmore G.T.R., Kim H.H.. Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell. J. Electroanal. Chem. 464 (1999) 110.
    
    4. Niessen J., Schroder U.. Schdz F. Exploiting complex carbohydrates for microbial electricity generation AAAAAA a bacterial fuel cell operating on starch. [J]. Electrochem. Commun. 6 (2004) 955.
    
    5. Brrriere F., Ferry Y., Rochefort D., Leech D.. Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell. [JJ. Electrochem. Commun. 6 (2004)273.
    
    6. Jiang L., McNeil C.J., Cooper M.. Direct electron transfer reactions of glucose oxidase immobilised at a self-assembled monolayer. Chem. Commum. (1995) 1293.
    
    7. Ghidilis A. L., Atanasov P., Wilkims E., Enzyme-catalyzed direct electron transfer: Fundamentals and analytical applications. Electroanalysis, 9 (1997) 661.
    
    8. Katz E., Shabtai V.H., Willner N., Willner I., Beckmann A.F., Electrical contact of redox enzymes with electrodes: novel approaches for amperometric biosensors. [J]. Bioelectrochem. Bioenerg. 42 (1997) 95.
    
    9. Cai C, Martin C.R., Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities. J. Am. Chem. Soc. 111 (1989) 4138.
    
    10. Cass A.E.G., Francis D.G., Hill H.A.O., Aston W.J., Higgins I.J., Plotkin E.V., Scott L.D.L., Turner A.P.F., Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 56 (1984) 667.
    
    11. Zhao Q., Gan Z. H., Zhuang Q. K., Electrochemical Sensors Based on Carbon Nanotubes. Electroanalysis 14(2002)1609.
    
    12. K.Yamamoto, G. Shi, T.S. Zhou, F. Xu, J.M. Xu, T. Kato, J.Y. Tin, L. Study of carbon nanotubes-HRP modified electrode and its application for novel on-line biosensors. Tin Analyst, 128(2003)249.
    
    13. Patolsky F, Weimann Y., Willner I.. Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors. Angew. Chem. Int. Et., 43 (2004) 2113.
    
    14. Xiao Y., Patolsky F., Katz E., Plugging into enzymes: Nanowiring of redox enzymes by a gold nanoparticle. Science, 299 (2003) 1877.
    
    15. Guiseppi-Elie A., Lei C.H., nanotech. 13 (2003) 559.
    
    16. Zhao Y.D., Zhang W.D., Chem H., Luo Q.M., Anal. Sci. 18 (2002) 939.
    
    17. Willner I., Lion-Dagan M., Marx-Tibbon S., and Katz E., Bioelectrocatalyzed amperometric transduction of recorded optical signals using monolayer modified Au-electrodes. J. Am. Chem. Soc. 117(1995)6581.
    
    18. Willner I., Katz E., Willner B., Electrical contact of redox enzyme layers associated with electrodes: Routes to amperometric biosensors. Electroanalysis, 9 (1997) 965.
    
    19. Kharitonov A. B., layats M., Lichtenstein A., Katz E., and Willner I., Enzyme monolayer-functionalized field-effect transistors for biosensor applications. [J]. Sens. Actuators B, 70 (2000) 222.
    
    20. Stankovitch M. T., Schopfer L. M, Massey V. J., J. Biol. Chem. 253 (1978) 4971.
    
    21. Solomon E.I., Sundaram U.M., Machonkin T.E., Multicopper Oxidases and Oxygenases. Chem. Rev. 96(1996)2563.
    
    22. Rao J. R., Richter G. Von Sturm F., Weidlich E., Wenzel M., Metal-oxygen and glucose-oxygen cells for implantable devices. Biomed Eng., 9 (1974) 98.
    
    23. Yahiro A.T., Lee S.M., Kimble D.O., Biochim. Biophys. Acta 88 (1964) 375.
    
    24. Wang J., Li M., Shi Z., Li N., Gu Z., Direct Electrochemistry of Cytochrome c at a Glassy Carbon Electrode Modified with Single-Wall Carbon Nanotubes. Anal. Chem. 74 (2002) 1993.
    
    25. Cai C, Chen J., Direct electron transfer and bioelect"ocatalysis of hemoglobin at a carbon nanotube electrode. Anal. Biochem. 325 (2004) 285.
    
    26. Cai C, Chen J.. Direct electron transfer of glucose oxidase promoted by carbon nanotubes Anal. Biochem. 332 (2004) 75.
    
    27. Chen T., Barton S. C, Binyamin C, Gao Z., Zhang Y., Kim H. H., and Heller A.., Aminiature biofuel cell [19]. J. Am. Chem. Soc. 123 (2001) 8630
    
    28. Mano N., Mao F., Heller A., A Miniature Membrane-less Biofuel Cell Operating at +0.60 V under Physiological Conditions. ChemBiochem, 5 (2004) 1703.
    
    29. Tarasevich M.R., Bogdanovskaya V.A., Zagudaeva N.M., and Kapustin A.V., Composite materials for direct bioelectrocatalysis of hydrogen and oxygen reactions in biofuel cell. Russian Journal of Electrochemistry, 38 (2002) 335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700