费托合成催化剂反应动力学研究与反应器数学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
费托合成制备液体燃料是解决我国能源供应不足和保障能源安全的重要途径之一,费托合成反应动力学的研究和反应器的数学模拟对费托合成反应器设计放大和优化操作具有重要的指导意义。在研究蛋壳型钴基催化剂性能的基础上,建立了CO消耗速率、碳链增长概率因子α的集总动力学模型。应用所建动力学模型,建立了蛋壳型钴基催化剂的扩散—反应模型,研究了反应压力、温度、催化剂颗粒直径对催化剂颗粒内各组分浓度分布和温度分布的影响。建立了管壳型固定床反应器的一维拟均相数学模型,对合成油中试装置工况模拟,讨论合成油中试装置操作条件和反应器装置参数对反应器性能的影响。
     采用SEM、BET、XRD、TPR等表征方法对催化剂进行表征,结果表明蛋壳型催化剂为中孔结构,表面钴物种是C0304,分散度良好,适宜焙烧温度为450℃,还原程序为不同氢含量的气氛,程序升温,最高还原温度为380℃。在直流流动等温积分反应器中研究蛋壳型钴基催化剂的反应性能,结果表明提高压力、提高温度、增加H2/CO摩尔比和降低气体空速都可提高CO转化率,提高压力、降低温度、减小H2/CO摩尔比和降低气体空速都有利于重质烃生成,提高产物中C5+的选择性和Cs+的收率。并且在压力3.5MPa,温度225℃,H2与CO摩尔比应在2.0,气体空速为1000h-1的反应条件下,费托合成反应运行400h,CO和H2转化率保持在0.72、0.70,产物甲烷、低碳烃、油和蜡的产量保持8.9μg/s、6.7μg/s、25.3μg/s和42.2μg/s, C5+收率保持在171.2g/Nm3,催化剂反应稳定性良好。在反应压力1-5MPa,温度190-240℃,合成气中H2/CO摩尔比为1.40~2.50,空速为500-5000h-1的实验条件下,蛋壳型钴基催化剂的集总动力学模型为:
     通过统计检验和残差分析,CO消耗速率模型和碳链增长概率因子α模型是适宜的,计算值和实验值符合良好。利用所建集总动力学模型,分析不同反应压力、温度、H2/CO摩尔比和气体体积空速对费托合成反应结果的影响。
     建立了蛋壳型钴基颗粒催化剂的扩散-反应模型,在反应压力3MPa、温度225℃、H2/CO摩尔比2.0和空速1000h-1的条件下,采用正交配置法模拟计算催化剂颗粒内部CO、H2和CH4、C3H8、C10H22的浓度和浓度变化梯度以及颗粒内温度分布,结果表明在催化剂颗粒内活性部位外层到内层温度呈上升趋势,最大温差为2.15℃,在催化剂颗粒活性部位的内层H2/CO摩尔比增大,在颗粒活性部位的内层不利于重质烃的生成。利用颗粒催化剂的扩散-反应模型,分析反应压力、温度、催化剂颗粒直径对费托合成的反应结果的影响。反应压力提高,催化剂颗粒内CO、H2浓度有所下降,颗粒内H2/CO摩尔比增大,催化剂颗粒内温度略有升高,颗粒内最大温差为2.61℃,产物CH4、C3H8、C1oH22的浓度略有增加;反应温度的提高,催化剂颗粒内温度升高显著,颗粒内最大温差为2.64℃,CO和H2的有效扩散系数增加,颗粒内H2/CO摩尔比增大,催化剂颗粒内CH4、C3H8、C1oH22的浓度都有所增加,CH4的浓度增加尤为显著,表明温度的提高不利于重质烃的生成;催化剂颗粒的直径减小,催化剂催化剂颗粒内温度降低,颗粒内最大温差为1.46℃,颗粒内CO、H2的浓度有所增加,颗粒内H2/CO摩尔减小,可见较小颗粒的催化剂可减少反应物和产物的扩散阻力,有利于重质烃的生成。应用集总动力学模型,建立了管壳型固定床费托合成反应器的一维拟均相模型。在合成油中试试验条件下工况模拟结果为:CO、H2转化率分别为0.320、0.321,反应器出口CH4、C3H8、C10H22、C22H46的流量分别为780.16、251.77、114.14、140.80kg·h-1,产物Cs+的质量分数为80.52%,C5+的时空产率为119.36g·(L催化剂·h)-1,与中试试验值相对误差不超过5%,催化床层温度计算值与模型值绝对误差在0.23-2.30K之间,最大相对误差为1.06%,床层压力降计算值为0.629MPa与试验值0.630MPa接近,表明模型计算值与试验值吻合良好。探讨合成油中试装置操作条件和反应器装置参数对反应器性能的影响。模拟结果显示,提高反应器进口温度,催化床层温度升高,反应器出口温度变化不大,CO转化率提高,产物中C5+的质量分数有所减少,C5+的时空收率上升;提高反应器进口压力,床层温度和热点温度升高,甲烷的质量分数增大,C5+的质量分数有所减小,C5+时空产率略有增加;增大反应器进口气体空速,床层温度和热点温度下降,产物中C5+的质量分数增大,C5+的时空收率有所减少;增大反应器进口气体中H2/CO摩尔比,床层温度和热点温度降低,产物中Cs+的质量分数减低,Cs+的时空收率减小;提高管外沸腾水温度,催化床层温度、热点温度和反应器出口温度升高,产物中C5+的质量百分数明显减小,C5+的时空收率有所增大;增加反应器催化床层高度,催化床层温度降低,产物中C5+的质量分数明显增大,但C5+的时空收率有所降低;增大反应管管径,催化床层的温度和热点温度升高,产物中C5+的质量分数明显减小,C5+的时空收率增大。
The technology of producing liquid fuel with Fischer-Tropsch Synthesis is an important way to solve China's energy shortage and guarantee the energy safety. The study on reaction kinetics and mathematical simulation of reactors guides the scale-up design and optimal operation of Fischer-Tropsch Synthesis reactors. In this thesis based on the study on eggshell Co-based catalyst's performance the lumping kinetics model consisted of CO consumption rate and carbon chain growth factor a model was established. And the diffusion-reaction model in this catalyst particle was proposed and the effects of reaction pressure、temperature and the particle diameter on the components concentration profile and temperature profile in the particle was studied. Furthermore, the homogeneous one-dimensional model of the tube-shell fixed-bed reactor was established and the mode simulation of synthesis oil pilot test prove the model right, and the effects of the operating conditions and the device parameters on the reactor performance were discussed in detail.
     With the characterization methods of SEM、BET、XRD、TPR and so on, it was summarized that the surface cobalt species was Co3O4 with good dispersion, and fit calcinations temperature was 450℃. The reduction procedure was temperature programmed with different hydrogen content of the atmosphere and the maximum reduction temperature was 380℃. The experiments was conducted in the isothermal integral reactor and the effects of pressure、temperature、H2/CO and sapce velocity on the reaction results was studied. in the reaction conditions of pressure 3.5MPa, temperature 225℃, H2/CO 2.0 and space velocity l000h-1, the steady experiment was carried on for 400 hours. The results showed that CO and H2 conversation kept 0.72、0.70, the produce output of CH4、lower gydrocarbons、oil and wax kept 8.9μg/s、6.7μg/、25.3μg/s and 42.2μg/s, and C5+yield kept 171.2g/Nm3. These proved that the catalyst's performance had good stability.
     The lumping kinetics model was showed as:
     Through statistical tests and residual analysis, this model was appropriate. With the lumping kinetics model, the effects of different reaction conditions including reaction pressure, temperature, H2/CO and space velocity to the reaction result was analyzed.
     The diffusion-reaction model in the eggshell Co-based catalyst particle was established. In the condition of pressure 3MPa, temperature 225℃, H2/CO 2.0 and space velocity 1000h"1, the orthogonal collocation method was used to calculate the concentration profile and the temperature profile in the catalyst particle. The simulation results showed that the temperature rised from the outer to inner in the active sites and the maximum temperature difference was 2.15℃and the mole ratio of H2/CO increased. With this diffusion-reaction model, the effects of pressure、temperature and the particle diameter on the reaction result were given. The higher pressure and temperature caused the particle temperature rise and the concentration of CH4、C3Hg、C10H22 small increase. The smaller size catalyst particle engendered the temperature decrese and the maximum temperature difference was 1.46℃. So the small particle would reduce the diffuse resistance and pomote the formation of heavy hydrocarbons.
     The homogeneous one-dimensional model of the tube-shell fixed-bed reactor was established and the mode simulation of synthesis oil pilot test demonstrated that the outlet flow rate of CH、C3H8、C1oH22、C22H46 was 780.16、251.77、114.14、140.80kg-h-1, C5+weight pecentage was 80.52% and Cs+space time yield was 119.36g-(L·h)-1, which was agreement with the pilot test reslusts. The profiles of bed temperature and pressure from the model were consistent to the practical results. The effects of different operating conditions and device parameters to the reactor performance were studied. The increase of inlet temperature、inlet pressure、boiling water temperature and tube diameter would cause the upward migration of catalyst-bed temperature cures, the increase of CO conversion, the decrease of C5+weight selectivity and increase of C5+space time yield. The increase of inlet space velocity would cause the downward migration of temperature cures, the increase of C5+weight selectivity and increase of C5+space time yield. The increase of H2/CO would cause the downward migration of temperature cures, the decrease of C5+weight selectivity and C5+space time yield. The increase of the catalyst-bed height would cause the downward migration of temperature cures, the increase of C5+weight selectivity and the decrease of C5+space time yield. The increase of would cause the upward migration of temperature cures, the decrease of C5+weight selectivity and the increase of C5+space time yield.
引文
[1]应卫勇,曹发海,房鼎业.碳一化工主要产品生产技术[M].北京:化学工业出版社,2004[2]钱伯章.天然气制合成油介绍.天然气工业[J].2002,22(4):18-26[3]钱伯章,朱建芳.天然气合成油发展现状和趋势[J].化工技术与开发.2007,(4):41-45[4]徐谦,左承基.利用费托合成制取液体燃料的研究进展[J].能源技术.2008,29(4):212-217
    [5]Flesich T H, Sills R A, Briscoe M D.2002-Emergence of the gas-to-liquids industry:a review of global GTL development [J]. Journal of Natural Gas Chemistry, 2002,11,1-14
    [6]相宏伟,钟炳.天然气制取液体燃料工艺技术进展[J].化学进展.1999,11(4):385-393
    [7]周敬来.F-T合成技术的开发现状与展望[J].煤化工与合成燃料信息.1986,(4):33-36
    [8]Sie S T. Process development and scale up case history of the development of Fischer-Tropsch synthesis process [J]. Reviews in Chemical Engineering,1998,14(2): 109-157
    [9]Wender I. Reaction of synthesis gas [J]. Fuel Processing Technology,1996,48: 189-297
    [10]方德巍等.新一代煤转化及煤化工的发展和展望[J].煤化工.2002,(6):3-7
    [11]Davy. Process technology gas-to-liquids (GTL) [J]. Hydrocarbon Processing,2002, 81(5):105-123
    [12]Schulz H, Claeys M. Reaction of a-Olefins of different chain length added during Fischer-Tropsch synthesis on a cobalt catalyst in a slurry reaction [J]. Applied Catalysis A:General,1999,186:71-90
    [13]韩维屏.催化化学导论[M].北京:科学出版社,2003
    [14]张碧江.煤基合成液体燃料[M].太原:山西科学技术出版社,1994
    [15]马文平等.费托合成反应机理研究进展[J].内蒙古工业大学学报.1999,18(2):121-127
    [16]Hindermann J P, Hutchings G J, Kiennemann A. Mechanistic aspects of the formation of hydrocarbon and alcohols from CO hydrogenation [J]. Catalysis Reviews, Science and Engineering,1993,35(1):110-127
    [17]Madon R J, Iglesia E. The importance of olefin re-adsorption and hydrogencarbon monoxide reactant ratio for hydrocarbon chain growth on ruthenium catalysts [J]. Journal of Catalysis,1993,139(2):576-590
    [18]Nijs H H, Jacobs P A. New evidence for the mechanism of the Fischer-Tropsch synthesis of Hydrocarbons. Journal of Catalysis,1980,66(2):401-411
    [19]McCandish L E. On the mechanism of carbon-carbon bond formation in the CO hydrogenation reaction [J]. Journal of Catalysis,1983,83(3):362-370
    [20]Rofer-Depoorter C K. A comprehensive mechanism for the Fischer-Tropsch synthesis [J]. Chemical Reviews,1981,81(5):447-474
    [21]Anderson R B. The Fischer-Tropsch Synthesis [M]. New York:Academic Press,1984
    [22]OBrien R J, XuLG, Spicer R L, Davis B H. Activation study of precipitated iron Fischer-Tropsch catalysts [J]. Energy & Fuels,1996,10:921-926
    [23]陈开东,范以宁,颜其洁.Fe2O3/ZrO2催化剂的结构及F-T反应催化性能的研究[J].分子催化.1995,9(5):397-400
    [24]Iglesia E. Design, systhesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts [J]. Applied Catalysis A:General,1997,161(1-2):59-78
    [25]代小平,余长春,沈师孔.助剂Ce02对Co/A1203催化剂上F-T合成反应性能的影响[J].催化学报.2000,21(2):161-164
    [26]张峻岭,任杰,陈建刚等。锰助剂对F-T合成Co/Al2O3催化剂反应性能的影响[J].物理化学学报.2002,18(3):260-263
    [27]张峻岭,赵红霞,陈建刚等.锆改性钴基费托合成催化剂催化性能的研究[J].催化学报.2002,23(6):530-534
    [28]李强,沈师孔.Co-CeO2/SiO2催化剂上的费托反应性能[J].催化学报.2002,23(6):513-516
    [29]赵红霞,朱柘权,陈建刚等.浸渍溶液pH值对Co/SiO2催化剂催化F-T合成反应的影响[J].催化学报,2004,25(4):289-292
    [30]李强,代小平,徐继鹏等.铈助剂对Co/SiO2催化剂上费托合成反应性能的影响[J].催化学报.2001,22(5):469-474
    [31]Zennaro R, Tagliabue M, Martholomew C H. Kinetic of Fischer-Tropsch synthesis on titania-supported cobalt [J]. Catalysis Today,2000,58:309-319
    [32]Yates I C, Satterfield C N. Intrinsic of the Fischer-Tropsch synthesis on cobalt catalysis [J]. Energy & Fuels,1991,5:167-173
    [33]Wojciechowski B W. the kinetics of the Fischer Tropsch synthesis [J]. Catalysis Reviews, Science and Engineering,1988,30:629-702
    [34]Zimmerman W H, Burker D B. Reaction kinetics over iron catalysts used for the Fischer Tropsch synthesis [J]. The Canidian Journal of Chemical Engineering,1990,
    68:292-301
    [35]Dry M E. Advances in Fischer-Tropsch chemistry [J]. Industrial & Engineering Chemistry Product Reserch Development,1976,15:282-286
    [36]Shen W J, Zhou J 1, Zhang B J. Kinetics of the Fischer Tropsch over precipitated iron catalyst [J]. Journal of Natural Gas Chemistry,1994,4:385-400
    [37]Whiters H P, Eleizer K F, Mitchell J W. Slurry-phase Fischer-Tropsch synthesis and kinetics studies over supported cobalt carbonyl derived catalysts [J]. Industrial & Engineering Chemistry Reserch,1990,29:1807-1814
    [38]Deckwer W D, Kokuun R, Sanders E. Kinetics studies of Fischer Tropsch synthesis on suspended Fe/K catalyst [J]. Industrial and Engineering Chemistry Process Design and Development,1986,25:643-649
    [39]Atwood H E, Bennett C O. Kinetics of the Fischer-Tropsch reaction over iron [J]. Industrial and Engineering Chemistry Process Design and Development,1979,18: 163-170
    [40]Huff G A, Satterfield C N. Some kinetics design consideration in the Fischer-Tropsch synthesis on a reduced fused-magnetite catalyst [J]. Industrial and Engineering Chemistry Process Design and Development,1984,23:851-854
    [41]Schulz H, Beck K, Erich E. Kinetics of Fischer-Tropsch selectivity [J]. Fuel Process Technology,1988,18:293-304
    [42]Dixit R S, Tavlarides L L. kinetics of the Fischer-Tropsch synthesis [J]. Industrial and Engineering Chemistry Process Design and Development,1983,22:1-9
    [43]刘昭铁,李永旺,周敬来等.温度敏感型铁基催化剂上F-T合成本征动力学[J].化工学报.1995,46(2):137-143
    [44]张荣乐,李国辉,周敬来等.工业催化剂F-T合成动力学考察[J].天然气化工.1999,24(5):1-4
    [45]Lox E S, Gilbert F. Froment. Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst.1. Experimental Procedure and Results [J]. Industrial & Engineering Chemistry Research,1993,32:61-70
    [46]Lox E S, Gilbert F. Froment. Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst.2.kinetic modeling [J]. Industrial & Engineering Chemistry Research,1993,32:71-78
    [47]Schulz H, Claeys M. Kinetic modeling of Fischer-Tropsch product distributions [J]. Applied Catalysis A:General,1999,186:91-107
    [48]马文平,李永旺,赵玉龙等.工业Fe-Cu-K催化剂上费托合成反应动力学(Ⅰ)基于机理的动力学模型[J].化工学报.1999,10(2):159-166
    [49]马文平,李永旺,赵玉龙等.工业Fe-Cu-K催化剂上费托合成反应动力学(Ⅱ) 模型筛选与参数估值[J].化工学报.1999,50(2):167-173
    [50]吉媛媛,相宏伟,李永旺等.超细粒子Fe-Mn工业催化剂F-T合成集总动力学(Ⅰ)反应机理与动力学模型描述[J].化工学报.2005,56(6):1020-1025
    [51]吉媛媛,相宏伟,李永旺等.超细粒子Fe-Mn工业催化剂F-T合成集总动力学(Ⅱ)参数估算与模型筛选[J].化工学报.2005,56(6):1026-1030
    [52]李晨,曹发海,应卫勇等.Zr02改性Co-Ru-ZrO2/γ-Al2O3催化剂F-T合成的本征动力学[J].华东理工大学学报.2006,32(11):1253-1257
    [53]滕波涛,常杰,万海军等.F-T合成校正综合动力学模型[J].催化学报.2007,28(8):687-695
    [54]华新雷,王立刚,徐勇华等.利用高通量技术研究钴基费托催化剂的宏观动力学[J].催化学报.2009,30(8):740-747
    [55]Krishna R. Problems and pitfulls in the use of the fick formulation for intraparticle diffusion [J]. Chemical Engineering Science,1993,48(5):845-861
    [56]Reddy K V, Murty C V S. A methodlogy for the a priori selection of catalyst particle models [J]. Industrial & Engineering Chemistry Research,1995,34(2):468-473
    [57]Feng C, Steward W E. Practical models for isothermal diffusion and flow of gases in porous solids [J]. Industrial and Engineering Chemistry Fundamentals,1973,12(2): 143-147
    [58]Wakao N, Smith J M. Diffusion in Catalyst Pellets [J]. Chemical Engineering Science, 1962,27(2):825
    [59]Zimmerman W H, Rossin J A, Burkur D B. Effect of particle size on the activity of fused iron Fischer-Tropsch catalyst [J]. Industrial & Engineering Chemistry Research, 1989,28:406-413
    [60]Iglesia E J, Soled S L, Baumgarter J E, et al. Synthesis and catalystic properties of eggshell cobalt catalyst for Fischer-Tropshcer synthesis [J]. Journal of Catalysis,1995, 153:108-122
    [61]Madon R J, Iglesia E J. Hydrogen and CO intrapellet diffusion effects in Ruthenium catalyzed hydrocarbon synthesis [J]. Journal of Catalysis,1994,149:428-437
    [62]Zhang X D, Davis B. Concentration profiles of Fischer-Tropsch products in catalyst pores [J]. American Chemical Society, Division of Petroleum Chemistry Prepr,2000, 45(2):214-217
    [63]李永旺,王建国,孙予罕等.单颗粒催化剂设计分析(Ⅰ)基于Dirac活性分布分析方法的模型和理论[J].化工学报.1994,45(6):686-691
    [64]李永旺,王建国,孙予罕等.单颗粒催化剂设计分析(Ⅱ)基于Dirac活性分布分析方法的数值结果[J].化工学报.1994,45(6):691-697
    [65]王逸凝,李永旺,徐元源等.基于详细机理动力学的费-托合成单颗粒催化剂模拟
    Ⅰ.颗粒模型化与数值计算方法[J].催化学报.2001,22(1):35-39
    [66]王逸凝,李永旺,徐元源等.基于详细机理动力学的费-托合成单颗粒催化剂模拟Ⅱ.扩散反应行为及活性分布[J].催化学报.2001,22(1):40-46
    [67]Post M F M, Hoog A C, Minderhouse J K, et al. Diffusion limitations in Fischer-Tropsch catalyst [J]. AICHE J,1989,35(7):1107-1114
    [68]Tsai F N, Huang S H, Lin H M, et al. solubility of methane, ethane and carbon dioxide in a mobile Fischer-Tropsch wax and in n-paraffins[J]. Chemical Engineering Journal, 1988, (38):41-46
    [69]王逸凝,李永旺,赵玉龙等.费托合成气体在液相石蜡中溶解度关联的研究[J].天然气化工.1999,24(4):48-53
    [70]陈建刚,相宏伟,李永旺等.费托法合成液体燃料关键技术研究进展[J].化工学报.2003,54(4):516-523
    [71]石勇.费托合成反应器的进展[J].化工技术与开发.2008,37(5):32-38
    [72]Shen W J. reaction engineering of FT synthesis over precipitated Fe/Cu/K catalyst [C]. Dissertation ICC AS. Taiyuan,1994
    [73]Bub G, Baerns M, Busseneier B, et al. Prediction of the performance of catalytic fixed bed reactors for Fischer-Tropsch synthesis [J]. Chemical Engineering Science,1980, 35:348-355
    [74]Jess A, Popp R, Hedden K. Fishcher-Tropsch-synthesis with nitrogen-rich syngas fundamentals and reactor design [J]. Applied Catalysis A:General,1999,18:321-342
    [75]Maretto C, Krishna R. Modeling of a bubble column slurry reactor for Fischer-Tropsch synthesis [J]. Catalyssis Today,1999,52:279-289
    [76]Satterfield C N, George A H. Effects of mass transfer on Fischer-Tropsch synthesis in slurry reactors [J]. Chemical Engineering Science,1980,35:195-202
    [77]Decker W D, Kokum R, Sanders E, et al. Kinetic studies of Fischer-Tropsch synthesis on suspended Fe/K catalyst-rate inhibition by CO2 and H2O [J]. Industrial and Engineering Chemistry Process Design and Development,1986,26(3):643-649
    [78]Sukur B D. Some comments on models for Fischer-Tropsch reaction on slurry bubble column reactors [J]. Chemical Engineering Science,1983,38(3):441-446
    [79]Kuo J C W. Slurry Fischer-Tropsch/mobile two stages process for conversion of synthesis gas to high quality transportation fules [P]. Fuel Report, DOE Contract, 1985, DE-AC22-83 pc 60019
    [80]Stern D, Bell A T, Heinemann H. A theoretical model for the performance of bubble-column reactors used for Fisher-Tropsch [J]. Chemical Engineering Science, 1985,40(9):1665-1677
    [81]Sanders E, Deckwer W D. Fischer-Tropsch synthesis in slurry phase:effect of CO2 inhibtion on performance of bubble column slurry reactors [J]. The Canadian Journal of Chemical Engineering,1987,65(1):119-126
    [82]Vermeer, D J, Krishna R. Hydrodynamics and mass transfer in bubble columns operating in the churn-turbulent regime [J]. Industrial and Engineering Chemistry Process Design and Development,1991,20:475-504
    [83]Van der Laan G P, Beenackers A A C M, Krishna R. Multicomponent reaction engineering model for Fe-catalyzed Fischer-Tropsch synthesis in commercial scale slurry Bubble column reactors [J]. Chemical Engineering Science,1999,54: 5013-5029
    [84]赵玉龙.鼓泡浆态反应器的数学模型[J].化学工程.1991,19(5):13-21
    [85]朱同贵,赵玉龙,张碧江.浆态FT法宏观反应动力学的参数估计[J].化学反应工程与工艺.1993,9(2):136-141
    [86]吕朝晖,赵玉龙,赵亮富等.浆态FT合成反应器的数学模拟[J].化学反应工程与工艺.2000,16(3):210-217
    [87]黎煜明,唐光前.熔铁催化剂F-T合成列管式固定床反应器设计[J].化工设计通讯.1992,8(4):2-7
    [88]刘全生,张志新,周敬来等.固定床F-T合成反应器的稳态和动态行为[J].石油化工高等学校学报.1999,12(1):14-21
    [89]Wang Y, Fan W, Liu Y, et al. Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors [J]. Chemical Engineering Process,2008,47(2):222-228
    [90]Cai J, Li T, Sun Q W, et al. Simulation of gas-solid fluidized bed reactor for F-T synthesis [J]. Journal of Coal Science and Engineering,2009,15(4):420-426
    [91]王钰,刘颖,徐元源等.鼓泡浆态床反应器中传质对费托合成的影响[J].化学反应工程与工艺.2007,23(6):499-504
    [92]王钰,刘颖,樊伟等.费托合成鼓泡浆态床反应器气体添加模拟研究[J].化学工程.2008,36(5):40-43
    [93]Berge van P J, Everson R. Cobalt as an alternative Fischer-Tropsch catalyst to iron for the production of middle distillates [J]. Studies in Surface Science and Catalysis,1997, 107:207-212
    [94]Hammache S, Goodwin J G, Oukaci R. Passivation of a Co-Ru/γ-Al2O3 Fischer-Tropsch catalyst [J]. Catalysis Today,2002,71:361-367
    [95]Dutta P, Elbashir N O, Manivannan A, et al. Characterization of Fischer-Tropsch cobalt-based catalytic systems (CO/SiO2 and Co/Al2O3) by X-ray diffraction and magnetic [J]. Catalysis Letter,2004,98 (4):203-210
    [96]李晨,马向东,应卫勇等.Co-Ru/γ-Al2O3催化剂的费托合成性能[J].石油化工.2008,37(1):34-40 [97] Peluso E, Galarraga C, de Lasa H. Eggshell catalyst in Fishcer-Tropsch instrinsic reaction kinetics [J]. Chemical Engineering Science,2001,56:1239-1245[98]肖翠微,史士东,王乃继等.费托合成蛋壳型钴基催化剂的制备及表征[J].煤炭科学技术.2007,35(6):69-71[99]朱何俊,丁云杰,吕元等.一种用于制备石脑油和柴油的壳层催化剂及制法和应用[P].中国,专利公开号CN10131833A,2008
    [100]Shporo E S, Tkachenko 0 P, Belyastkii V N, et al. On the interpreting F-T product distribution data [J]. Kinetics and Catalysis,1990,31:832-848
    [101]Brunauer S, Deming L S, Deming W E, et al. On a theory of the van der Waals adsorption of gases [J]. Journal of the American Chemical Society,1940,62: 1723-1738
    [102]Li X, He J, Ma M, et al. One-step synthesis of H-βzeolite-enwrapped Co/Al2O3 Fischer-Tropsch catalyst with high spatial selectivity [J]. Journal of Catalysis,2009, 265 (1):26-34
    [103]Li J L, Zhan X D, Zhang Y Q, et al. Fischer-Tropsch synthesis: effect of water on the deactivation of Pt-promoted Co/Al2O3 catalysts [J]. Applied Catalysis A: General, 2002,228(2):203-212
    [104]Ernst B, Libs S, Chaumette P, et al. Preparation and charectcrization of Fischcr Tropsch active Co/SiO2 catalysts [J]. Applied Catalysis A: General,1999,186(1): 145-168
    [105]高海燕,样文书,相宏伟等.pH值对Co/SiO2催化剂还原性能的影响[J].催化学报.2002,23(5):430-436
    [106]Jacbs G, Das T K, Zhang Y Q, et al. Fischer-Tropsch synthesis:support, loading, and promoter effects on the reducibility of cobalt catalyst [J]. Applied Catalysis A:General, 2002,233(2):263-281
    [107]Donnelly T J, Scatterfield C N. Product distributions of the Fischer-Tropsch synthesis on precipitated iron catalysts [J]. Applied Catalysis A:General,1989,52(1):93-114
    [108]马文平,丁云杰,李永旺等.托合成反应动力学研究的回顾与展望[J].天然气化工.2001,26(3):42-46
    [109]Yates I C, Satterfield C N. Intrinsic of the Fischer-Tropsch synthesis on cobalt catalysis [J]. Energy & Fuels,1991,5:167-173
    [110]Ponec V, Barnevald W A. The role of chemisorption in Fischer-Tropsch synthesis [J]. Industrial and Engineering Chemistry Process Design and Development,1979,18: 268-271
    [111]Van der Laan G P, Beenackers A A C M. Intrinsic kinetics of the gas-solid Fischer-Tropsch and water gas shift reactions over a precipitated iron catalyst [J]. Applied Catalysis A:General,2000,193(3):39-53
    [112]W.凯姆主编.黄仲涛等译.C1化学中的催化[M].北京:化学工业出版社,1989
    [113]朱炳辰.化学反应工程[M].北京:化学工业出版社,1993
    [114]王逸凝.固定床费托合成的模型化与模拟研究—动力学、单颗粒和反应器[D].中国科学院山西煤炭化学研究所,2001
    [115]Reid R C, Prausnitz J M, Poling B E. The properities of gases and liquids [M]. New York:McGraw-Hill,1987
    [116]李良超,吴廷华,胡德聪等.链烷的物理化学性质及其分子参数的相关性研究[J].有机化学,2003,23(10):1125-1130
    [117]Smith D R. Thermal conductivity of fibrous glass board by guarded hot plates and heat flow meter an international round-robin [J]. International Journal of Thermophysics.1997,18(6):1557-1573
    [118]Wu J M, Zhang H T, Ying W Y, et al. Thermal conductivity of cobalt-based catalyst for Fischer-Tropsch synthesis [J].International Journal of Thermophysics,2010(In Press)
    [119]李涛,徐懋生,朱炳辰等.不规则形状A301氨合成催化剂内扩散有效因子[J].化工学报.2002,53(12):1260-1264
    [120]房鼎业,姚佩芳,朱炳辰.甲醇生产技术及进展[M].上海:华东化工学院出版社,1990,266-268
    [121]应卫勇,房鼎业,朱炳辰等.大型甲醇合成反应器模拟设计[J].华东理工大学学报(自然科学版).2000,25(1):5-9
    [122]张琦,应卫勇,房鼎业.管壳型固定床二甲醚合成反应器的数学模拟[J].华东理工大学学报(自然科学版).2004,30(2):125-130
    [123]Dixon A G Heat transfer in fixed beds at very low (<4) tube-to-particle diameter ratio[J]. Industrial and Engineering Chemistry Research,1997,36:3053-3064
    [124]Ergun S. Fluid flow through packed columns [J]. Chemical Engineering Progress, 1952,48:89-94
    [125]马沛生等.石油化工基础数据手册-续编[M].北京:化学工业出版社,1993
    [126]卢焕章等.石油化工基础数据手册[M].北京:化学工业出版社,1982
    [127]刘光启等.化学化工物性数据手册(有机卷)[M].北京:化学工业出版社,2002
    [128]王基铭等.世界石油与石油化工数据手册[M].北京:世界石油与石油化工数据,2005
    [129]朱炳辰.化学反应工程(第三版)[M].北京:化学工业出版社,2001
    [130]陈敏恒等.化工原理(第二版)[M].北京:化学工业出版社,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700