基于虚拟样机的六自由度隧道管片拼装机设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构机是现代最先进的隧道施工机械,管片拼装机是其关键部件之一。本文在对国内外所设计管片拼装机深入研究基础上,基于现代产品设计平台设计了一台结构紧凑、性能优良的管片自动拼装机,主要完成了其机械结构部分的设计。所设计拼装机采用串并联机构实现管片拼装的六个自由度运动,其中三个初调定位运动由三自由度串联机构实现,三个微调精确定位运动则由一个三转动自由度并联机构实现;利用三维造型软件SolidWorks建立了所设计拼装机的详细实体装配模型,干涉检查满足布置尺寸的要求;结构设计完成后,在虚拟样机软件ADAMS中,进行了系统的运动学和动力学仿真,验证了所设计机械结构能够满足所需要的六自由度运动要求,得到系统各连接处的受力和力矩,并对微调机构进行了参数化设计;利用有限元分析软件ANSYS对关键零部件在危险工况下的应力状态进行了数值模拟,根据模拟结果检验修改设计,基于平台反复此过程,最终完成了设计。本文针对微调运动的特点引入一三转动自由度并联机构作为微调机构的结构骨架,成功地解决了微调机构设计时运动自由度与系统刚度不能兼顾的矛盾,并基于ADAMS软件对其反解和正解进行了研究,为下一步控制系统设计做好了检验平台。
     所设计管片自动拼装机机械机构与国内开发的同类产品相比,具有更优良的性能。本文所用产品设计思想和方法对类似研究也有一定借鉴意义。
Shield machine is a kind of Tunnel Boring Machine, Which is large high-tech engineering construction equipment devoted to the excavation of the underground passage. It has many advantages,such as digging fast, quality, security, economic, environmental protection and low labor intensity. Its advantages are overwhelming,comparing to the traditional method. Tt will occupy the dominant position of construction method for underground tunnel. With the arrival of the new millennium,Its demand will continue to increase.Currently,the core technologies of the TBM have been grasped by some foreign manufacturers such as Mitsubishi Heavy Industries and Kawasaki Heavy Industries,Herrenknecht,Robbins.Therefore, the development of integration technology of shield machine in China will not only bring great benefit to the development of the manufacturing sector, but also save a lot of foreign exchange for country. Shield construction operations include excavation, boring, supporting and deslagging . Supporting operation is one of its key operations, which bears the rock pressure and hydraulic load to ensure that the design size of the tunnel. Supporting operations including two step. The first step usually use the prefabricating segment. The segments which is poured with concrete are assembled into the design circle by segment erector.While the machine is working, the cyllindrical jacks act on the former segment circle. The shield will stop excavate when it advances one segment width.Then the next segment circle will be assembled. Therefore, the quality and efficiency of the segment circle assembling will be directly impact on the quality and progress of the whole project.So we need the excellent segment erector. Currently, many domestic enterprises and universities have developed their own segment erector. They have different performance characteristics. However, they have prevailing shortcomings that they can’t well achieve the six degree-of-freedom movement.Some need supporting facilities to emendate the segment location.Some require more complicated operation to repeatedly adjust. All these affect the efficiency and quality of segment assembling.
     In this paper, I design a new six degree-of-freedom segment erector using modern design theory and method which Based on a triune new products design platform including design, simulation and components intensity verification.The design platform consists of SolidWorks ,ADAMS and ANSYS.
     Now the main content and research methods are described below:
     1. First , I researched modern design theory and method and consider Virtual Prototyping design technology is a practical and effective design method. Systematic introduced the theories of the large-scale commercial finiteelement software ANSYS.Detailed introduced the calculating thinking and problem solving steps of the finite element method; systematic introduced themulti-body system dynamic of ADAMS.Detailed introduced the establishment of the Lagrange equation of the multi-body dynamic and the various ways to solve it.
     2. Carried through a In-depth study of the processes of segment assembling.Detailed studied of the six degree-of-freedom movement. Namely, translation, rotation, movements, pitch, roll and deflection. Identified the functional requirements and project design parameters of segment erector. Brought forward my design project on the basis of comparative analysis of the domestic and foreign segment erector design ideas. Implementating bodies for 6-DOF campaign were identified respectively. Layout of the erector used symmetrical double-arm. Translation telescopic action of two cylinder achieves the translational motion. The gear transmission achieves rotary movement. Translation telescopic action of two cylinder achieves the stretching motion. The characteristics of fine-tuning motion are high precision of motion control and small range. A new 3-DOF parallel manipulator with 3-rotation is synthesized and investigated.The parallel manipulator constituted the skeleton of Fine-tuning structure. To gain a better understanding of the mechanisms, a methodology for analyzing the kinematics of such manipulators is presented.Studied the Locking agencies. Identified the locking means.It is maked up of an locking cylinder and five short columns.
     3. Performed a preliminary calculation for the the main design Size. Completed The detailed design of mechanical structures based on the CAD platform SolidWorks. And then built up its assembly model of virtual prototyping. Proformed interference inspection and Identified the design system size meet the requirements of layout.
     4. Researched the data transfer between CAD and CAE software.Transfered the solid Model to the mechanical system dynamic analysis software ADAMS. Simplified the model reasonably and added various constraints. Specified the motion function for the system based on the the step time planning of the technology for segment circle assemblied.That is the simulation prototype. Performed the kinematics and dynamics simulation on the prototype under variety work conditions. The results of simulation show that the design has six degrees of freedom movement capacity. At the same time we can get the subjects of various components and the dynamic characteristics of the drive components, provide boundary conditions for strength checking and provide a basis for the power system design.
     5. Performed a special simulation study on fine-tuning mechanism.
     Discussed the kinematics analysis based on Virtual Prototyping and perform parametric design for it.Provided test Platform for control system design.
     6. Studied the dangerous condition of the system. FEM analysis of key components of the segment erector were carried out under the boundary conditions from dynamic simulation based on finite element analysis software ANSYS.Provided the basis for design modify.
     The innovation point of this design is that satisfactorily resolve the structural design of the fine-tuning of the segment erector by using a 3-DOF parallel manipulator. Fine-tuning institutions have relatively small layout space. More relatively actions that it must be completed, and it endures large relatively load. Using ordinary institutions in series will get complicated structure. The strength of the component and stiffnessof the system is difficult to guarantee. Problem is resolved by using this parallel institutions.
     This new segment erector possesses compact structure, reasonable layout and good dynamic performance. It can act complete six degree-of-freedom movement and can achieve a high degree of automation.It has better capability compared with domestic similar product.
引文
[1] 钱七虎,李朝甫,傅德明.全断面掘进机在中国地下工程中的应用现状及前景展望[J].建筑机械,2002,(5):28~35.
    [2] 水利部科技推广中心.全断面岩石掘进机[M].北京:石油工业出版社,2005.
    [3] 尹旅超等编译.日本隧道盾构新技术[M].武汉:华中理工大学出版社,1999.200~210.
    [4] 候学渊等编.软土工程施工新技术[M].合肥:安徽科学技术出版社,1997.
    [5] 周文波.盾构法施工技术及应用[M].北京:中国建筑工业出版社,2004.
    [6] 唐经世.隧道与地下工程机械-掘进机[M].北京:中国铁道出版社,1998.
    [7] 陈丹.盾构技术的发展与应用[J].现代城市轨道交通,2002,(5).
    [8] 张照煌.全断面岩石掘进机及其刀具破岩理论[M].北京:中国铁道出版社,2003.
    [9] 刘铁雄译.日本隧道标准规范(盾构篇)及解释[M].成都:西南交通大学出版社,1988.
    [10] 王国强,常绿等.现代设计技术[M].北京:化学工业出版社,2006.
    [11] 刘启山等编.岩石隧道掘进机(TBM)施工及工程实例[M].北京:中国铁道出版社,2004.
    [12] 张闵庆,葛道远等.带有压力式全密封油箱的衬砌拼装机[P].中国:CN 1448616A,2003.
    [13] 石元奇,王鹤林等.具有六个自由度的盾构管片拼装机[P].中国:CN 1837578A,2006.
    [14] 魏要强.TBM 后配套管片自动拼装机设计及研究[D].武汉:武汉大学,2005.
    [15] 王挺. 基于虚拟样机技术的钢丝帘布裁断机开发研究[D].武汉:华中科技大学,2006.
    [16] 刘静. 挖掘机器人虚拟样机建模技术及其应用研究[D].杭州:浙江大学,2005.
    [17] 郭金平.基于虚拟样机技术的多功能开沟机液压系统建模与仿真[D].西安:西安建筑科技大学,2007.
    [18] 石博强等.ADAMS 基础与工程范例教程[M].北京:中国铁道出版社,2007.
    [19] 周长城,胡仁喜等.ANSYS11.0 基础与典型范例[M].北京:电子工业出版社,2007.
    [20] 王勤.盾构法隧道管片设计与拼装技术[J].西部探矿工程,2006,(11):130~132.
    [21] 管会生等.盾构管片拼装机设计研究[J].矿山机械,2005,33(03):15~16.
    [22] 丁书福.盾构管片拼装机电液控制系统研究[D].杭州:浙江大学,2005.
    [23] 石端伟等. GP6500 型管片安装机虚拟样机设计与研究[J].中国机械工程,2006,17 (13):1341~1345.
    [24] 翟一欣等.复兴东路隧道盾构管片拼装机及拼装辅助设备的研制[A]. 2005上海国际隧道工程研讨会文集[C]. 大直径隧道与城市轨道交通工程技术——2005 上海国际隧道工程研讨会.上海.
    [25] 郭希芹.土压平衡式盾构机管片拼装系统故障排除[J].建筑机械,2006,(23) :100~102
    [26] 李自强.北京地铁盾构管片拼装技术[J].市政技术,2005,23(增).
    [27] 肖石林.TBM 盾构工程管片的设计及有限元分析[D].武汉:武汉大学,2004.
    [28] 陈志刚等.TBM 盾构工程管片装配时的有限元分析[J].机械设计与制造,2006,(3):68~69.
    [29] 孙富春等译.机器人学导沦——分析、系统及应用[M].北京:电子工业出版社,2004.
    [30] 余顺年,马履中,陈扼西,郭宗和.三自由度并联机构位置和运动分析及仿真[J].农业机械学报,2005,38(8):97—100.
    [31] 杨廷力.机器人机构拓扑结构学[M ].北京:机械工业出版社, 2004.
    [32] 赵志杰,金先龙,曹源. 盾构隧道通用管片虚拟拼装系统[J]. 计算机辅助设计与图形学学报,2007,19(9):1196~1199.
    [33] 韩亚丽.南京地铁盾构隧道管片拼装技术[J].隧道建设,2003,23(2):16~17.
    [34] 李启炎主编.SolidWorks2003 三维设计教程[M].北京:机械工业出版社,2003.
    [35] Keys, John. Vacuum Segment erector Speeds Mechanised Wedge Block Tunnelling[J]. Tunnels and Tunnelling,1986,18(4):41~43.
    [36] Kato Takaaki,Murano Kenichi.Development of segment automatic building intelligent system[J]. Nkk Technical Review,1991,(61):52~58.
    [37] Tanaka Yasuo. Automatic segment assembly robot for shield tunneling machine[J]. Microcomputers in Civil Engineering,1995,10(5):325~337.
    [38] Martin David. Japanese robot can erect tunnel segments[J].Tunnels and Tunnelling, 1990,22(7):54~55
    [39] Comolli R,. Cuaz F. Channel expressway: Twin-bored Road Tunnels under The English Channel[J]. Tunnelling Underground Space Technol,1986,1(3).
    [40] Craig Rodney. Performance and persistence - Meeting the specification[J]. World Tunnelling,2003,16(n Supplement):16~18.
    [41] Wallis Shani. Dublin - Coping with complex conditions[J]. Tunnels and Tunnelling International,2002,34(10):22~25.
    [42] Shaheen, Ahmed A.; Fayek, Aminah Robinson. A methodology for modeling TBM advance rates in soft ground soils in simulation models[A]. Proceedings, Annual Conference - Canadian Society for Civil Engineering. Toronto, ON, Canada,2005.
    [43] Lu, Yang; Ma, Ji-Ming. TBM in the future of China[J]. Marine Georesources and Geotechnology,2004,22(3):185~193.
    [44] Fu, Bingjun; Xu, Shulin; Grasso, P. Construction of underground hydraulicstructures and TBM technology in China[J]. Yanshilixue Yu Gongcheng Xuebao,2003,22(9):1521~1526.
    [45] Herrenknecht, Martin; Bappler, Karin. Recent developments in the TBM industry - New and innovative technologies[A]. 17th Rapid Excavation and Tunneling Conference-2005 Proceedings[C]. Proceedings - Rapid Excavation and Tunneling Conference. Seattle, WA, United States:2005.679~688.
    [46] Grandori, Carlo. Tunnelling and Underground Construction in the Twenty-first Century[J]. Tunnelling Underground Space Technol, 1987, 2(2): 143~ 145.
    [47] Anon. The Austrian tunnelling contract[J]. Tunnels and Tunnelling International,2005,37(12) :37~39.
    [48] 马香峰.机器人机构学[M].北京:机械工业出版社,1991.
    [49] 戴填国.3-RRR 并联机构虚拟样机设计与仿真[D].南京:南京理工大学,2005.
    [50] 陶建峰,朱野,闫述等.重载三自由度旋转并联平台的位置逆解及其分析[J].上海交通大学学报,2007,41(4):546—550.
    [51] 王继英. 基于 SolidWorks 软件的虚拟样机技术及其应用[J].同煤科技,2007,(2).
    [52] 姚英姿,邓召义,莫云辉. 齿轮的精确建模及其接触应力有限元分析[J].现代机械,2004,(6):16~17.
    [53] 吴宗泽主编.机械设计师手册[M].北京:机械工业出版社,2002.
    [54] 李盛年.并联调姿机构运动学、动力学分析及虚拟样机技术研究[D].绵阳:中国工程物理研究院,2004.
    [55] Sugiyama Masahiko;Kamimura Joji.Elector Device and Tunnel Excavator[P].Japan: JP20060138523 20060518,2007.
    [56] Sakuma Yuji. Erector Device for Assembling Segment[P].JAPAN: JP20060017586 20060126 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700