盾构推进系统的分区建模与性能评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构是现代化的隧道施工装备,而推进系统是盾构的关键组成部分,主要承担着整个盾构的顶进任务。推进系统应能完成盾构的转弯、曲线行进、姿态控制、纠偏以及同步运动等,对推进系统进行分区控制是实现盾构有效推进作业的核心手段。随着经济的快速发展和城市化进程的加快,我国对盾构的需求急剧增加,对掌握盾构的设计理论的要求也越来越迫切。本文对盾构推进系统的分区、运行机理开展研究,取得如下成果:
     1、盾构推进系统等效机构模型建立
     盾构推进系统由为数众多的油缸沿环向均匀布置,每个推进缸前端铰接,后端通过顶靴顶在衬砌上。将顶靴与管片的接触部位等效为球副连接,将一条油缸支链等效为一条SPS支链,整个推进系统等效为具有多条SPS支链的并联机构。推进系统被分区后,根据力和力矩合成原理,一个分区的所有油缸可以简化为一条SPS支链,进而可以建立推进系统的分区等效机构模型。
     2、推进系统油缸分区的分区型式提出
     盾构推进系统所需克服的主要载荷是盾体与土体的摩擦力,其摩擦力的分布左右对称、上下非对称,为使推进系统有较好的土体顺应性,推进系统的油缸分区布置应与推进载荷分布相匹配。分区应遵循左右对称的原则,依照该种原则,本文提出了8种可能的分区型式,以供设计者选型。
     3、推进系统性能分析
     基于推进系统的等效机构模型,利用并联机构的反解方法,对推进系统进行了位置分析、速度分析、静力平衡分析。在求解静力平衡方程时,又提出了处于奇异位形邻域的驱动冗余并联机构静力求解的分割求解算法。
     4、推进系统分区性能评价指标建立
     推进油缸直接作用在管片上,管片往往承受到较大的推进反力,推进力的分布不均将使管片受力不均,会影响管片的拼装效果,使管片脱臼,甚至断裂。基于此,提出了推进力均匀性评价指标,用来对推进系统油缸分区进行性能评价。
The Shield Machine is the modern equipment for tunnel construction, and the thrust system is the key part of the shield machine. The thrust system mainly undertakes the advances of the shield machine. The thrust system should be able to turn around, advance along a designed line, control the pose, correct error, move synchronizedly, and so on. The grouping-oriented control of the thrust system is the core method to advance the shield machine. With the rapid growing of the economy and urbanization, the quantity demand of the shield machine will greatly increase, thus mastering the design theory of the shield machine is exigent. This paper researches the mechanisms of grouping and advancing of the shield machine, the content is listed in the following:
     1. Equivalent mechanism modeling for the thrust system of the shield machine.
     The thrust system consists of many hydraulic cylinders distributed in the circular direction. Each cylinder is articulated to the fore part of the shield machine in one end, with another end pressing against the segment by a shoe. The part that the shoe touches the segment is regarded as a spherical pair, and then each cylinder with its two ends is regarded as one SPS leg. So the whole system can be equivalent to a parallel mechanism with many SPS legs. When the thrust hydraulic cylinders are divided into several groups, one group can be simplified to one SPS leg in terms of the composition principle of the forces and the moments. Therefore, the equivalent mechanism of the grouped thrust system can be modeled.
     2. Proposition of the grouping types for the thrust system.
     The main load acting on the thrust system is the friction between the shield and the earth. The distribution of the friction is bilateral symmetry. The distribution of the groups of the thrust hydraulic cylinders should comply with the distribution of the load, so that the thrust system will have better compliance. So the groups should also be bilateral symmetry. According to this principle, 8 possible grouping types are proposed for the designer to choose, and the equivalent models of different grouping types are modeled.
     3. Performance analysis for the thrust system.
     Based on the equivalent mechanism, position, velocity, statics are analyzed by the inverse method of the parallel mechanism. For sovling the equation of balanced statics when the redundant mechanism is singular, a dividing method is proposed.
     4. Evaluting indicator for performance analysis of different grouping models.
     Thrust hydraulic cylinders touches directly to the segments, the reaction force of the thrust force acts on the segments. Since the reaction force is always very large, the uniformity of the reaction force will affect the segments. Bad uniformity of the reaction force will dislocate the segments, even destroy the segments. Based on this, the evaluating indicator of the uniformity of the thrust force is proposed to evaluate different grouping models.
引文
[1]周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2009.
    [2]杨华勇,龚国芳.盾构掘进机及其液压技术的应用[J].液压气动与密封, 2004(1): 27-29.
    [3]胡国良,刘乐平,龚国芳,杨华勇.盾构推进系统同步控制仿真与试验研究[J].中国机械工程,2008,19(10):1197-1201.
    [4]施虎,龚国芳,杨华勇,苏健行.隧道盾构掘进机推进系统设计[J] .工程机械,2008,39(7):44-47.
    [5]刘东亮.电液比例技术在盾构推进系统中的应用[J].建筑机械,2005(8):93—95.
    [6]张智.对我国当前盾构施工技术存在问题的探讨[J].建筑与装饰,2008(1):172-173.
    [7]林德.,尤,俞国义.全断面硬岩隧道掘进机的发展与经验(待续) [J].水利电力施工机械. 1994(1):8-13.
    [8]宋克志,王梦恕.盾构的选型及国产化问题[J]..烟台师范学院学报:自然科学版. 2002(20):69-73.
    [9]崔国华,王国强,何恩光,张英爽.盾构机的研究现状及发展前景[J].矿山机械. 2006(34):24-27.
    [10]李国英.盾构技术及其在日本的应用与发展[J].水利水电施工. 1996(3):38-41.
    [11]乐贵平.土压平衡式盾构机简介[J].建筑机械:上半月. 2000(6):24-25.
    [12]钱晓刚,高峰,郭为忠.六自由度盾构管片拼装机机构设计[J].机械设计与研究. 2008(24):17-20.
    [13]施虎,龚国芳,杨华勇,苏健行.隧道盾构掘进机推进系统设计[J].工程机械. 2008(39):44-47.
    [14]徐前卫.盾构施工参数的地层适应性模型试验及其理论研究[D].上海:同济大学博士论文,2006.
    [15] A.-L. Pellet-Beaucour,R. Kastner. Experimental and analytical study of friction forces during microtunneling operations[J]. Tunnelling and Underground Space Technology. 2002(17):83-97.
    [16] H. Mashimo,T.Ishimura. Evaluation of the load on shield tunnel lining in gravel[J]. Tunnelling and Underground Space Technology. 2003(18):233–241.
    [17] Mitsutaka Sugimoto, Aphichat Sramoon, M.ASCE. Theoretical Model of Shield Behavior During Excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering / February. 2002.
    [18]徐前卫,朱合华,廖少明,丁文其.砂土地层中全断面盾构掘进机顶进推力和刀盘切削扭矩的模型试验研究[J].现代隧道技术. 2008年增刊:178~182.
    [19]苏健行,龚国芳,杨华勇.土压平衡盾构掘进总推力的计算与试验研究[J].工程机械. 2008(39):13-16.
    [20]彭天好,杨华勇,付新.盾构掘进机动力系统的节能研究[J].矿山机械. 2000(28): 21-22
    [21]施虎,龚国芳,杨华勇.采用液压变压器的盾构推进节能系统设计[J].工程机械. 2009(40):36-39.
    [22]孙东亮.电液比例技术在盾构推进系统中的应用[J].建筑机械:上半月. 2005年8期:93-95.
    [23]于睿坤,李万莉,周奇才,陆文.盾构机推进系统分析与建模[J].建筑机械化. 2007(02):43-45.
    [24]庄欠伟,龚国芳,杨华勇.盾构机推进系统分析液压与气动[J]. 2004年4期:11-13.
    [25]施虎,龚国芳,杨华勇,陈明旭.盾构掘进机推进速度控制性能分析[J]. 2008, 36(8):77-79.
    [26]郑志敏.盾构推进系统设计[J].隧道建设. 2006, 26(4): 84-87.
    [27]龚国芳,胡国良,杨华勇.盾构推进系统同步协调控制实验分析[J].液压与气动. 2006(7):56-58.
    [28]孙继亮.盾构液压推进系统的控制仿真研究[D].安徽:安徽理工大学, 2006.
    [29]庄欠伟,龚国芳,杨华勇,周华.盾构液压推进系统结构设计[J].工程机械. 2005,36(3):47-50.
    [30] [施虎,龚国芳,杨华勇,胡国良.盾构掘进机推进系统非线性PID控制仿真分析[J].机床与液压. 2008, 36(7):76-79.
    [31]胡国良,龚国芳,杨华勇,徐兵.盾构模拟试验平台液压推进系统设计[J].机床与液压. 2005(2):92-94,131.
    [32]沈斌.盾构一号软件的数控推进系统[J].工程机械. 2006(5):5-7.
    [33]周如林,龚国芳,施虎,朱北斗,刘峰.盾构推进系统液压缸的同步协调控制[J].工程设计学报. 2009, 16(6):457-461.
    [34]徐莉萍,侯昆洲,任德志,张成.基于RBF神经网络PID的双护盾推进系统仿真分析[J].矿山机械. 2010, 38(3):4-8.
    [35]杨扬,龚国芳,胡国良,杨华勇.模拟盾构推进液压系统的设计和研究[J].机床与液压. 2006(11):90-98.
    [36]杨扬,龚国芳,胡国良,杨华勇.模拟盾构机推进液压系统泵站集成设计[J].机床与液压. 2006(4):118-120.
    [37]杨扬,龚国芳,胡国良,杨华勇.模拟盾构试验平台推进电液控制系统的研究[J].液压与气动. 2006(1):3-5.
    [38]胡国良,龚国芳,杨华勇.基于压力流量复合控制的盾构推进液压系统[J].机械工程学报. 2006, 42(6):124-127.
    [39]胡国良.盾构推进液压系统同步协调控制仿真分析[J].机床与液压. 2007, 25(4):142-144.
    [40]李强,曾德顺.盾构千斤顶推力变化对地面变形的影响[J].地下空间. 2002, 22(1):12-15.
    [41]王国义.盾构机推进系统及故障排除[J].山西建筑. 2008,34(2):338-340.
    [42]朱合华,徐前卫,廖少明,于宁,傅德明,吴祥松.土压平衡盾构施工的顶进推力模型试验研究[J].岩土力学. 2007, 28(8):1587-1594.
    [43] M. Ramoni , G. Anagnostou. Thrust force requirements for TBMs in squeezing ground[J]. Tunnelling and Underground Space Technology. 2010(25):433-455.
    [44] Mitsutaka Sugimoto, Aphichat Sramoon, M.ASCE. Theoretical Model of Shield Behavior During Excavation I: Theory[J]. Journal of Geotechnical and Geoenvironmental Engineering. 2002.2:138-155.
    [45] Aphichat Sramoon, M.ASCE, Mitsutaka Sugimoto, Kouji Kayukawa. Theoretical Model of Shield Behavior During Excavation II: Application[J]. 2002.2:156-165.
    [46] Yang Huayong, Shi Hu, Gong Guofang, Hu Guoliang. Electro-hydraulic proportional control of thrust system for shield tunneling machine[J]. Automation in Construction. 2009(18):950-956.
    [47]吕建中,庄欠伟.Ф14.87m盾构液压推进系统分析[J].筑路机械与施工机械化. 2008, 25(7):75-77.
    [48]王胜勇,庄欠伟.Ф9.04m泥水气平衡盾构推进液压系统设计[J].中国市政工程. 2008(2):71-72.
    [49]鲁志军.土压平衡式盾构机推进系统及其故障排除[J].建筑机械:上半月. 2004(5):90-91.
    [50] Yang H Y, Shi H, Gong G F, et al. Earth pressure balance control for EPB shield. Sci China Ser E-Tech Sci, 2009, 52(10): 2840 2848, doi:10.1007/s11431-009-0245-7
    [51]房猛.盾构推进机构电液控制系统的研究[D].杭州:浙江大学硕士论文,2003.
    [52]丁晟,余海东,王皓.冗余驱动盾构机推进系统机液耦合模型及载荷特性分析[J].中国机械工程:2010, 21(3):258-262.
    [53]凌京蕾,樊丽珍.盾构技术及其在广州地铁的应用[J].广重科技, 2000, (1): 25 32.
    [54] Hu Shi, Guofang Gong and Huayong Yang, Pressure and Speed Control of Electro-hydraulic Drive for Shield Tunneling Machine[C]// International Conference on Advanced Intelligent Mechatronics, July 2-5, 2008, Xi'an, China, New Jersey: IEEE Press, 2008: 314-317.
    [55]唐经世,高国安,何大比.盾构机械的研究(3)[J].筑路机械与施工机械化,1990,7(2):32-36.
    [56]邹慧君,高峰.现代机构学进展[M].北京:高等教育出版社,2007.
    [57]程士富.标准差计算和应用中的一个问题[J].内蒙古统计. 2007(6):60.
    [58]潘胜玲,刘学军.基于标准差的地形三维表面模型建立方法[J].计算机应用研究. 2007,24(11):295-300.
    [59] H. Mroueh *, I. Shahrour. A simplified 3D model for tunnel construction using tunnel boring machines[J]. Tunnelling and Underground Space Technology. 2008(23):38-45.
    [60] G. Swoboda and A. Abu-Krisha. Three-Dimensional Numerical Modeling for TBM Tunneling in Consolidated Clay[J]. Tunnelling and Underground Space Technology, 1999, Vol. 14, No. 3, pp. 327--333,
    [61] C. B. M. Blom, E. J. van der Horst, P. S. Jovanovic. Three-dimensional Structural Analyses of the Shield-Driven "Green Heart" Tunnel of the High-Speed Line South[J]. Tunnelling and Underground Space Technology, 1999, Vol. 14, No. 2, pp. 217-224
    [62] Zichang Shangguan. Shouju Li. Qiang Zhang. Wei Sun. Numerical Simulation of Earth Pressure Distribution in Head Chamber of Shield Machine with Nonlinear Finite Element Method[J]. EJGE. 2009,Vol. 14:1-10.
    [63] Thomas, Kasper, G. Meschke. A numerical study of the effect of soil and grout material properties and cover depth in shield tunneling[J]. Computers and Geotechnics. 2006, 33(4-5), 234-247.
    [64] H.H. Mo, J.S. Chen. Study on inner force and dislocation of segments caused by shield machine attitude[J]. Tunnelling and Underground Space Technology. 2008(23):281 291.
    [65] Yu Ying, Xu Baofu, Xue Fei. Research on Mathematical Modeling of Thrust Force of Earth Pressure Balanced Shield Machine[C]//Proceedings of the 2007 International Conference on Advances in Construction Machinery and Vehicle Engineering. 2008, Shanghai, China: 275-278.
    [66]钱晓刚.盾构掘进设备中的管片拼装机机构设计方法[D].上海:上海交通大学,2008.
    [67]刘鹏亮.盾构掘进机推进系统的关键技术研究[D].上海:上海交通大学,2008.
    [68]刘鹏亮,高峰,郭为忠.盾构铰接装置的能控性研究[J].上海交通大学学报,2009,43(1): 106-109.
    [69]黄业平.隧道掘进装备铰接与管片拼装机构设计研究[D].上海:上海交通大学,2010.
    [70] C. Radhakrishna Rao, Sujit Kumar Mitra. Generalized inverse of a matrix and its applications. Proc. Sixth Berkeley Symp. on Math. Statist. and Prob., Vol. 1 (Univ. of Calif. Press, 1972), 601-620.
    [71] R. Penrose. A generalized inverse for matrices. Proceedings of the Cambridge Philosophical Society. 1955(51): 406413.
    [72]尹钊,贾尚晖. Moore-Penrose广义逆矩阵与线性方程组的解.数学的实践与认识. 2009.5, 39(9): 239-244.
    [73]徐彬,李红. TBM辅助油缸推力下的衬砌管片受力分析.合肥工业大学学报. 2009.10, 32(10):1534-1537.
    [74]徐军.盾构管片开裂原因分析及应对措施.公路工程与运输. 2009(13):184-186.
    [75]岳鹏飞,杨有海.盾构隧道管片破裂的原因分析及预防.山西建筑. 2009.2, 35(6):307-309.
    [76]姜敦灿.盾构在推进时隧道管片产生裂缝、碎裂的原因及防治措施.隧道建设. 2009.12, 29(6):694-698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700