应用于低温冷害预报的东北玉米区域动力模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对开展东北玉米低温冷害预报的需求,作为作物模拟模型区域尺度应用的尝试,在前人有关作物模拟模型、春玉米生长发育以及东北低温冷害等方面研究成果的基础上,建立了应用于低温冷害预报的东北玉米区域动力模型。
     考虑到东北地区玉米冷害主要是由于生育期内热量不足,发育期延迟,影响生长,最终导致无法正常成熟,造成减产的特点,重点进行了玉米发育期模拟的研究。在有选择地比较了前人几种主要作物发育模型后,改进了“热量单位”法,建立了以日最高气温、日最低气温为因子的修正热量单位发育模型。利用东北地区春玉米91期次的发育期观测资料和部分田间试验资料,确定和调整了作物参数。并依据品种熟性,对模型生长发育的作物参数进行了区域化。玉米发育期利各项生物量模拟检验的结果比较理想。
     针对大多数作物模型局限于对单点试验资料的检验或区域平均状况模拟的情况,利用地统计学方法对作物模型所需的逐日气象要素进行空间插值,结合区域化的作物参数和土壤特性参数,进行了作物生长模拟模型区域化解决方案的尝试。利用东北玉米区域动力模型模拟了12站40年东北各地玉米生长发育及产量形成过程。以抽雄期延迟天数为低温冷害指标,逐年模拟了历史低温冷害年及减产情况。模拟了东北地区典型冷害年和40年气候平均的0.25°×0.25°网格点玉米生长发育过程,并应用GIS技术绘制了区域网格点模拟结果分布图。
     利用面向对象的VB6.0编程技术和模块化的设计思路编制了东北玉米区域动力模型软件系统。模型分潜在生产和水分胁迫两个水平;由发育、生长、蒸散、土壤水分平衡等几个主要模块组成;以日为时间步长进行模拟。其中作为生长控制的发育过程采用修正的热量单位发育期模型模拟。蒸散模块选择FA01998年推荐的作物参考蒸散最新模型。针对区域模拟和单点模拟的不同需要,系统建有多站点或网格点输入控制模块和由用户干预初始值的单点输入控制模块。
     主要结论有:
     · 采用抽雄期延迟的天数为冷害指标,评估冷害发生的程度非常符合历史事实。说明玉米发育模型能够较好地模拟玉米发育期和发育期对低温冷害的响应。
     · 中熟品种分布区域,模拟的大部分低温冷害年也是减产年,而晚熟品种分布区低温冷害年和减产年的相关不太理想。一方面说明模型已具有一定的模拟玉米生长量对低温冷害响应的能力,另一方面说明,还需要更多的试验数据校正晚熟品种参数,或者需要进一步完善模型。
     · 玉米区域动力模型应用于低温冷害预报,比常用的数理统计方法计算量大而复杂,但是更能针对低温对作物影响的详细过程,解释性好,应用性强,是一个正在发展的研究方向。
     · 根据气象变量的空间属性特征应用GIS技术空间插值得到格点气象数据,结合区域化的作物参数、土壤参数和管理参数,运行区域作物模型。所得到的区域模拟结果能够更好地分析作物生长发育的空间分布差异。根据所确定的冷害指标可以较好地评估和预测区域低温冷害发生的程度和范围。这种方法是作物模型升尺度应用解决方案的一个尝试。
A scaling-up maize dynamic model applying to low temperature damage prediction in EN, China was established based on studies of predecessors on crop simulation models, spring maize growth and development and low temperature damage in EN. The purpose of this research is to meet to the requirements of maize low temperature damage predictions and to try to crop simulation model scaling-up applications.
    The low temperature damage of maize in EN is referred to inadequate thermal condition during growing season, which results in development stage postponed, growth influenced as well as immaturity. Therefore, a focus of this paper is to better simulate the maize development stages. An improved heat unit development model calculated as a function of daily maximum temperature and minimum temperature was established after some selected maize development models were compared with each other. Some crop parameters were derived and readjusted using 91 cases for observed development data and some field experiments data for spring maize in EN, China, and then, the model was validated by these data. The scaling-up regional parameters were mainly determined based on cultivar maturity types. The simulated results of development stages and of dry matter for various oranges were satisfied.
    As most of crop models were limited to validate for experiments data on plot or to simulate the mean response in a given regional area, the resolution to crop growth simulation model for scaling-up application was tried, using the spatial interpolation of daily weather data by geo-statistics principles combining scaling-up crop and soil parameters. The development and growth processes were simulated for 12 stations using daily weather data for 40 years (1961~2000). The index for low temperature damage was defined by the days of tasseling postponed. The years with low temperature damage and the related reduction of yield were analyzed using the index. Using scaling-up regional crop parameters and daily weather data in grids the development and growth processes in grids with 0.25' Q.25' were simulated for the year with typical low temperature damage and for mean climate condition in 40 years, respectively, and the spatial distribution on grids for simulated outputs in the study area was drawn by GIS tools.
    The model software system was developed by object orientated VB6.0 programming technology and based on module designed thought. There are potential and water-limited production levels in the model. The model with one day step includes development, growth, evapotranspiration, soil water balance et al. modules. The development process controls the growth process. An improved heat unit development module and an update evapotranspiration equation recommended by FAO in 1998 were
    
    
    applied to the model. A development stage index calculated module, a suitable sowing day calculated module, aimed at different requirements for simulation and application an alternative control module for more stations or for grids and or for single station was added. The main conclusions in this study are as follows:
    Using the index for low temperature damage defined by the days of tasseling postponed, the degree of low temperature damage was estimated. The results are very well and are conformed by historical cases. The model of development stage well simulates maize development stages and the response of development stages to low temperature damage.
    In most of the years occurring low temperature damage the yield decreased in planting medium-maturity cultivars areas, but the relations between the year with low temperature damage and the year with low yield was not dependent so well in planting late-maturity cultivars areas. One hand, in some degree the model can basically simulate responses of maize biomass to low temperature damage; on the other hand, it means that the parameters of late-maturity cultivar should be calibrated by more experiment measured data, and that the model will be modified further.
    Compared with ordinary statistical models, the method for
引文
1.Wea.k, 焦庆明.1997.用土壤和气侯资料模拟玉米出苗模型.国外农学.杂粮作物,1997,(3):37~40
    2.安刚,马树庆.1999.模糊均生函数在东北主要产粮区春播期间气温预报中的应用.见:王春乙,郭建平,主编.农作物低温冷害综合防御技术研究.北京:气象出版社,133~137
    3.崔读昌.1998.中国农业气候学.杭州:浙江科学技术出版社,122~123
    4.丁士晟.1980.东北地区夏季低温的气候分析及其对农业生产的影响.气象学报,1980,38(3)
    5.冯定原.1988.农业气象预报和情报方法.北京:气象出版社,17~8,31~33
    6.高亮之,金之庆,黄耀等.1992.水稻栽培计算机模拟优化决策系统.北京:中国农业出版社.
    7.高素华,郭建平,张国民等.1999.低温对玉米生理过程的影响.见:王春乙,郭建平,主编.农作物低温冷害综合防御技术研究.北京:气象出版社,180~185
    8.高翔,1995.双季稻生长动态模拟模式的研究:[高翔硕士论文].北京:中国气象科学研究院,1995
    9.龚绍先.1988.粮食作物与气象.北京:北京农业大学出版社.
    10.郭焱.1999。玉米冠层的数学描述与三维重建研究.应用生态学报。10(1):39~41
    11.何维勋.1993.关于冷害和霜冻的界限问题.中国农业气象.1993,14(2)
    12.贺东详,于天铎.1995.作物生长模型PGROWEH微气象模块的实验验证.作物学报,1995,21(4):419~423
    13.姜丽霞、孙孟梅、于荣环,等.2000,黑龙江省玉米品种布局的农业气候依据.资源科学,2000,22(1):60~64
    14.李世奎.1999.中国农业灾害风险评价与对策.北京:气象出版社.3~13
    15,李秧秧,黄占斌,黄少燕,等.1999.不同土壤大气湿度组合下玉米生长及水分光合特性反应.水土保持通报,1999,19(2):23~26
    16.刘建栋,李世奎,于强,等.2002a.水分胁迫对黄淮海夏玉米农业气候资源利用的影响.Ⅰ水分胁迫对叶片生产力影响.资源科学,2002,24(1):51~54
    17.刘建栋,李世奎,于强,等.2002b.水分胁迫对黄淮海夏玉米农业气候资源利用的影响.Ⅱ水分胁迫对区域生产力影响.资源科学,2002,24(3):92~95
    18.刘建栋,周秀骥,于强.2002c.温度对夏玉米光合生产力影响的数值模拟研究.应用气象学报,2002,13(4):398~405
    19.刘玉瑛,马树庆,袭祝香.1999a.吉林省80年代以来热量资源的地理分布及作物品种布局.见:王春乙,郭建平,主编.农作物低温冷害综合防御技术研究.北京:气象出版社,90~95
    20.刘玉瑛,袭祝香,马树庆.1999b.东北地区玉米播期预报方法及应用.见:王春乙,郭建平主编.农作物低温冷害综合防御技术研究.北京:气象出版社.138~142
    21.罗新兰,戴俊英.1995,玉米生育模拟模型中天气模型的建立和功能.沈阳农业大学学报,1995,26(3):260~266
    
    
    22.罗新兰,安娟,刘新安,等.2000.东北三省玉米生育热量指标与品种熟型分布研究.沈阳农业大学学报,2000,31(4):318~323
    23.马树庆.1996.气候变化对东北区粮食产量的影响及其适应性对策.气象学报.1996.54(4):484~492
    24.毛飞,高素华,庄立伟.1999.近40年东北地区低温冷害发生规律的研究.见:王春乙,郭建平,主编.农作物低温冷害综合防御技术研究.北京:气象出版社,1999,17~25
    25.潘铁夫.1983.农作物低温冷害及其防御.北京:农业出版社
    26.潘学标.1996.COTDROW:棉花生长发育模拟模型.棉花学报,1996,8(4):180~188
    27.裘国旺,王馥棠.1998.气候变化对我国江南双季稻生产可能影响的数值模拟研究.应用气象学报,1998,9(2)
    28.尚宗波,杨继武,殷红,等.1999a.玉米生育综合动力模拟研究Ⅰ.土壤水分影响子模式.中国农业气象,1999,20(1):1~5
    29.尚宗波,杨继武,殷红,等.1999b.玉米生育综合动力模拟研究Ⅱ.玉米发育子模式.中国农业气象,1999,20(1)
    30.尚宗波,杨继武,殷红,等.2000a.玉米生长生理生态学模拟模型.植物学报,2000,42(2):184~194
    31.尚宗波.2000b.全球气候变化对沈阳地区春玉米生长的可能影响.植物学报.42(3):300~305
    32.宋立泉.1997.低温对玉米生长发育的影响.玉米科学.5(3):58~60
    33.宋帅,周林,王汉杰.2000.黄淮海平原林网保护区夏玉米生长过程的数值模拟.应用生态学报,2000,11(4):528~531
    34.孙孟梅,姜丽霞,于荣环等.1998.玉米生育期热量指标及其不同品种栽培北界的研究.中国农业气象,1998,19(4):8~12
    35.孙玉亭,孙孟梅.1999.温度对玉米生长和发育综合影响的评价模型.资源科学,1999,21(1):63~70
    36.孙玉亭,赵宏凯.1980.玉米冷害及冷害指标鉴定.农业气象,1980,1
    37.佟屏亚.2000.中国玉米科技史.北京:中国农业科技出版社,13~17
    38.王春乙,毛飞.1999.东北地区低温冷害的分布特征.见:王春乙,郭建平,主编.农作物低温冷害综合防御技术研究.北京:气象出版社.9~15
    39.王馥棠.1990.春小麦黄叶率发生规律及其模拟模式的研究.应用气象学报,1990(3):305~311
    40.王馥棠.1991.农业气象预报概论.北京:农业出版社.238~266
    41.王石立.1991.春小麦生长简化模拟模式的研究.应用气象学报,1991(3):293~299
    42.王书裕.从作物品种安排看热量资源的合理利用.自然资源,1980,3
    43.王书裕.作物冷害的研究.北京:气象出版社,1995,20~22
    44.吴金栋,王馥棠.2000.气候异常对东北地区玉米生长影响评估系统的研制.农业工程学报,2000(增刊)
    45.袭祝香,马树庆,刘玉瑛,等.1999.利用环流因子预测东北地区春季玉米的始播期.见:王春乙,郭建平,主编.农作物低温冷害综合防御技术研究.北京:气象出版社,96~99
    
    
    46.杨继武.1982.东北地区主要作物冷害研究.沈阳农学院学报,1982(1)
    47.杨京平.1998.土壤水分过多对春玉米生长发育影响的模拟模型研究.浙江农业大学学报,1998,24(3):227~232
    48.杨青华,高尔明,马新明,等.2000.不同土壤类型玉米根系生长发育动态研究.华北农学报.15(3):88~93
    49.姚运生,王秉昆,戴俊英.1997.玉米生长的动力模式研究.玉米科学.5(3):54~57
    50.于强,刘建栋.1998.玉米株型与冠层光合作用的数学模拟研究.作物学报,1998,24(1):7~15
    51.张隶达.1998.玉米籽粒灌浆与积温关系的非线性动态模型.中国农业大学学报.1998,3(1):45~49
    52.张养才,何维勋,李世奎.1991.中国农业气象灾害概论.北京:气象出版社.
    53.张银锁.2001.基于作物生长模拟模型的夏玉米可持续生产管理系统分析:[张银锁博士论文].北京:中国农业大学,2001
    54.张宇.1991.冬小麦生长发育的模拟模型.南京气象学院学报,1991,(1):113~118
    55.郑国清.高亮之.2000.玉米发育期动态模拟模型.江苏农业学报.2000,16(1):15~21.
    56.郑庆林,末青丽.1999.东北地区春季(4-5月)播种期温度长期数值预报模式及试验.见:王春乙,郭建平,主编.农作物低温冷害综合防御技术研究.北京:气象出版社,125~132
    57.郑维忠 倪允琪.1999.热带和中纬太平洋海温异常对东北夏季低温冷害影响的诊断分析研究.见:王春乙,郭建平,主编.农作物低温冷害综合防御技术研究.北京:气象出版社,33~39
    58.周立宏,刘新安.1999.东北夏季低温冷害的环流特征及预测的研究.见:王春乙,郭建平,主编.农作物低温冷害综合防御技术研究.北京:气象出版社,143~147
    59. Baker, D.M., J.R. Lambert and J.M.Mckinion. 1983.GOSSYM: A simulation of cotton growth and yield. South Carolina Agriculture Experiment Station.
    60. Bakker, E.J., 1992. Rainfall and risk in India's agriculture. An ex-ante evaluation of rainfall insurance. Groningen theses in economics,management & organization. Wolters-Noordhoff, Groningen. 180 pp.
    61. Berkhout, J.A.A., J. Huijgen, S.Azzali, et al., 1988. MARS. definition study. Results of the preparatory phase. Main report. Report 17.SC-DLO, Wageningen. pp 111
    62. Chipanshi, A.C., E.A. Ripley and R.G. Lawford. 1998.Large-scale simulation of wheat yields in a semi-arid environment using a crop-growth model. Agriculture Systems,59:1~10
    63. Daoun, Frederic Antoinf, 1993.Modelling tillage effects on soil physical properties and maize (ZEA MAYS, L) development and growth. Michigan State University dissertation.
    64. Diepen, C.A. van, H, van Keulen, F.W.T .Penning de Vries, et al., 1987. Simulated variability of wheat and rice in current weather conditional and in future weather when ambient CO_2 has doubled. Simulation reports CABO-TT 14.CABO-DLO, WAU-TPE, Wageningen. pp40
    65. Driessen, P.M. and n.t. Konijn. 1992. Land-use System Analysis. Wageningen Agricultural University. Wageningen, The Netherlands
    66. Enciso-Medina, Juan, 1991.An infiltration model for managing furrow irrigation with limited water
    
    
    supplies. The University of Nebraska-Lincoln. Dissertation.
    67. Global Change and Terrestrial Ecosystems (GCTE), 1994. GCTE Focus 3 Wheat Network:: 1993 model and experimental meta data. Report No.2. GCTE, Canberra, Australia.
    68. Goudriaan, J., 1977. Crop micrometeorology: A simulation study. Centre for Agricultural Publishing and Documentation. The Netherlands
    69. Goudriaan, J., 1986. A simple and fast numerical method for the computation of daily totals of crop photosynthesis. Agriculture and Forest Meteorology 38:249-254
    70. Goudriaan, J., 1988. The bare bones of leaf angle distribution in radiation models for canopy photosynthesis and exchange. Agriculture and Forest Meteorology 43:155-169
    71. Hansen, J.W. and J.W. Jones, 2000. Scaling-up crop models for climate prediction application, pp 77-117 In: M.V.K., Sivakumar, Eds., Climate Prediction and Agriculture. Proceedings of the STRAT/WMO International Workshop held in Geneva, Switzerland, 27-29 September 1999. Washington DC, USA: International START Secretariat.
    72. Heemst, H.D.J van, 1986. The distribution of dry matter during growth of a potato crop. Potato Research 29:55-66
    73. Hoogenboom, G, G.A. Georgiev, and A.D. Hartkamp, et al., 2001. Linking crop simulation models and geographic information systems for regional yield predictions, pp 217-228. In: Proceedings NIAES-STA International Workshop 2001 Crop Monitoring and Prediction at Regional Scales held in Tsukuba, Japan. 19-21 February 2001. National Institute of Agro-Environmental Sciences. Science and Technology Agency of Japan the Japan International Science and Technology Exchange Center.
    74. Hoogenboom, G.2000. Contribution of Agrometeorology to the simulation of crop production and its application. Agriculture and Forest Meteorology 103(1-2) :137-157
    75. I. supit, A.A. Hooijer, C.A. van Diepen, 1994. System Description the WOFOST 6. 0 Crop Simulation Model Implemented in CGMS. Luxembourg: Office for Official Publications of the European Communities.
    76. Jagtap, S.S. and J.W. Jones, 2001. Scaling-up crop models for regional yield and production estimation: A case-study of soybean production in the state of Georgia, USA pp 171-186. In: Proceedings NIAES-STA International Workshop 2001 Crop Monitoring and Prediction at Regional Scales held in Tsukuba, Japan. 19-21 February 2001. National Institute of Agro-Environmental Sciences. Science and Technology Agency of Japan the Japan International Science and Technology Exchange Center.
    77. Jones, C. A. and J. R. Kiniry, et al., 1987. CERES-Maize: A simulation model of maize growth and development. TEXAS A. & M. Univ. press. Temple, TX.
    78. Jones, C. A., P.T. Dyke, J.R. Wilkens et al. 1991. EPIC: An Operational Model for Evolution of Agricultural Sustainability, Agricultural Systems, 37:341 ~ 350
    79. Keulen, H. van, and N.G. Seligman, 1987. Simulation of water use, nitrogen nutrition and growth of a spring wheat crop. Simulation Monographs. Wageningen: Pudoc.pp310
    
    
    80. Keulen, H. van, J. Wolf (Eds.), 1986. Modelling of agriculture production: weather, soils and crops. Simulation Monographs, Pudoc, Wageningen, The Netherlands, pp 487
    81. Keulen, H. van, N.G. Sligman and R.W.Benjamin, 1981. Simulation of water use and herbage growth in arid regions.-Re-evaluation and further development of the model 'Arid Crop'. Agricultural systems 6:159-193.
    82. Keulen, H.van and N.G. Sligman, 1987. Simlation of water use, nitrogen nutrition and growth of a spring wheat crop. Simulation Monographs. Pudoc, Wageningen, The Netherlands, pp 310.
    83. Keulen, H.van, 1975. Simulation of water use and herbage growth in arid regions. Simulation Monographs. Pudoc, Wageningen, The Netherlands. pp184
    84. Kropff, M.J., H.H. van Laar and K.F.M. ten Berge (Eds.) 1993. ORYZAI A basic model for irrigated lowland rice production. IRRI, Los Banos, the Philippines.
    85. Laar, H.H. van, J. Goudriaan and H. van Keulen (Eds.), 1992. Simulation of crop growth for potential and water-limited production situation (as applied to spring wheat).Simulation reports CABO-TT 27. CABO-DLO,WAU-TPE, Wageningen.72 pp
    86. Meinke H., G. L. Hammer, and R. Selvaraju. 2000. Using seasonal climate forecasts in agriculture-the Australian experience. In: M.V.K. Sivakumar Eds., Climate Prediction and Agriculture. Proceedings of the START/WMO International Workshop held in Geneva, Switzerland, 27-29 September 1999. Washington, DC, USA, International START Secretariat. 195-214
    87. Moulin, S., M. Launay. and M. Gu e rif, 2001. The crop growth monitoring at a regional scale based on the combination of remote sensing and process-based models, pp 187-196. In: Proceedings NIAES-STA International Workshop 2001 Crop Monitoring and Prediction at Regional Scales held in Tsukuba, Japan. 19-21 February 2001. National Institute of Agro-Environmental Sciences. Science and Technology Agency of Japan the Japan International Science and Technology Exchange Center.
    88. Ouda, Samiha Abou EL-Fetouh Hamed, 1998. Sink-pulled simulation of the maize crop. IOWA STATE UNIVERSITY dissertation.
    89. Pang XuePing, 1995. Field and computer modeling studies on soil hydrology in the central sunds of Minnesota: Percolation Probabilities, Risk Assessment of nitrate leaching. And percolation losses from drip VS. Sprinkler irrigation. University of Minnesota. Dissertation.
    90. Penning de Vries, F.T.W., D.M. Jensen and H.F.M. ten Berge et al, 1989. Simulation of eco-physiological process of growth in several annual crops. Simulation Monographs. Wageningen: Pudoc.pp271
    91. Ray, Sisir Kumar, 1997. Decision support systems for spatially varied management of irrigation and nitrogen with center pivots. NORTH DAKOTA STATE UNIVERSITY. Dissertation.
    92. Ritchie, J.1986. The CERES-Maize Model. In: C.A. Jones and J.R. Kiniry, Eds. CERES-Maize: A simulation model of maize growth and development. Texas A$M University Press. College Station. Texas
    93. Richard, G. A., S.P. Luis, R. Dirk, et al.1998. Crop evapotranspiration, FAO irrigation and drainage
    
    
    paper 56. FAO of the United Nations, Rome, Italy. 24-25
    94. Roman Paoli, Elvin O., 1997. Maize performance in Kansas: A CRESE-Maize simulation. KANSAS STATE UNIVERSITY. Dissertation.
    95. Sinclair, T.R. and S. Muchow, 1995. Agronomic models, effects of nitrogen supply on maize yield I: Modeling Physiological Responses. Agronomy Journal 87:632-641
    96. Spitters, C. J. T., H. van Keulen, and D. W. G. van Kraalingen, 1989. A simple and universal crop growth simulator: SUCROS87. In: R. Rabbinge, S. A. Ward &H. H. van Laar eds. Simulation and systems management in crop protection, Simulation Monographs, Wageningen: Pudoc pp147-181
    97. Spitters, C.J.T., H.A.J.M. Toussaint, & J. Goudriaan, 1986. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part I. Agriculture and Forest Meteorology 38:217-229
    98. Spitters, C.T.T., 1986. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part II. Agriculture and Forest Meteorology.38:231-242
    99. WAU, manual SWAN5. 1998. Wageningen Agriculture University, The Netherlands
    100. Wolf, J., 1993. Effects of climate change on wheat and maize production potential in the EC. In: Kenny, G.J., P. A. Harrison and M.L. Parry, Eds. The effects of climate change on agriculture and horticultural potential in Europe. Research report 2. Enviromental change unit, University of Oxford. pp93-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700