混联式混合动力客车能量优化管理策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型的城市公共交通工具,混合动力客车由于具备良好的燃油经济性和排放性日益受到各方的关注。串联混合动力系统适合低速工况,并联混合动力系统则具备较好的高速运行性能,混联式混合动力客车综合了两者的优势,因此它适合复杂多变的运行工况,如城市公交工况。在目前国内公交客车多采用手动变速箱和不掌握重型自动变速箱技术的前提下,本文设计了一种采用手动变速箱作为串-并联结构切换装置的变速箱后耦混联式混合动力系统,该手动变速箱和自动变速箱具有可替换性。
     目前该混联式混合动力系统被成功应用于SWB6116HEV混合动力客车。以SWB6116HEV混合动力客车为研究对象,本文在动力系统结构和尺寸参数设计、能量管理策略设计和优化、以及车辆性能验证等方面展开了研究。
     数字仿真技术是评估车辆性能、分析车辆特性和进行参数优化的有效方法。在以前的研究基础上,文章中建立了混联式混合动力汽车的各个零部件(包括动力系统和传动系统)以及整车数学模型,在Matlab/Simulink软件环境下形成了一个通用的混联式混合动力汽车仿真软件。该软件被用来进行能量管理策略评估和控制参数优化。
     能量管理策略是混合动力汽车节能技术的关键,它是混合动力控制系统的核心。文章提出一种基于发动机工作优化的多模式逻辑规则能量管理策略,以期在满足车辆驾驶性能的前提下降低车辆在城市公交工况下的油耗和污染物排放。利用有限状态机理论在Matlab/Stateflow软件环境下实现了整车能量管理策略,并在开发的仿真程序上进行了性能验证。在该能量管理策略中,引入串联充电门限和当前发动机“起-停”状态等控制变量,以满足维持混联系统荷电状态的需要、减少发动机“起-停”次数。
     能量管理控制参数的优化是一个影响车辆性能的重要因素。以在维持电池荷电状态前提下降低燃油消耗为优化目标,采用罚函数的方法构造优化目标函数,利用基于数学交叉和变异的实值编码遗传优化算法,对SWB6116HEV的能量管理参数进行了优化。
     基于安装了自动变速系统的混联动力系统架构,文章理论研究了混联式混合动力客车的模糊规则能量管理策略。该能量管理策略包含了两个串行联接的模糊控制器,分别被用来决策车辆的串-并联结构状态和控制并联结构下的转矩分配。仿真结果证明了该方法的可行性。
     文章最后介绍了混联式混合动力客车整车CAN控制网络的结构原理和整车控制器的开发方法。作者设计了一种基于CAN网络通讯的工况测试辅助&采集系统,该系统帮助驾驶员驾驶车辆跟踪参考工况车速,采集车辆燃油经济性和动力性能数据。测试结果表明SWB6116HEV满足驾驶性能要求,与传统车辆相比平均油耗降低了21.3%。
As a new type of public transportation tool, the hybrid electric bus attracts people’s attention since its better fuel economy and emission performances. Series powertrain has good performances at low speed, and the parallel behaviors are desired at high speed. The series-parallel hybrid bus inherits the advantages from both systems. It is therefore suitable for variable driving cycle conditions, such as transit bus city driving cycle. Presently, much more transit bus adopts manual transmission and the duty-heavy automatic mechanical transmission (AMT) technology is also not mastered by the native manufactures. Based on such a background, this paper presents a post-transmission coupled series-parallel configurations switchable hybrid electric powertrain in which the manual transmission is employed. This manual transmission is replaceable with the automatic transmission.
     Now, this system is successfully applied in SWB6116HEV hybrid electric bus. Based on this hybrid bus, the paper put the research emphasis on powertrain configuration & size design, the energy management strategy (EMS) design as well as its optimization, and the experimental validation.
     Numerical simulation is an effective approach to evaluate vehicle performances, analyze vehicle characteristics and optimize control parameters. Based on the previous researches, this paper builds up the numerical models of each components, including powertrain and transmission systems, and vehicle dynamics. A general simulation program for series-parallel hybrid electric vehicles is coded in Matlab/Simulink software environment. This model is used to evaluate the EMS performances and the optimization of the control parameters.
     EMS is a critical technology of fuel economy improvement for HEVs. It is essential in control system of the hybrid powertrain. This paper presents an engine-operation-optimization based multi-modes control strategy in order to reduce the fuel consumption as well as the emission pollution while satisfy the drive abilities. Based on the finite state machine theory, the EMS is coded in software Matlab/ Stateflow and validated in the simulation program described above. As to this EMS, some control parameters, such as the battery charge state threshold for series charge operation and the current engine“on-off”state, etc., are innovationally introduced to satisfy the requirements on charge sustaining and reduction on engine“on-off”operations.
     Energy management control parameter optimization is an important issue which affects the performances of vehicle in depth. With the goal to reduce the fuel consumption while sustaining the battery charge state, an objective function using the penalty function approach has been built up. The control parameters of SWB6116HEV were optimized via the real-valued genetic algorithm in which the mathematical crossover and mutation operators are employed.
     On the basis of the prototype with AMT, this paper theoretically studies the optimal fuzzy logic based EMS for the series-parallel hybrid electric vehicles. Two fuzzy controllers in series are included in the EMS to decide the configuration and distribute the torques in parallel configuration, respectively. The simulation results identify its feasibility.
     Last, the configuration of the CAN-based control network and the development approach of the VCU for the series-parallel hybrid bus are introduced in this paper. Moreover, a CAN-based Assist & Collection System is developed to help the driver to drive a vehicle tracking the referenced speed profile during a driving cycle test, and to collect the data about fuel consumption and drive abilities. The road test results identify that the required drive abilities are satisfied and the fuel consumption is reduced by 21.3% on average compared with that of a conventional baseline bus.
引文
[1] Hermance D, Sasaki S, Hybrid electric vehicle take to the streets [J]. IEEE Spectrum 1998, 35 (11):48-52.
    [2] Granovskii M, Dincer I, Rosen M A. Economic and environmental comparison of conventional, hybrid, electric and hydrogen fuel cell vehicles [J]. Journal of Power Sources 2006, 159(2): 1186-1193.
    [3] Turton H, Moura F. Vehicle-to-grid systems for sustainable development: An integrated energy analysis [J]. Technological Forecasting & Social Change 2008, 75:1091-1108.
    [4] Fontaras G, Pistikopoulos P, Samaras Z. Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over real-world simulation driving cycles [J]. Atmospheric Environment 2008, 42:4023-4035.
    [5] Fontaras G, Samaras Z. A quantitative analysis of the European automakers’voluntary commitment to reduce CO2 emissions from new passenger cars based on independent experimental data [J]. Energy Policy 2007, 35 (4):2239-2248.
    [6] Kashima S. The present condition and the future of EV sharing in Japan [C]. In: IEEE Vehicle Electronics Conference 2001, 9:149.
    [7] William Vincent, The Potential for Bus Rapid Transit to Reduce Transportation-Related CO2 Emissions [J], Journal of Public Transportation 2006, BRT Special Edition: 219-237.
    [8] Chan C C. The state of the art of electric and hybrid vehicles [J]. Proceeding of IEEE 2002, 90(2):1-29.
    [9] KingG R D, Haefner K B, Salasoo L, Koecl R A. Hybrid electric transit bus pollutes less, conserves fuel [J], IEEE Spectrum 1995, 7:26-31.
    [10] Moore T C, Lovins A B. Vehicle design strategies to meet and exceed PNGV goals [C], SAE Paper No. 951906.
    [11] Duong T Q. USABC and PNGV test procedures [J]. Journal of Power Sources 2000, 89:244–248.
    [12] Iwai N. Analysis on fuel economy and advanced systems of hybrid vehicles [J]. JSAE Review 1999, 20:3-11.
    [13] ?hman M. Government policy and environmental innovation in the automobile sector in Japan [R].Report from Lund Univerdity, January 2004.
    [14] Turner L, Larsen R, Duoba M, et al. Modeling future automobiles: the role of industry and government [J]. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 2000, 19( 4):1036-1044.
    [15] Katra?nik T. Hybridization of powertrain and downsizing of IC engine-A way to reduce fuel consumption and pollutant emissions-Part 1 [J]. Energy Conversion and Management 2007, 48:1411-1423.
    [16] Barnitt R A, In-use performance comparison of hybrid electric, CNG, and diesel buses at New York city transit [C], In: 2008 SAE International Powertrains, Fuels & Lubricants Conference, June, 2008, Shanghai, China, SAE Paper No. 2008-01-1556.
    [17] Ockwell D G, Watson J, MacKerron G, Pal P, Yamin F, Key policy considerations for facilitating low carbon technology transfer to developing countries [J], Energy Policy, 2008, 36:4104-4115.
    [18] Miller J M. Hybrid electric vehicle propulsion system architectures of the e-CVT type [J]. IEEE Transactions on Power Electronics 2006, 21(3):756-767.
    [19] Miller J M, Everett M. An assessment of ultracapacitors as the power cache in Toyota THS-II, GM-Allison AHS-2 and Ford FHS hybrid propulsion systems [C]. In: Proc. IEEE App. Power Electron. Conf. Exhibition (APEC’05), Austin, TX, Mar. 6-10, 2005: 481-490.
    [20]徐平兴,朱禹.东风EQ7200HEV混合动力轿车成本分析和市场探索[C].中国电工技术学会电动车辆专业委员会第十次学术大会,北京,2002.
    [21]信继欣,彭华涛.湖北省电动汽车三维创新战略体系与发展对策[J].武汉理工大学学报信息与管理工程版2005,27(3):154-156.
    [22]赵子亮,李骏,刘明辉,刘东秦,刘吉顺. CA6100SH8并联混合动力客车工作模式与功率分配研究[J].汽车工程2007, 29(8):664-668.
    [23]任勇,秦大同,杨亚联,杨阳.混合动力电动汽车的研发实践[J].重庆大学学报2004,27(4):27-30.
    [24]马建新,朱东,方运舟,韩友国,李燕. BSG混合动力汽车铅酸电池性能预测方法的研究[J].汽车工程2008, 30(3):219-221.
    [25]陈虹.推进新能源汽车发展,创建上海汽车工业新优势[J].上海汽车2006.3:1-4
    [26] Chau K T, Wong Y S. Overview of power management in hybrid electric vehicles [J]. Energy Conversion and Management 2002, 43:1953-1968.
    [27] Fontaras G, Pistikopoulos P, Samaras Z. Experimental evaluation of hybrid vehicle fuel economy and pollutant emissions over real-world simulation driving cycles [J]. Atmospheric Environment 2008, 42: 4023-4035.
    [28] Won J S, Langari R, Ehsani M. An energy management and charge sustaining strategy for a parallel hybrid vehicle with CVT [J]. IEEE Transaction on Control System Technology 2005, 13(2):313- 320.
    [29] Harmon F G, Frank A A, Joshi S S. The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC Neural Net Work [J]. Neural Networks 2005, 18:772-780.
    [30] Pérez L V, Bossio G R, Moitre D, García G O. Optimization of power management in a hybrid electric vehicle using dynamic programming [J]. Mathematics and Computers in Simulation 2004, 73:244-254.
    [31] Rizoulis D, Burl J, Beard J. Control strategies for a series-parallel hybrid electric vehicle [C]. In: SAE World Congress, Detroit, Michigan, 2001. SAE paper No.2001-01-1354.
    [32] He X, Parten M, Maxwell T. Energy management strategies for a hybrid electric vehicle [J]. In: IEEE Conference on Vehicle Power and Propulsion, 7-9 Sept. 2005. p.536 -540.
    [33] Tsai L W, Schultz F, Higuchi N. A novel parallel hybrid transmission [J]. Journal of Mechanical Design 2001, 123:161-167.
    [34] Cao M, Chen J. HEV maximum power performance simulation and duty cycle generation [J]. International Journal of Vehicle Design 2005, 38(1):42-57.
    [35] Ohshima K, Kondo K, Ibaraki R, Matsui H. Development of transaxle for hybrid vehicle [J]. JSAE Review 2000, 21:343-347.
    [36] Syed F U, Kuang M L, Czubay J, Ying H. Derivation and experimental validation of a power-split hybrid electric vehicle model [J]. IEEE Transactions on Vehicular Technology 2006, 55(6):1731- 1747.
    [37] Cawthorne W R, Jamzadeh F, Sah F. The Allison transmission hybrid electric drive simulation development [C]. In: SAE Truck and Bus Meeting and Exposition, Oregon, Portland, Dec. 4-6, 2000. SAE paper No. 2000-01-3470.
    [38] Inada E, Matsuo I, Tahara M, Abe T. Development of a high performance hybrid electric vehicle Tino hybrid [C]. In: The 17st International Electric Vehicle Symposium, Montreal, Canada, 2002.
    [39] Matsuo I, Nakazawa S, Maeda H, Inada E. Development of a high-performance hybrid propulsion system incorporating a CVT [C]. In: SAE 2000 World Congress Detroit, Michigan, March 6-9, 2000. SAE paper No. 2000-01-0992.
    [40] Koprubasi K, Morbitzer J M, Westervelt E R, Rizzoni G. Toward a framework for the hybrid control of a multi-mode hybrid-electric driveline [C]. In: Proceedings of the 2006 American ControlConference, Minneapolis, USA, 2006, June, p.3296-301.
    [41] Sciarretta A, Guzzella L. Control of hybrid electric vehicles [J]. IEEE Control Systems Magazine 2007, 4:60-70
    [42] Pisu P, Rizzoni G. A comparative study of supervisory control strategies for hybrid electric vehicles [J]. IEEE Transactions on Control Systems Technology 2007, 15(3): 506-518.
    [43] Salmasi F R. Control strategies for hybrid electric vehicles: evolution, classification, comparison, and future trends [J]. IEEE Transactions on Vehicular Technology 2007, 56(5):1393-2404.
    [44] Johnson V H, Wipke K B, Rausen D J. HEV control strategy for realtime optimization of fuel economy and emissions [C]. SAE paper No. 2000-01-1543.
    [45] Rajagopalan A, Washington G, Rizzoni G, Guezennec Y. Development of fuzzy logic and neural network control and advanced emissions modeling for parallel hybrid vehicles [R]. December 2003, NREL/SR-540-32919.
    [46] Baumann B, Rizzoni G, Washington G. Intelligent control of hybrid vehicles using neural networks and fuzzy logic [C]. SAE paper No.981061.
    [47] Langari R, Won J-S. Intelligent energy management agent for a parallel hybrid vehicle-Part I: System architecture and design of the driving situation identification process [J]. IEEE Transactions on Vehicular Technology 2005, 54(3):925-934.
    [48] Won J-S, Langari R. Intelligent energy management agent for a parallel hybrid vehicle-Part II: Torque distribution, charge sustenance strategies, and performance results [J]. IEEE Transactions on Vehicular Technology 2005, 54(3):935–952.
    [49] Salman M, Chang M-F, Chen J-S. Predictive energy management strategies for hybrid vehicles [C]. In: Processing of the 44th IEEE Conference on Decision and Control, Dec. 12-15, 2005, p.21-25.
    [50] P′erez L V , G.R. Bossio, D. Moitre, G.O. Garc′?a, Supervisory control of an HEV using an inventory control approach [J]. Latin Am. Appl. Res. 2006, 36:93-100.
    [51] P′erez L V, Pilotta E A. Optimal power split in a hybrid electric vehicle using direct transcription of an optimal control problem [J]. Mathematics and Computers in Simulation, In press.
    [52]朱元,田光宇,陈全世,吴昊.混合动力汽车能量管理策略的四步骤设计方法[J].机械工程学报2004,40(8):127-132.
    [53] Tate E D, Boyd S P. Finding ultimate limits of performance for hybrid electric vehicles [C].1998, SAE Paper No. 00FTT-50.
    [54] Poursamad A, Montazeri M. Design of genetic-fuzzy control strategy for a parallel hybrid electric vehicles [J]. Control Engineering Practice 2008, 16:861-873.
    [55] Montazeri-Gh M, Poursamad A, Ghalichi B. Application of genetic algorithm for optimization of control strategy in parallel hybrid electric vehicles [J]. Journal of the Franklin Institute 2006, 343:420-435.
    [56] Zhu Z, Zhang J, Yin C. Optimization approach for hybrid electric vehicle powertrain design [J]. Chinese Journal of Mechanical Engineering 2005, 18(1): 30-36.
    [57] Jain A K, Mathapati S, Ranganathan V T, Narayanan V, Integrated starter generator for 42-V powernet using induction machine and direct torque control technique [J], IEEE Transactions on Power Electronics 2006, 21(3):701-710.
    [58] Chen S, Lequesne B, Henry R R, Xue Y, Ronning J J. Design and testing of a belt-driven induction starter-generator [J], IEEE Transactions on Industry Applications, 2002, 38(6): 1525-1533.
    [59] Bitsche O, Gutmann G. Systems for hybrid cars [J], Journal of Power Sources 2004, 127:8-15.
    [60] Plotkin S, Santini D, Vyas A, et al. Hybrid electric vehicle technology assessment: methodology, analytical issues, and interim results [R]. Argonne National Laboratory, Chicago, USA, 2001.
    [61]王庆年,何洪文,李幼德,等.并联混合动力汽车传动系参数匹配[J].吉林工业大学自然科学学报2000,30(1):72-75.
    [62]彭涛,陈全世,田光宇,等.并联混合动力电动汽车动力系统的参数匹配[J].机械工程学报2003,39(2):69-73.
    [63]雷雨成.汽车系统动力学及仿真[M].北京:国防工业出版社,1997:47.
    [64] Niasar A H, Moghbelli H, Vahedi A. Drive Train Sizing and Power Flow Control of a Series-Parallel Hybrid Electric Vehicle [C]. In: The 21st International Electric Vehicle Symposium, Monaco: EVS, CD-ROM, 2004.
    [65]姬芬竹,高峰,吴志新.电动汽车传动系参数设计及动力性仿真[J].北京航空航天大学学报2006, 32(1):108-111.
    [66]黄援军,殷承良,张建武,等.并联式混合动力城市公交车动力系统参数匹配[J].上海交通大学学报2007,41(2):272-277.
    [67] Rezeka S F, Henein N A. A new approach to evaluate instantaneous friction and its components in internal combustion engines [C]. SAE paper No.840179.
    [68]冯启山,殷承良,张建武.基于p-ω的发动机调速动力学模型[J].上海交通大学学报2006,40(1):152-156.
    [69] Zweiri Y H, Whidborne J F, Seneviratne L D. A mathematical transient model for the dynamics of a single cylinder diesel engine [C]. In: International conference on Simultion.York 1998, 457: 145- 151.
    [70] Liu H Q, Chalhoub N G, Henein N. Simulation of a single cylinder diesel engine under cold start conditions using simulink [J]. Journal of Engineering for Gas Turbines and Power 2001, 123:117- 124.
    [71] Ma Q, Rajagopalan S S V, Yurkovich S, et al. A high fidelity starter model for engine start simulations [C]. In: 2005 American control conference, Portland, 2005:4423-4427.
    [72]熊伟威,张勇,殷承良.混合动力汽车的电机启动发动机过程仿真研究[J].中国机械工程2008,19:2504-2509.
    [73] Grenier D, Dessaint L-A, Akhrif O, et al. Experimental nonlinear torque control of a permanent magnet synchronous motor using saliency [J]. IEEE Transactions on Industrial Electronics 1997, 44(5): 680-687.
    [74] Conte M, Prosini P P, Passerini S. Overview of energy/hydrogen storages: state-of-the-art of the technologies and prospects for nanomaterials [J], Materials Science and Engineering 2004, B108:2-8
    [75] A. Burke. Ultracapacitors: why, how, and where is the technology [J], Journal of Power Sources 2000, 91:37-50.
    [76] Albert A J, Kahrimanovic E, Emadi A. Diesel sport utility vehicles with hybrid electric drive trains [J]. IEEE Transactions on Vehicular Technology 2004, 53(4):1247-1256.
    [77] Jung D, Assanis D N. Modeling of direct injection Diesel engine emissions for a quasi-dimensional multi-zone spray model [J]. International Journal of Automotive Techonology 2004, 5(3):165-172.
    [78]余志生.汽车理论[M].北京:机械工业出版社,1990:24.
    [79]张翔,赵韩,钱立军,张炳力.PSAT软件的前向仿真方法[J].计算机仿真2005, 22:219-222.
    [80] Rousseau A, Deville B, Zini G., Kern J, Anderson J, Duoba, M. Honda Insight validation using PSAT [C]. SAE paper No.2001-01-2538.
    [81] Rousseau A, Sharer P, Pasquier M. Validation process of a HEV system analysis model: PSAT [C]. SAE Paper No. 2001-01-0953.
    [82] Ahluwalia R K, Wang X, Rousseau A, Kumar R. Fuel economy of hydrogen fuel cell vehicles [J]. Journal of Power Sources 2004, 130:192-201.
    [83]刘振军,赵海峰,秦大同.基于CRUISE的动力传动系统建模与仿真分析[J].重庆大学学报(自然科学版) 2008. 28(11):8-11.
    [84] Wipke K B, Cuddy M R, Burch S D. ADVISOR 2.1: a user-friendly advanced powertrain simulation using a combined backward/forward approach [J]. IEEE Transactions on Vehicular Technology 1999, 48(6):1751-1761.
    [85] Baisden A C, Emadi A. ADVISOR-based model of a battery and an ultra-capacitor energy source for hybrid electric vehicles [J]. IEEE Transactions on Vehicular Technology 2004, 53(1):199- 205.
    [86] Rizzoni G., Guezennec Y, Brahma A, Wei X. VP-SIM: a unified approach to energy and power flow modeling simulation and analysis of hybrid vehicles [C]. SAE Paper No. 2000-01-1565.
    [87] Lin C-C, Kang J-M, Grizzle J W, Peng H. Energy management strategy for a parallel hybrid electric truck [C]. In: Proceedings of the American Control Conference, Arlington, VA, June 25-27, 2001.
    [88]黄妙华,陈飚,陈胜金.基于转矩分配的并联式混合动力电动轿车能量管理策略研究[J].武汉理工大学学报(交通科学与工程版) 2006, 30(1):33-36.
    [89] Mierlo J V, Bossche P V D, Maggetto G. Models of energy sources for EV and HEV: fuel cells, batteries, ultracapacitors, flywheels and engine-generators [J]. Journal of Power Sources 2004, 128:76-89.
    [90] Lin X., Pan S-X, Wang D-Y. Dynamic simulation and optimal control strategy for a parallel hybrid hydraulic excavator [J]. Journal of Zhejiang University Science A 2008, 9(5):624-632.
    [91] Schouten N J, Salman M A, Kheir N A. Fuzzy logic control for parallel hybrid vehicles [J]. IEEE Transactions on Control System Technology 2002, 10(3):460-467.
    [92]林成涛,仇斌,陈全世.电动汽车电池功率输入等效电路模型的比较研究[J].汽车工程2006, 28(3):229-234.
    [93] Johnson V H. Battery performance models in ADVISOR [J]. Journal of Power Sources 2002, 110 (8):321-329.
    [94] Salameh Z M, Casacca M A, Lynch W A. A mathematical model for Lead-Acid batteries [J]. IEEE Transactions on Energy Conversions 1992, 7 (1):93-97.
    [95]麻友良,陈全世,齐占宁.电动汽车用电池SOC定义与检测方法[J].清华大学学报(自然科学版) 2001, 41(11):95-97.
    [96] Piller S, Perrin M, Jossen A. Methods for state-of-charge determination and their applications [J]. Journal of Power Sources 2001, 96:113-120.
    [97] Amrhein M, Krein P T. Dynamic simulation for analysis of hybrid electric vehicle system and subsystem interactions, including power electronics [J]. IEEE Transaction on Vehicular Technology 2005, 54(3): 825-836.
    [98] Huang K D, Tzeng S-C, Jeng T-M, Chen C-C. Integration mechanism for a parallel hybrid vehicle system [J]. Applied Energy 2005, 82: 133-147.
    [99] Tseng C-Y, Hung Y-H, Tsai C-H, Huang Y-J. Parameter optimization for the energy management system of hybrid electric vehicle [C]. In: Processing of SPIE, 2007.
    [100]浦金欢.混合动力汽车能量优化管理与控制策略研究[博士论文].上海:上海交通大学, 2004.
    [101] Lee H-D, Sul S-K, Cho H-S, Lee J-M. Advanced gear-shifting and clutching strategy for a parallel-hybrid vehicle [J]. IEEE Industry Applications Magazine 2000, 11/12: 26-32.
    [102] Chen J, Li Y, Wang J. Simultaneous optimisation of fuel consumption and emissions for a parallel hybrid electric SUV using fuzzy logic control [J]. Inernational Journal of Vehicle Designt 2008, 46(2):204-218.
    [103] Zhang X, Wang D, Li C. The simulation study of HEV under electric assist control strategy (EACS) [J]. High Technology Letters 2004, 10(2):78-82.
    [104] Park J-Y, Park Y-K, Park J-H. Optimal power distribution strategy for series–parallel hybrid electric vehicles [J]. Part D: Journal of Automobile Engineering 2008, 222: 989-1000.
    [105] Wang A, Yang W. Design of energy management strategy in hybrid electric vehicles by evolutionary fuzzy system Part I: Fuzzy logic controller development [C]. In: Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21-23, 2006, Dalian, China.
    [106] Wang A, Yang W. Design of energy management strategy in hybrid electric vehicles by evolutionary fuzzy system Part II: Tuning fuzzy controller by genetic algorithms [C]. In: Proceedings of the 6th World Congress on Intelligent Control and Automation, June 21-23, 2006, Dalian, China.
    [107] Hajimiri M H, Salmasi F R. A fuzzy energy management strategy for series hybrid electric vehicle with predictive control and durability extension of the battery [C]. In: IEEE Conference on Electric and Hybrid Vehicles, Dec. 18-20, 2006. p.1-5.
    [108] Bhuvaneshwaran V, Langari R. Design optimization using genetic algorithms and fuzzy constraints and fitness functions [C]. In: The 12th IEEE International Conference on Fuzzy Systems, May 25-28, 2003(1):354-359.
    [109] Koo E-S, Lee H-D, Sul S-K, Kim J-S. Torque control strategy for a parallel hybrid vehicle using fuzzy logic [C]. In: IEEE Industry Applications Conference, Oct., 1998, 3. p.1715-20.
    [110] Lee H D, Sul S K. Fuzzy-logic-based torque control strategy for parallel-type hybrid electric vehicle [J]. IEEE Transactions on Industry Electronics 1998; 45(4):625-32.
    [111]浦金欢,严隽琪,殷承良,张建武,朱正礼.并联式混合动力汽车控制策略的仿真研究[J].系统仿真学报,2005, 17(7):1543-1547.
    [112] Phillips A M, Jankovic M, Bailey K E. Vehicle system controller design for a hybrid electric vehicle [C]. In: Proceedings of IEEE International Conference on Control Applications, Anchorage, AK, USA, Dec. 25-29, 2000. p.297-302.
    [113] Zhang R, Chen Y. Control of hybrid dynamical systems for electric vehicles [C]. In: Proceedings ofAmerican Control Conference, Arlington, VA, USA, June 25-27, 2001. 4: 2884-2889.
    [114]房立存,秦世引.并联混合动力电动汽车最优控制及实例仿真[J].系统仿真学报2007,19(1):110-113.
    [115] Liu X, Wu Y, Duan J. Optimal sizing of a series hybrid electric vehicle using a hybrid genetic algorithm [C]. In: IEEE International Conference on Automation and Logistics, Aug. 18-21, 2007. p.1125-1129.
    [116] Zhu Z, Zhang J, Yin C. Optimization approach for hybrid electric vehicle powertrain design [J]. Chinese Journal of Mechanical Engineering 2005, 18(1): 30-36.
    [117] Hu X, Wang Z, Liao L. Multi-objective optimization of HEV fuel economy and emissions using evolutionary computation [C]. SAE Paper No. 2004-01-1153.
    [118] Fang L-C, Qin S-Y. Concurrent optimization for parameters of powertrain and control System of hybrid electric vehicle based on multi-objective genetic algorithms [J]. In: International Joint Conference of SICE-ICASE, Busan, Oct. 18-21, 2006. p. 2424-2429.
    [119] Bagley J D. The behavior of adaptive systems which employ genetic and correlation algorithms [J]. Dissertation Abstracts International, 1967, 28(12):5106B.
    [120] Holland J H. Adaptation in Natural and Artificial System [M]. Ann Arbor, Michigan: University of Michigan Press, 1975.
    [121] Hollstien R B. Artificial genetic adaptation in computer control systems, computer and communication science [M]. Ann Arbor, Michigan: University of Michigan Press, 1971.
    [122] Sivanandam S N, Deepa S N. Introduction to genetic algorithms [M]. Berlin: Springer, 2007.
    [123]周明华.近代算法在工程领域中的应用研究[博士论文].浙江:浙江大学, 2005.
    [124] Rothlauf F. The influence of binary representation of integers on the performance of selectorecombinative genetic algorithms. University of Bayreuth. Working paper, Feb. 2002.
    [125]叶正华,谢勇,郑金华.一种改进的基于实数编码的遗传算法[J].湘潭大学自然科学学报2004, 24(3):32-35
    [126]田小梅,龚静.实数编码遗传算法的评述[J].湖南环境生物职业技术学院学报2005, 11(1):25-31.
    [127]徐超,李正平,汪长勤.基于CSMA /CD的CAN总线访问的建模与仿真的研究[J].仪器仪表学报2008, 29(4):866-869.
    [128]朱正礼,殷承良,张建武.混合动力车中CAN总线系统的应用[J].交通运输工程学报2004, 14(13):90-94.
    [129] Suzuki S, Nagaura W, Imai T, et al. A distributed control system framework for automotive powertrain control with OSEK standard and CAN network [C]. SAE Technical Paper Series. SAEpaper No. 1999-01-1276.
    [130] Chacko R V, Lakaparampil Z V, Chandrasekar V. CAN based distributed real time controller implementation for hybrid electric vehicle [C]. In: IEEE Conference on Vehicle Power and Propulsion, 7-9 Sept., 2005.
    [131] Guzzella L, Sciarretta A. Vehicle propulsion systems: introduction to modeling and optimization [M]. Berlin: Springer Verlag, 2007.
    [132] Lemieux J. Programming in the OSEK/VDX Environment. Gilroy, CA: CMP Books, 2001.
    [133] Feiler P H. Real-Time Application Development with OSEK– A Review of OSEK Standards [J]. CMU Technical Note, 2003.
    [134] MC9S12DP512 device guide V01.25. Jul. 5, 2005. Motorola, Inc.
    [135] L. A. Zadeh, Fuzzy set [J]. Information and Control, 1965(8):338-353
    [136] Schouten N J, Salman M A, Kheir N A. Energy management strategies for parallel hybrid vehicles using fuzzy logic [J]. Control Engineering Practice, 2003, 11(2):171-177.
    [137] Salman M A, Schouten N J, Kheir N A. Control strategies for parallel hybrid vehicles[C]. In: Processing of American Control Conference, Chicago, USA, 2000. p.524-528.
    [138] Baumann B M, Washington G, Guerra T M, et al. Mechatronic design and control of hybrid electric vehicles [J]. IEEE/ASME Transactions on Mechatronics 2000, 5(1):58-72.
    [139] Brahma A, Glenn B, Guezennec B, et al. Modeling, performance analysis and control design of a hybrid sport-utility vehicle [C]. In: Processing of IEEE International Conference on Control Applications, Hawaii, USA, 1999:448-453.
    [140] Sciarretta A, Back M, Guzzella L. Optimal control of parallel hybrid electric vehicles [J]. IEEE Transactions on Control System Technology 2004, 12(3):352-363.
    [141] Hannoun H, Diallo D, Marchand C. Energy management strategy for a parallel hybrid electric vehicle using fuzzy logic [C]. In: International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Taormina, Italy, 2006.
    [142] Langari R, Won J-S, Integrated drive cycle analysis for fuzzy logic based energy management in hybrid vehicles [C]. In: IEEE International Conference on Fuzzy System, 2003.
    [143]杨钫,王庆年,刘明辉,赵子亮.混合动力客车的排放污染物测量及分析[J].吉林大学学报(工学版) 2007, 37(2):291-295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700