局部进汽引发轴系故障的机理及对策
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电力工业的发展,许多大中型汽轮发电机组也参与到调峰中来,而且峰谷差最大能达到50%,很多机组在采用喷嘴调节(局部进汽)进行调峰变负荷的过程中,在中间负荷区发生了一种轴系故障,主要现象为高压转子各轴承处瓦温升高、振动增大等;还有不少机组在单阀向顺序阀切换的过程中,因振动超标而不得不中断,无法投运顺序阀控制。这些故障的产生机制不明确,也没有有效的处理方法,一直困扰着发电企业。为了保证安全生产,这些机组不得不采用节流调节(全周进汽),给电厂带来很大的经济损失。因此,对上述故障开展诊断研究,寻找故障原因和发生机理,并提出有效的解决方案,对完善电站汽轮机故障诊断理论体系,提高电站运行的安全性和经济性,具有重要的理论和实践价值。
     本文针对电站汽轮机局部进汽工况下发生的高压转子-轴承系统故障和阀门切换过程振动故障,开展一系列故障诊断、机理分析、数值模拟、过程仿真和实验研究工作,进而研究相应的解决方案。本文主要研究工作包括以下几个方面:
     首先,分析了某型200MW和600MW机组在局部进汽工况下的轴系故障(简称配汽故障),对其典型故障特征进行了总结,然后选取其中具有代表性的200MW机组案例进行诊断。为了获取充分的故障特征信息,提出了基于动态时间规整技术(DTW)的快速关联分析算法,在DAS系统大量测点中自动搜索故障相关信号。基于相关信号和先验知识进行推理诊断,发现故障与局部进汽产生的作用于调节级动叶片的不对称汽流力(简称配汽力)之间的联系。通过调节级变工况热力计算,建立了该200MW机组的配汽力模型,分析了变负荷工况下配汽力与故障特征之间的相关性,推断配汽力为故障原因。
     其次,对某型200MW机组的高中压转子-轴承系统进行非线性动力学建模,然后基于该模型和配汽力模型,采用带阻尼Newmark方法开展了配汽力作用下轴系运动行为的数值模拟研究,分析了变负荷过程配汽力对轴心位置、轴承载荷、轴系稳定性、振动等特性的影响规律。通过在该机组上开展的现场实验,根据配汽力作用下轴系状态实际变化验证数值模拟结果。研究结果揭示了配汽力对轴心位置、瓦温和轴振的影响机理,证实了故障诊断结论。针对稳定性好、水平方向油膜刚度大的可倾瓦轴承支撑轴系也开展了实验研究,结果表明配汽力对可倾瓦轴承的影响规律和程度与椭圆瓦轴承基本相同。
     第三,在阀门管理设计中考虑配汽力约束,对最小进汽度50%的喷嘴调节方案进行了数值模拟研究,从经济和安全两个角度综合分析了对角进汽相对于顺序进汽和双对角进汽的优势,并通过实验研究揭示了各种对角进汽方案对轴心位置、瓦温和轴振的影响规律。通过现场实验探讨了利用阀门管理控制配汽力的可行性及必要性,以达到消除配汽故障、调整轴承载荷或提高轴系稳定性的目的。分析了1000MW超超临界机组现有阀门管理方案因最小进汽度为75%而导致的效率损失,提出了配汽力扰动能力的衡量指标,并采用该指标论证了应用最小进汽度50%喷嘴调节的安全裕度小,进而设计了一种可减小配汽力的偏对角进汽阀门管理,可提高1000MW超超临界机组的安全性。分析了季节变化对空冷机组阀门节流损失的影响,设计了可组合多个三阀点的阀门管理方案,分别对应不同季节工况,在保证安全的基础上提高了经济效率。
     最后,针对阀门切换过程轴振异常变化问题开展了诊断工作,分析出问题原因在于阀门晃动产生的汽流力瞬态冲击,然后通过数值模拟研究了汽流力瞬态冲击对转子振动的影响。分析出阀门晃动原因在于阀门管理整体流量特性与实际情况不匹配,建立了阀位控制回路模型,分别进行了阀门管理流量特性准确与不准确情况下的阀门切换过程仿真研究,验证了这一分析结论。提出了基于运行数据的阀门管理整体流量特性辨识方法,并在工程实践中准确地辨识并修正了阀门管理流量特性,有效地解决了阀门切换过程的轴振异常问题。
With the development of power industry, many large and medium turbo-generatorsparticipate in power dispatching, and the biggest difference between peak and valley ofload can reach 50%. A type of rotor-bearing system fault occured at some units whichare in the use of nozzle control (under partial admission) to regulate load when operate atintermediate-load, suffered by bearing pad temperature rise and shaft vibration increases.Some other units have to interrupt valve switching process due to excessive shaft vibrationwhen switch from single valve mode to sequential valve mode, thus can not operate underpartial admission. Mechanism of the fault is not clear, and there is no effective solutionto it. To ensure safety, these units have to use throttle control (under full admission),lead to a great deal of economic loss. Therefore, diagnostic studies of the fault to find thecause and the mechanism, and effective solutions, have important theoretical and practicalvalues to improve fault diagnosis theory and to enhance operation safety and efficiency ofpower plant.
     In this paper, to deal with faults occur in high-pressure rotor-bearing system andduring valve switching process when units operate under partial admission, we carry outa series of fault diagnosis, mechanism analysis, numerical simulation, process simulationand experimental research, and study the corresponding solutions. This paper mainlyincludes the following:
     Firstly, a type of rotor-bearing system faults occurred at a 200MW unit and a600MW unit under partial admission (partial admission fault for short) is analyzed, sum-mary their typical fault features, and then select the case of 200MW unit to diagnose. Inorder to obtain sufficient fault information, an algorithm based on dynamic time warpingtechnique (DTW) is proposed for fast correlation analysis. It can be used to search forfault-related signals automatically among a large number of signals in the DAS system.Based on the fault-related signals, fault cause is inferred to be asymmetric steam ?owforces (partial arc steam force for short) acting on governing stage rotor blades gener-ated by partial admission. The model of partial arc steam force with variable load of the200MW unit is established by thermal calculation of governing stage. Correlations be-tween partial arc steam force and fault features are analyzed and the inference result is confirmed that the fault is caused by partial arc steam force.
     Secondly, nonlinear dynamic modeling of the high and medium pressure rotor-bearing system of the 200MW unit is performed. Based on the model of the unit andpartial arc steam force, numerical simulation research on rotor-bearing system dynamicbehavior under the action of the partial arc steam force is carried out with damped new-mark method, to investigate the variation of shaft centerline position, bearing load, rotor-bearing system stability and vibration characteristics with different load. The results ofnumerical simulation are verified by the actual variation of rotor-bearing system underthe action of partial arc steam force through a field experiment. The research reveal themechanism how partial arc steam force in?uences shaft centerline position, bearing padtemperature and shaft vibration, confirm the diagnosis conclusion. For rotor-tilting-pad-bearing system whose stability and horizontal stiffness are higher than rotor-oval-pad-bearing system, an experiment is carried out and illustrate that the impact extent on bothof them are similar.
     Thirdly, partial arc steam force is considered as an restriction in valve managementprogram design. All 50% minimum admission nozzle control programs are studied withnumerical simulation. The advantage of diagonal admission compared to sequential ad-mission and double-diagonal admission is comprehensively analyzed when consideringpartial arc steam force and throttle loss. The law that diagonal admission in?uences shaftcenterline position, bearing pad temperature and shaft vibration is revealed through exper-imental studies. The feasibility and necessity of controlling partial arc steam force withvalve management are investigated through field experiments, to achieve the purpose ofeliminating partial admission fault, regulating bearing load or increase rotor-bearing sys-tem stability. The loss of efficiency of 1000MW ultra-supercritical unit which use 75%minimum admission in valve management is analyzed. Two indicators are proposed tomeasure the disturbance capacity of partial arc steam force, and are utilized to demon-strate the feasibility of the application of 50% minimum admission nozzle control. Valvemanagement based on a beveled diagonal admission structure is designed to reduce partialarc steam force and can improve the safety of 1000MW ultra-supercritical units. Throttleloss of air-cooling unit in?uenced by seasonal change is analyzed. A multi three-valve-point valve management program is designed to improve the efficiency of air-cooling unitcorresponding to different seasonal conditions as well as ensure safety.
     Finally, diagnosis is performed for abnormal shaft vibration during valve switch-ing. The cause is analyzed to be the transient impact of steam forces generated by valveshaking, and then the response of steam forces transient impact on the rotor is studied bynumerical simulation. A valve position control loop model is established for the simu-lation of valve switching, and the cause of valve shaking is inferred to be that the valvemanagement ?ow characteristics do not match the actual condition. A method to identifyvalve management ?ow characteristics based on operation data is proposed. By applyingthe method to practice, the characteristics are accurately identified and corrected, and theabnormal shaft vibration during valve switching is effectively solved.
引文
1夏松波,张嘉钟,徐世昌,张礼勇.旋转机械故障诊断技术的现状与展望[J].振动与冲击, 1997, 16(2):1–6.
    2丁涛,王芳,任工昌.旋转机械故障诊断研究现状[J].机械设计与制造, 2009,226(12):259–260.
    3 J. S. Sohre. Operating Problems with High Speed Turbomachinery: Causes andCorrection[C]. ASME Petroleum Mechanical Engineering Conference. 1968:37–45.
    4 J. S. Sohre. Turbomachinery Analysis and Protection[C]. Proc. 1st TurbomachinerySymposium. 1972:1–9.
    5施维新.汽轮发电机组振动及事故[M].中国电力出版社, 1999:111–112.
    6高金吉.高速涡轮机械振动故障机理及诊断方法的研究[D].清华大学,1993:31–47.
    7黄文虎,夏松波,刘瑞岩.设备故障诊断原理、技术及应用[M].科学出版社,1996:77–105.
    8欧家福,邵毅敏,周晓君.变周期信号的时域同步平均新算法[J].振动工程学报, 2009, (05):497–502.
    9 Y. Zhan, V. Makis, A. Jardine. Adaptive Model for Vibration Monitoring of Rotat-ing Machinery Subject to Random Deterioration[J]. Journal of Quality in Mainte-nance Engineering, 2003, 9(4):351–375.
    10 S. Goldman. Vibration Spectrum Analysis: A Practical Approach[M]. IndustrialPress Inc., 1999:46–103.
    11 C. M. Harris, A. G. Piersol, T. L. Paez. Harris’Shock and Vibration Handbook[M].McGraw-Hill Professional, 2009:67–83.
    12严可国,柳亦兵,徐鸿,周雁冰.基于双谱分析的大型汽轮机振动故障特性提取[J].中国电机工程学报, 2010, (02):98–103.
    13 R. B. Randall, J. Antoni, S. Chobsaard. The Relationship between Spectral Corre-lation and Envelope Analysis in the Diagnostics of Bearing Faults and Other Cy-clostationary Machine Signals[J]. Mechanical systems and signal processing, 2001,15(5):945–962.
    14 M. H. Hayes. Statistical Digital Signal Processing and Modeling[M]. Wiley IndiaPvt. Ltd., 2008:263–272.
    15 J. R. Stack, T. G. Habetler, R. G. Harley. Bearing Fault Detection via AutoregressiveStator Current Modeling[J]. IEEE Transactions on Industry Applications, 2004,40(3):740–747.
    16 M. J. E. Salami, A. Gani, T. Pervez. Machine Condition Monitoring and Fault Di-agnosis Using Spectral Analysis Techniques[C]. Proceedings of the First Interna-tional Conference on Mechatronics (ICOM’01), vol. 2. Kuala Lumpur, Malaysia,2001:690–700.
    17 W. J. Wang, Z. T. Wu, J. Chen. Fault Identification in Rotating Machinery Using theCorrelation Dimension and Bispectra[J]. Nonlinear Dynamics, 2001, 25(4):383–393.
    18 L. Qu, X. Liu, G. Peyronne, Y. Chen. The Holospectrum: A New Method for RotorSurveillance and Diagnosis[J]. Mechanical Systems and Signal Processing, 1989,3(3):255–267.
    19屈梁声,史东锋.全息谱十年:回顾与展望[J].振动、测试与诊断, 1998,18(4):235–242.
    20马辉,赵鑫,赵群超,闻邦椿.时频分析在旋转机械故障诊断中的应用[J].振动与冲击, 2007, 26(3):61–63.
    21 Q. Meng, L. Qu. Rotating Machinery Fault Diagnosis Using Wigner Distribu-tion[J]. Mechanical systems and signal processing, 1991, 5(3):155–166.
    22 R. K. Young. Wavelet Theory and its Applications[M]. Springer, 1993:179–203.
    23 S. Zhang, J. Mathew, L. Ma, Y. Sun. Best Basis-based Intelligent Machine FaultDiagnosis[J]. Mechanical systems and signal processing, 2005, 19(2):357–370.
    24 G. Dalpiaz, A. Rivola. Condition Monitoring and Diagnostics in Automatic Ma-chines: Comparison of Vibration Analysis Techniques[J]. Mechanical Systems andSignal Processing, 1997, 11(1):53–73.
    25 Z. K. Peng, F. L. Chu. Application of the Wavelet Transform in Machine ConditionMonitoring and Fault Diagnostics: A Review with Bibliography[J]. MechanicalSystems and Signal Processing, 2004, 18(2):199–221.
    26 N. Aretakis, K. Mathioudakis. Wavelet Analysis for Gas Turbine Fault Diag-nostics[J]. ASME Journal of Engineering for Gas Turbines and Power, 1997,119(4):870–876.
    27段岩峰.融合热工信息的轴系故障诊断专家系统研究[D].哈尔滨工业大学,2005:46–62.
    28 G. Chen, Y. Liu, W. Zhou, J. Song. Research on Intelligent Fault Diagnosis Basedon Time Series Analysis Algorithm[J]. The Journal of China Universities of Postsand Telecommunications, 2008, 15(1):68–74.
    29吕纯洁,姚永玉,江浩.历史时序数据相似性提取方法在机械故障诊断中的应用[J].机械研究与应用, 2009, (02):21–23.
    30白木万博,神吉博.机械设备的振动(一)-旋转机械的振动(1)[J].四川电力技术, 1988, (6):49–55.
    31白木万博,神吉博.机械设备的振动(二)-旋转机械的振动(2)[J].四川电力技术, 1989, (6):49–56.
    32 P. M. Frank. Fault Diagnosis in Dynamic Systems Using Analytical andKnowledge-based Redundancy: A Survey and some New Results[J]. Automatica,1990, 26(3):459–474.
    33 V. Venkatasubramanian, R. Rengaswamy, K. Yin, S. N. Kavuri. A Review of Pro-cess Fault Detection and Diagnosis: Part I: Quantitative Model-based Methods[J].Computers & Chemical Engineering, 2003, 27(3):293–311.
    34 V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri. A Review of ProcessFault Detection and Diagnosis: Part II: Qualitative Models and Search Strategies[J].Computers & Chemical Engineering, 2003, 27(3):313–326.
    35 V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, K. Yin. A Review of Pro-cess Fault Detection and Diagnosis: Part III: Process History Based Methods[J].Computers & Chemical Engineering, 2003, 27(3):327–346.
    36 H. Sohn, K. Worden, C. R. Farrar. Statistical Damage Classification under Chang-ing Environmental and Operational Conditions[J]. Journal of Intelligent MaterialSystems and Structures, 2002, 13(9):561–574.
    37 M. Nyberg. A General Framework for Fault Diagnosis Based on Statistical Hy-pothesis Testing[C]. Twelfth International Workshop on Principles of Diagnosis(DX 2001), Via Lattea, Italian Alps. 2001:135–142.
    38 M. L. Fugate, H. Sohn, C. R. Farrar. Vibration-based Damage Detection UsingStatistical Process Control[J]. Mechanical Systems and Signal Processing, 2001,15(4):707–721.
    39 V. A. Skormin, L. J. Popyack, V. I. Gorodetski, M. L. Araiza, J. D. Michel.Applications of Cluster Analysis in Diagnostics-related Problems[C]. 1999 IEEEAerospace Conference, vol. 3, Aspen, CO, USA. 1999:161–168.
    40 M. Artes, L. D. Castillo, J. Perez. Failure Prevention and Diagnosis in MachineElements Using Cluster[C]. Proceedings of the Tenth International Congress onSound and Vibration. Stockholm, Sweden, 2003:1197–1203.
    41 J. Schu¨rmann. Pattern Classification: A Unified View of Statistical and NeuralApproaches[M]. John Wiley & Sons, Inc. New York, NY, USA, 1996:39–71.
    42 H. Ding, X. Gui, S. Yang. An Approach to State Recognition and Knowledge-based Diagnosis for Engines[J]. Mechanical Systems and Signal Processing, 1991,5(4):257–266.
    43 X. Lou, K. A. Loparo. Bearing Fault Diagnosis Based on Wavelet Transform andFuzzy Inference[J]. Mechanical Systems and Signal Processing, 2004, 18(5):1077–1095.
    44 A. Webb. Statistical Pattern Recognition[M]. A Hodder Arnold Publication,1999:52–54.
    45 J. Ying, T. Kirubarajan, K. R. Pattipati, A. Patterson-Hine. A Hidden MarkovModel-based Algorithm for Fault Diagnosis with Partial and Imperfect Tests[J].IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications andReviews, 2000, 30(4):463–473.
    46 A. Siddique, G. S. Yadava, B. Singh. Applications of Artificial Intelligence Tech-niques for Induction Machine Stator Fault Diagnostics: Review[C]. Proceedings ofthe IEEE International Symposium on Diagnostics for Electric Machines, PowerElectronics and Drives. 2003:29–34.
    47 Y. Fan, C. J. Li. Diagnostic Rule Extraction from Trained Feedforward NeuralNetworks[J]. Mechanical Systems and Signal Processing, 2002, 16(6):1073–1081.
    48 B. A. Paya, I. I. Esat, M. Badi. Artificial Neural Network Based Fault Diagnosticsof Rotating Machinery Using Wavelet Transforms as a Preprocessor[J]. MechanicalSystems and Signal Processing, 1997, 11(5):751–765.
    49 D. W. Dong, J. J. Hopfield, K. P. Unnikrishnan. Neural Networks for Engine FaultDiagnostics[C]. Proceedings of the 1997 IEEE Workshop. 1997:636–644.
    50 C. C. Wang, G. P. James Too. Rotating Machine Fault Detection Based on HOSand Artificial Neural Networks[J]. Journal of Intelligent Manufacturing, 2002,13(4):283–293.
    51 C. H. Hansen, R. K. Autar, J. M. Pickles. Expert Systems for Machine Fault Diag-nosis[J]. Acoustics Australia, 1994, 22(3):85–90.
    52 M. Bengtsson, E. Olsson, P. Funk, M. Jackson. Technical Design of ConditionBased Maintenance System–a Case Study Using Sound Analysis and Case-basedReasoning[C]. Maintenance and Reliability Conference-Proceedings of the EighthCongress. 2004:12–18.
    53 M. F. Baig, N. Sayeed. Model-based Reasoning for Fault Diagnosis of Twin-spoolTurbofans[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Jour-nal of Aerospace Engineering, 1998, 212(2):109–116.
    54 H. R. DePold, F. D. Gass. The Application of Expert Systems and Neural Networksto Gas Turbine Prognostics and Diagnostics[J]. Journal of Engineering for GasTurbines and Power, 1999, 121(4):607–612.
    55 A. K. Garga, K. T. McClintic, R. L. Campbell, C. C. Yang, M. S. Lebold, T. A. Hay,C. S. Byington. Hybrid Reasoning for Prognostic Learning in CBM Systems[C].IEEE Proceedings of Aerospace Conference. 2001:2957–2969.
    56 S. Sampath, S. Ogaji, R. Singh, D. Probert. Engine-Fault Diagnostics: An Optimi-sation Procedure[J]. Applied Energy, 2002, 73(1):47–70.
    57 Z. Chen, Y. He, F. Chu, J. Huang. Evolutionary Strategy for Classification Problemsand its Application in Fault Diagnostics[J]. Engineering Applications of ArtificialIntelligence, 2003, 16(1):31–38.
    58 S. Simani, C. Fantuzzi, R. J. Patton. Model-Based Fault Diagnosis in DynamicSystems Using Identification Techniques[M]. Springer London, 2003:216–219.
    59 C. H. Oppenheimer, K. A. Loparo. Physically Based Diagnosis and Prognosis ofCracked Rotor Shafts[C]. Component and Systems Diagnostics, Prognostics, andHealth Management II, vol. 4733. 2002:122–132.
    60 A. S. Sekhar. Model-based Identification of Two Cracks in a Rotor System[J].Mechanical Systems and Signal Processing, 2004, 18(4):977–983.
    61 A. Vania, P. Pennacchi. Experimental and Theoretical Application of Fault Iden-tification Measures of Accuracy in Rotating Machine Diagnostics[J]. MechanicalSystems and Signal Processing, 2004, 18(2):329–352.
    62 N. C. Propes, G. Vachtsevanos. A Fuzzy Petri-net-based Mode Identification Algo-rithm for Fault Diagnosis of Complex Systems[C]. System Diagnosis and Progno-sis: Security and Condition Monitoring Issues III, vol. 5107. 2003:44–53.
    63刘峻华,黄树红,陆继东.汽轮机故障诊断技术的发展与展望[J].动力工程,2001, 21(2):1105–1110,1122.
    64 C. K. Robert, Z. H. Howard, J. W. Warren. Effects of Partial Admission on Perfor-mance of a Gas Turbine[J]. NACA Technical Note, 1949, 1807:79–85.
    65 G. O. Ohlsson. Partial-admission Turbines[J]. Journal of the Aerospace Science,1962, 29(9):1017–1028.
    66 S. Y. Cho. Effect of Solidities and Nozzle Flow Angles on a Partially AdmittedSmall Axial-type Turbine[J]. International Journal of Turbo and Jet-Engines, 2008,25(2):111–120.
    67 B. Shin, Y. Kwak, K. Kim, J. Kim. A Study on Nozzle-rotor Interaction Losses forGeometric Conditions of a Partial Admission Impulse Turbine[C]. Proceedings ofthe Conference on Aerospace Propulsion. 2006:22–28.
    68 J. E. A. Fridh. Partial Admission in Axial Turbines[M]. ALSTOM Power Sweden,2002:5–12.
    69 G. R. Wakeley, I. Potts. Unsteady Flow Phenomena in Partially-admitted SteamTurbine Control Stages[J]. Latest Advances in the Aerodynamics of Turbomachin-ery with Special Emphasis upon Unsteady Flows, 1996, 21:77–86.
    70田丰,邓少翔,徐之昌,苏雷涛,关南强,刘务波.国产300MW机组配汽机构阀切换特性试验研究[J].华中电力, 2002, 15(6):1–4.
    71吕继奎.国产引进型300MW机组顺序阀运行研究[J].中国电力, 2003,36(4):21–24.
    72于达仁,刘占生,李强,刘金福.汽轮机配汽设计的优化[J].动力工程, 2007,27(1):1–5.
    73 L. He. Computation of Unsteady Flow Through Steam Turbine Blade Rows atPartial Admission[J]. Proceedings of the Institution of Mechanical Engineers PartA-Journal of Power and Energy, 1997, 211(3):197–205.
    74 L. He. Time-Marching Solution of Unsteady Turbomachinery Flows - Calculationof Rotating Stall and Partial Admission[J]. Latest Advances in the Aerodynamicsof Turbomachinery with Special Emphasis upon Unsteady Flows, 1996, 21:47–65.
    75訾宏达,方韧,徐星仲,徐克鹏.汽轮机部分进汽调节级三维流场的非定常数值模拟[J].动力工程, 2007, 27(5):721–724,761.
    76徐星仲,徐力平,蔡虎,蒋洪德.处于部分进汽时动叶片排内非定常流动现象的数值研究[J].工程热物理学报, 2001, 22(1):36–39.
    77徐星仲,徐力平,蔡虎,蒋洪德.不同部分进汽度及不同堵塞方式情况下的动叶片性能[J].工程热物理学报, 2001, 22(2):182–184.
    78 N. Sakai, T. Harada, Y. Imai. Application of CFD to Partial Admission Stages ofSteam Turbine[C]. Proceedings of the ASME Power Conference. 2005:603–608.
    79 J. E. Fridh, B. Bunkute, R. Fakhrai, T. H. Fransson. An Experimental Study onPartial Admission in a Two-Stage Axial Air Test Turbine with Numerical Compar-isons[C]. Proceedings of ASME Turbo Expo. 2004:1285–1297.
    80 M. Pluviose. Experimental Study of Partial Admission in Steam Control TurbineStage Using Hydraulic Analogy[C]. Proceedings of the Florence World Energy Re-search Symposium. 1992:58–71.
    81 H. J. Thomas. Unstable Oscillations of Turbine Rotors Due to Steam Leakage in theSealing Glands and the Buckets[J]. Bulletin Scientifique A. J. M, 1958, 71:34–37.
    82 J. S. Alford. Protecting Turbomachinery from Self-excited Rotor Whirl[J]. ASMEJournal of Engineering for Power, 1965, 87(4):333–344.
    83张学延,王延博,张卫军.大型汽轮机汽流激振问题的分析和处理[J].热力发电, 2004, (2):47–55.
    84张学延,王延博,张卫军.超临界压力汽轮机蒸汽激振问题分析及对策[J].中国电力, 2002, 35(12):1–6.
    85郭瑞,杨建刚.汽轮机进汽方式对调节级叶顶间隙蒸汽激振力影响的研究[J].中国电机工程学报, 2006, 26(1):8–11.
    86 S. Chai, Y. M. Zhang, H. Ma, Q. W. Qu, Y. Q. Zhao. The Analysis for the Air?owExciting-vibration Force of Control Stage of Steam Turbine[J]. Applied Mathemat-ics and Mechanics, 2001, 22(7):794–801.
    87柴山,张耀明,马浩,曲庆文.转子偏心引起的气流激振力分析[J].机械工程学报, 2000, (4):34–37.
    88赵三星,孟光,荆建平,李鸿光.汽封力作用下的转子-轴承系统稳定性研究[J].汽轮机技术, 2007, 49(4):280–284.
    89 H. P. Bloch, M. P. Singh. Steam Turbines: Design, Applications & Re-rating[M].McGraw-Hill Professional, 2008:42–76.
    90 H. Irrtier. Transient Vibrations of Turbine Blades Due to Passage Through PartialAdmission and Nozzle Excitation Resonance[C]. Proc. IFToMM Intl. Coif. RotorDynamics, Tokyo. 1986:301–306.
    91 Y. Kaneko, K. Mori, T. Miyawaki. Vibration of Steam Turbine Blade Caused byShock Load Due to Partial Admission[J]. Proceedings of JSME, 2007, 19(5):1353–1360.
    92范小平,曹守洪,李泽培.新型大功率汽轮机调节级动叶振动分析[J].热力透平, 2009, 38(1):22–24.
    93叶菱,徐强.双层围带侧装式调节级动叶安全性设计[J].上海汽轮机, 2001,(3):1–4.
    94 P. Lampart, M. Szymaniak, A. Karda. Unsteady Forces Acting on Rotor Blades ofa Large Power Steam Turbine Control Stage at Different Levels of Partial Admis-sion[J]. Transactions of the Institute of Fluid-Flow Machinery, 2003, 114:5–17.
    95 R. Pigott. Turbine Blade Vibration Due to Partial Admission[J]. International Jour-nal of Mechanical Sciences, 1980, 22(4):247–264.
    96 K. Namura. Tangential Vibration of Integral Turbine-blades Due to Partial Admis-sion[C]. Fluid/Structure Interactions in Turbomachinery; ASME Proceedings of theWinter Annual Meeting. 1981:25–32.
    97 F. Boulbin, N. Penneron, J. Kermarec, M. Pluviose. Turbine Blade Forces Due toPartial Admission[J]. Revue Francaise de Mecanique, 1992, (3):203–208.
    98 R. Rzadkowski. The Partial Admission of Tuned and Mistuned Bladed Disks[J].Journal of Sound and Vibration, 1994, 171(2):201–217.
    99杨建刚,朱天云,高伟.汽流激振对轴系稳定性的影响分析[J].中国电机工程学报, 1998, 18(1):9–11.
    100赵钢,蒋东翔,周斌,李献伟,武文萍,王雪峰.汽流激振故障的分析及处理[J].汽轮机技术, 2004, 46(2):81–89.
    101赵钢,蒋东翔,刁锦辉,周斌.大型汽轮发电机组高压转子低频振动故障分析[J].汽轮机技术, 2004, 46(3):199–201.
    102 M. L. Adams. Rotating Machinery Vibration: From Analysis to Troubleshoot-ing[M]. CRC Press, 2009:529–564.
    103 H. Kanki, S. Shibabe, N. Goshima. Destabilizing Force of Labyrinth Seal underPartial Admission Condition[C]. Proceedings of ISCORMA-2. 2003:143–150.
    104 H. Kanki, N. W. Mureithi, M. Kawanishi, N. Kojima. Research on Unstable Vi-bration Caused by Partial Admission in High Pressure Turbines[J]. Nippon KikaiGakkai Kansai Shibu Teiji Sokai Koenkai Koen Ronbunshu, 2002, 77:13–15.
    105黄秀珠.东方300MW机组高中压转子振动故障诊断[J].热力发电, 2000,(3):55–58.
    106陆颂元. 320MW机组轴系汽流诱发非稳定低频振动的试验研究及计算分析[J].动力工程, 2001, 21(2):1093–1098.
    107陆颂元,邓陈斌. 320MW超临界压力机组轴系非稳定振动试验及分析[J].中国电力, 2000, 36(11):147–151.
    108陈蓉,柳平,张晓丽.蒸汽激振及振动稳定性研究[C].大型发电机组振动和转子动力学学术会议. 2003:24–31.
    109高林,戴义平,王志强,徐亚涛,马庆中.大功率汽轮机配汽方式对轴系稳定性的影响[J].中国电机工程学报, 2008, 28(35):84–89.
    110葛庆,彭喜忠. 600MW机组不同进汽方式汽流对轴系的干扰研究[J].热力透平, 2008, 37(1):35–38.
    111葛庆,彭喜忠. 600MW至1000MW等级机组不同进汽方式下汽流对轴系的干扰研究[C].中国动力工程学会透平专业委员会2007年学术研讨会.2007:138–144.
    112 H. Kanki, A. Tanitsuji. Study on Stability of High Pressure Turbine (Effect ofPartial Admission)[J]. Transactions of the Japan Society of Mechanical Engineers.C, 2006, 72(724):3711–3718.
    113 H. Kanki, A. Tanitsuji. Stability of High Pressure Turbine under Partial AdmissionCondition[C]. Proceedings of IDETC/CIE. 2005:1123–1128.
    114 P. Lampart, M. Szymaniak, R. Rzadkowski. Unsteady Load of Partial AdmissionControl Stage Rotor of a Large Power Steam Turbine[C]. Proceedings of ASMETurbo Expo. 2004:237–246.
    115 TCE. Partial Arc Admission in Steam Turbines[J]. Bearing Journal, 2003, 5(2):1–2.
    116 D. J. Dorney, L. W. Griffin, D. L. Sondak. Full- and Partial-admission Performanceof the Simplex Turbine[J]. Journal of propulsion and power, 2004, 20(3):486–491.
    117 H. Morita, H. Kanki, Y. Yamamoto, M. Kawanishi, S. Shibabe. Destabilizing ForceOccurred at Partial Admitted Steam Turbine[J]. Nippon Kikai Gakkai Kansai ShibuTeiji Sokai Koenkai Koen Ronbunshu, 1999, 74(7):37–38.
    118 J. W. Lund. Review of the Concept of Dynamic Coefficients for Fluid Film JournalBearings[J]. Journal of Tribology, 1987, 109(1):37–41.
    119钟阁顺,孟林辉,张秀坤,蒋明东,左世伟.引进型600MW凝汽式汽轮机配汽方式的优化[J].华北电力技术, 2007, (2):35–38.
    120纪海东,于达仁.汽轮机配汽剩余汽流力对轴系影响的研究[J].黑龙江电力,2003, 25(5):355–358.
    121孙军.顺序阀运行方式下600MW汽轮机瓦温偏高分析[J].华东电力, 2006,34(10):74–76.
    122李光. 200MW汽轮机轴承故障的诊断与处理[J].中国电力, 2004, 37(1):43–46.
    123向丽晖,庞亚宁.机组进汽方式对轴振瓦温的影响[J].华北电力技术, 2007,(2):48–51.
    124 D. R. Gruwell, F. Y. Zeidan. Vibration and Eccentricity Measurements Combinedwith Rotordynamic Analyses on a Six Bearing Turbine Generator[C]. Proceedingsof the 27th Turbomachinery Symposium. Texas A&M University, College Station,Texas, 1998:85–92.
    125徐熙瑾,王学根,朱朝阳.改变阀门配汽特性降低主机轴承温度[J].汽轮机技术, 2007, 49(3):220–222.
    126 M. Valenti. Refurbishing Steam Turbines[J]. Mechanical Engineering, 1997,119(12):84–86.
    127王爽心,葛晓霞.汽轮机数字电液控制系统[M].北京:中国电力出版社,2004:17–43.
    128 E. Hwang. Steam Turbine Valve Management System, 1989. US Patent 4,811,565.
    129 E. Hwang, T. Thomas. Computer Aided Tuning of Turbine Controls, 1989. USPatent 4,866,940.
    130陈永科. 300MW机组阀切换负荷波动原因分析[J].自动化博览, 2006, (2):69–70.
    131郭建东,梁学斌,高武军. 500MW机组DEH改造后阀切对负荷波动的影响[J].华北电力技术, 2007, (02):152–154.
    132徐庆明,马开茂. 600MW机组阀切换负荷波动原因分析及对策[J].可编程控制器与工厂自动化, 2009, (7):86–88.
    133吕继奎,陆继东.国产300MW机组阀切换时负荷波动原因分析及对策[J].广东电力, 2002, 15(1):47–49.
    134曹振新.汽轮机组阀切换负荷波动的分析[J].天津电力技术, 2009, (1):38–40.
    135王文宽,孟祥荣.汽轮机顺序阀控制参数的整定[J].山东电力高等专科学校学报, 2004, 7(3):53–56.
    136唐培全,李慎斌,林兆乐. DEH阀门流量特性试验[J].山东电力高等专科学校学报, 2004, 7(4):164–167.
    137于达仁,徐志强,王鑫. DEH系统中阀门管理的新思想[C]. 2004电站自动化信息化学术技术交流会议论文集. 2004:87–90.
    138于达仁,毛志伟,徐基豫.基于信息冗余的容错阀门管理[J].中国电机工程学报, 1998, 18(1):22–25.
    139于达仁,刘金福,徐基豫,杨金福,李维群.降低阀门节流损失的阀门管理新策略[J].汽轮机技术, 2000, 42(5):269–273,313.
    140王文宽.大型汽轮机阀门管理参数的现场整定[J].汽轮机技术, 2008,50(2):156–158.
    141田雷.汽轮机阀门管理的优化及实现[J].广西电力, 2008, (2):42–44.
    142朱蓬勃.某600MW汽轮机DEH系统阀门管理环节的改进[D].东北电力大学,2007:26–43.
    143谢健育,潘勇坚,赖加良. 700MW机组汽轮机阀门管理设计分析[J].广东电力, 2006, 19(8):67–70.
    144何君毅,林祥都.工程结构非线性问题的数值解法[M].北京:国防工业出版杜, 1994:51–54.
    145郑铁生,张文,马建敏,杨树华.滑动轴承非线性油膜力的几个理论问题及应用[J].水动力学研究与进展, 2003, 18(6):761–768.
    146陶鼎文.火力发电设备技术手册(第二卷:汽轮机)[M].北京:机械工业出版社,1999:220–269.
    147田丰,邓少翔,韩景复,徐睿,郑李坤.国产600MW汽轮机配汽特性对轴承温度影响试验研究[J].汽轮机技术, 2009, 51(1):64–69.
    148李杰,王艳.部分进汽方式下汽轮机组轴瓦金属温度偏高的分析及处理[C].第二届全国火力发电厂汽轮机专业技术交流研讨会. 2008:85–87.
    149李江海.三门峡300MW汽轮机轴系振动故障的诊断和治理[C].中国电机工程学会2004年学术年会. 2004:151–154.
    150高增宝.关于空冷机组背压选择的问题[J].电力建设, 2002, 23(4):4–8,18.
    151胡文斌. 300MW汽轮机DEH系统阀门管理的研究[J].上海电力学院学报,2003, 19(3):17–20.
    152周珂珂,谷俊杰. DEH给定值处理逻辑和阀门管理系统[J].电力科学与工程,2006, (3):80–83.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700