大型直缝焊管四点弯曲JCOC成形新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界各国对能源需求不断增加,以石油、天然气为主的传统能源并没有因为核能、太阳能等新能源的出现被替代,反而因技术不断进步表现出强劲的市场需求,而与之紧密联系的大型管道制造业近些年更是得到迅猛发展。以JCOE/JCO和UOE为代表的制管工艺在理论界与工程界均得到广泛研究和应用,其中JCO成形工艺具有投资少、见效快、成形质量与UOE相近的特点,应用广泛。
     传统JCO成形技术理论基础为三点弯曲力学原理,存在着成形道次多,生产效率低,管坯形状精度不高,残余应力大等不足;UOE成形工艺虽然效率高,但一个管径需配备一套模具,模具成本高。目前工程领域两种成形工艺成形前一般均需对板坯进行预弯边处理,后续整径矫圆普遍采用扩径矫圆工艺。扩径矫圆工艺在对管坯形状进行矫正的同时,也易扩大组织内部缺陷。本文在三点弯曲JCO成形工艺研究的基础上,以宽板四点弯曲弹复理论为依据,结合缩径矫圆理论和实验研究,创新地提出了四点弯曲JCO成形和缩径矫圆相结合的大型直缝焊管四点弯曲JCOC生产新工艺,该工艺成形的管坯具有如下特点:圆形截面,形状精度高;成形道次少,生产效率高;无需板边预弯,减少设备投资;残余应力小,且分布均匀;模具数量少,柔性程度高;防止缺陷扩大,成形圆度理想。
     本文对UOE和JCOE成形工艺路线和工艺特点进行分析,在阐述四点弯曲JCO成形力学原理的基础上,对比扩径矫圆和缩径矫圆工艺特点,提出四点弯曲JCOC成形的新工艺流程并进行了实验验证。
     本文结合经典弹塑性力学,基于平截面,单向应力,应力中性层、应变中性层和板坯的几何中心层重合,小变形和双线性硬化模型的假设,建立了宽板四点弯曲及其弹复问题的力学模型,对宽板四点弯曲成形及其弹复进行理论解析。推导出回弹前后,板坯中心层的曲率半经与弯曲行程和模具几何参数之间的关系。通过设计宽板四点弯曲成形的实验模具对理论进行了实验验证,通过ABAQUS有限元分析软件对四点弯曲过程进行了数值模拟。分析了模具参数和工艺参数,如:凸模圆角半径、凹模圆角半径、摩擦系数、板坯厚度、凸模跨距和凹模跨距对成形的影响规律。理论分析、数值模拟和实验吻合较好。
     本文提出了四点弯曲JCO成形新工艺工艺参数的制定规则。通过分析缩径率、矫圆成形力、板坯宽度、成形道次、送料步长、凸模跨距、凹模跨距、JCO成形力和弯曲行程等关键参数对成形的影响,得到了四点弯曲JCO成形参数制定的可靠规则。并按照该规则,对典型钢管的四点JCO成形进行了物理模拟获得了圆度较好的管坯。
     本文针对四点JCO成形的管坯提出了缩径矫圆的新工艺,并给出了确定工艺参数的方法,证实了以四点弯曲JCO成形和缩径矫圆相结合的新工艺用于直缝焊管的生产的可行性和优越性。
     通过本文的研究,初步建立了大型直缝焊管四点弯曲JCOC成形工艺路线,提出了相关参数的制定规则和确定方法,为该成形新工艺的进一步研究和工程应用提供了依据。
The advance of global industry processing technologies have not reduced the demandof energy, in particular, the traditional energy of oil and gas. On the contary, it has beenincreased among countires around the world due to the emergence of nuclear and solarenergy. To solve this problem and meet the demand of market, large pipe manufacturingtechnologies have been under rapid development in recent years, especially the JCOE/JCOand the UOE pipe technology that have been extensively researched and applied in theengineering industry. As a representative pipe manufacturing technology, the JCOforming process presents the characteristics of low cost, high efficiency and the similarforming quality of the UOE. Therefore, the JCO forming process has gained worldwiderecognition.
     Traditional JCO forming process is based on three-point bending theory. It requiresmore forming procedures, bears less productivity and accuracy of the pipe shape andcauses larger residual stress. Another forming process, the UOE forming process, hashigher efficiency, but the mold that mathces the pipe diameter requires high cost. In thecurrent studies of manufacturing engineering, both forming processes need to bepre-curved to the blank before forming. In addition, expanding and setting round iscommonly used in the follow-up setting round process to correct the pipe shape, with thedrawback of expanding the organization of internal defects. This study, based onthree-point bending JCOE forming process research, uses four-point bending springbackas the theoretical framework, aiming at establishing the longitudinal-seam submerged arcwelded(LSAW) pipe of four-point bending JCO forming by combining it withcompression to set round. The pipe of this forming process have the followingadvantagess: a. circular cross section; b. high shape precision; c. low forming steps; and d.high productivity. Furthermore, pre-bending of plate edge is not required, thus reduces theequipment cost. In addition, the facts that the residual stress is lower and evenlydistributed and the mold number is small with a higher flexible degree prevent theexpansion of defects, therefore the ideal circular degree of forming is achieved.
     The methodologies and procedures of the study include:
     First, based on the assumptions of flat section, uniaxial stress, stress neutral layer,strain neutral layer and the geometric of neutral layer coincide as well as the smalldeformation and bilinear hardening model, the study established the mechanical model ofboard blank four-point bending and springback by integrating the classical elastoplasticmechanical theories, theoretical verified the model, and examined the relationship betweencurvate radius of blank neutral layer, bending trip and die geometry parameters afterdeduced the before-and after-bending springback.
     Second, the study designed the board blank four-point bending mold and conductedexperiments to verify the theoretical analyses. Furthermore, it simulated the process offour-point bending using finite element analysis software ABAQUS. The results oftheoretical analyses have been verified by numerical simulation and experiments. Thestudy also analyzed the impact of the mold and process parameters on shaping law, suchas fillet radius of the punch, fillet radius of the die, coefficient of friction, punch span anddie span.
     Third, this study proposed the formulation of the process parameters of four-pointbending JCO. It analyzed the impact of blank width, forming step, feeding step, punchspan, die span, forming force, bending trip and other key parameters on forming process.Reliable rules of forming parameter to four-point bending JCO haven been achieved. Inaccordance with the rules established by the process parameters and the fact that theprototype pipe of X80steel level is widely used in the current market, the studyimplemented numerical simulation according to the principle of geometric similarity. As aresult, the experiment received better roundness pipe, with the specification of.
     Last, based on the theories of plane bending and springback, the study analyzed theprinciple of compression to make round. It designed the mold of compression to makeround to the pipe of four-point JCO forming and the ascertain process parameters. Itgained an ideal pipe through experiments, with the compression rate of1%and thespecification of, thus confirmed the feasibility and advantages of four-point bendingJCO forming combined with compression to make round using in the longitudinal-seamsubmerged arc welded pipe production.
     In conclusion, this study established initially longitudinal-seam submerged arcwelded pipe four-point bending JCOC forming process route, proposed the relatedregulations and methodologies, thus providing theoretical and experimental foundationprocess parameter formulation and mold design in the practice of engineering.
引文
[1]余洋.中国油气管道发展现状及前景展望[J].国际石油经济,2007,15(3):27-29.
    [2]杨秀琴.关于我国钢管行业发展战略的思考(上)[J].钢管,2006,35(1):12-18.
    [3]杨秀琴.关于我国钢管行业发展战略的思考(下)[J].钢管,2006,35(2):10-14.
    [4]殷国茂.编撰《中国钢管飞速发展的10年》后的几点体会[J].钢管,2010,39(1):8-19.
    [5]殷国茂.我国钢管飞速发展的10年概述[J].钢管,2009(2):6-13.
    [6]侯帅,张海军,兰兴昌.大口径直缝埋弧焊管生产技术与装备的新进展[J].钢管,2009,38(1):46-52.
    [7] LI Jian, ZHAO Jun, SUN Hong-lei, et al. Improvement of springback prediction of wide sheetmetal air bending process[J]. Journal of Central South University of Technology,2008,15(0):310-315.
    [8]李建,赵军,展培培,等.板料自由弯曲成形及回弹理论解析[J].塑性工程学报,2009,16(4):1-6.
    [9]高颖,李强,孟宪昌.JCO钢管成形仿真技术研究[J].铸造技术,2009,30(1):77-79.
    [10]黄克坚,冯钊棠,苏章卓,等.芯轴旋弯式JCOE成形过程数值模拟试验[J].塑性工程学报,2010(1):82-87.
    [11]高颖,李强.大口径直缝焊管有限元仿真技术[J].重型机械,2008(4):1-6.
    [12]李强,范利锋,高颖,等.模具曲率半径对X80管线钢管JCO成形影响分析[J].塑性工程学报,2010,17(3):113-118.
    [13]杜伟,娄琦,黄磊,等.管线钢JCOE制管前后力学性能变化分析[J].焊管,2010,33(5):20-23.
    [14]郭宝锋.管线钢管机械扩径工艺的数值模拟与实验研究[D].秦皇岛:燕山大学材料加工工程学科博士学位论文,2001:25-46.
    [15]马丽霞,李建,赵军,等.基于机器视觉的板料弯曲角实时识别系统研究[J].塑性工程学报,2008,15(5):147-151.
    [16]王俊元.秦皇岛中油宝世顺直缝焊管JCOE成型机安装施工技术探析[Z],2010:227-228.
    [17]马宗耀,杨专钊.大口径高钢级JCOE直缝埋弧焊接钢管包申格效应试验研究[J].石油矿场机械,2009,38(1):65-68.
    [18]杨延华,杨专钊,丁毅,等.卷板制造JCOE直缝埋弧焊接钢管性能[J].油气储运,2008,27(6):27-31.
    [19]李宏.直缝埋弧焊钢管生产线预弯工艺[J].焊管,2006,29(1):55-57,79.
    [20]张晨鹏,廖淑梅.X80钢级直缝埋弧焊管的研制[J].钢管,2005,34(4):41-44.
    [21]张远生,李延丰.大口径直缝埋弧焊钢管生产线简介[J].焊管,2001,24(6):35-37,62.
    [22]成海涛,杨秀琴.我国钢管行业未来发展趋势分析[J].钢管,2009,38(1):10-17.
    [23]严泽生.加快结构调整实现钢管行业科学发展[J].焊管,2010,33(5):12-19.
    [24]王晓香.我国焊管市场形势及对策建议[J].钢管,2011,40(5):9-12.
    [25]李英,何显光,石成江,等.螺旋钢管成型方式与内应力关系的研究[J].焊管,2003(5):14-16,61.
    [26]毛周团,尹志远,王少华,等.螺旋埋弧焊管预精焊生产工艺[J].焊管,2010(3):52-55.
    [27]魏伟荣,荆松龙,杨专钊,等.大直径直缝埋弧焊管行业现状与展望[J].焊管,2012(4):5-9,14.
    [28]曾明,江海涛,胡水平,等.高钢级X100管线钢的组织与性能[J].材料科学与工程学报,2011,29(3):386-391.
    [29]李建淼,郭小军,郝剑钊.X80与X70管线钢技术经济分析[J].中国高新技术企业,2010(15):67-69.
    [30]张晨鹏,廖淑梅.X80钢级直缝埋弧焊管的研制[J].钢管,2005,34(4):41-44.
    [31]张伟卫,李洋,李鹤,等.X100高强度管线钢管组织性能及焊接性能研究[J].焊管,2011,34(10):16-19.
    [32]齐丽华,杨龙,冯耀荣,等.X100级管线钢的微观组织与力学性能的关系[J].热加工工艺,2011,40(2):15-19.
    [33]张小立,冯耀荣,王亮亮.X100管线钢的组织与性能[J].中原工学院学报,2011,22(3):9-13.
    [34]肖英杰(译),孙常全(编译).X100/X120管线钢的研发和生产[J].焊管,2010,33(5):67-71.
    [35]贾书君,刘清友,彭伶俐,等.X100管线钢的工艺控制[J].材料热处理学报,2011,32(11):28-33.
    [36]纪海涛,王晓香,马亚静,等.X100试验管线钢管的规范和生产[J].焊管,2011,34(4):63-71.
    [37]王俊元.秦皇岛中油宝世顺直缝焊管JCOE成型机安装施工技术探析[J].科技情报开发与经济,2010(35):227-228.
    [38]王晓香.焊接钢管技术的新进展[J].焊管,2011,34(3):5-11.
    [39]王晓香,李延丰.高强度管线钢管开发在中国的新进展[J].钢管,2011,40(1):12-18.
    [40]刘京雷,谢仕强,阮锋.弯曲回弹逆解公式及其在焊管预弯机组设计中的应用[J].锻压技术,2005(2):36-38,43.
    [41]刘京雷,黄克坚,阮锋.预弯工艺参数对UOE焊管O成形的影响[J].塑性工程学报,2005(3):71-75.
    [42]刘京雷,黄克坚,阮锋.大口径直缝焊管O成形过程的有限元分析[J].材料科学与工艺,2007(5):693-696.
    [43]黄克坚,刘京雷,阮锋.UOE成形工艺在大直缝焊接钢管生产中的应用[J].锻压技术,2006(1):18-21.
    [44]刘庆才,陈淑荣.UOE制管工艺O成形所需压力的分析和工程计算[J].锻压技术,2006(1):31-33.
    [45]李宏.直缝埋弧焊钢管生产线预弯工艺[J].焊管,2006(1):55-57,79.
    [46]谢志民,夏金明.直缝埋弧焊管预弯工艺参数设计[J].焊管,2007,30(3):52-54.
    [47]叶泽刚.逐步折弯成形原理及其应用研究[D].武汉:武汉理工大学机械工程学科工程硕士学位论文,2003.
    [48]高颖.大口径直缝焊管JCO成形过程理论分析与计算机仿真[D].秦皇岛:燕山大学材料加工工程学科博士学位论文,2011.
    [49]宋聪惠.直缝焊管JCO成形过程理论分析与实验研究[D].秦皇岛:燕山大学机械设计及理论学科硕士学位论文,2011.
    [50] ZHAO Jun, LI Jian, QU Xiao-yang, et al. Study on intelligent control technology for formingsteel pipe of pipeline with JCO process[J]. Science China Technological Sciences,2011,54(10):2754-2759.
    [51]李建.大口径直缝埋弧焊管JCO成形智能化控制技术的研究[D].秦皇岛:燕山大学材料加工工程学科博士学位论文,2009:7-8.
    [52]殷璟.小曲率平面弯曲弹复理论及其实验验证[D].秦皇岛:燕山大学材料加工工程学科博士学位论文,2011.
    [53]赵军,殷璟,马瑞,等.小曲率平面弯曲弹复方程[J].中国科学:技术科学,2011,41(10):1342-1352.
    [54]殷璟,赵军,屈晓阳,等.大型管件扩径矫圆弹复分析[J].机械工程学报,2011,47(12):32-42.
    [55]殷璟,赵军,孙红磊,等.大型管件的模压式精确缩径矫圆[J].光学精密工程,2011,19(9):2072-2078.
    [56]唐立峰.大口径直缝焊管成型应力分析[D].天津:天津大学材料加工工程学科硕士学位论文,2006:15-40.
    [57]刘倩.大口径直缝焊管扩径消应工艺模拟[D].天津:天津大学材料加工工程学科硕士学位论文,2006:15-36.
    [58]刘哲.X80高强管线钢焊接性的模拟研究[D].天津:天津大学材料加工工程学科硕士学位论文,2005:40-45.
    [59]张宏.基于ANSYS平台的管线钢焊接温度场模拟[D].成都:西南交通大学材料加工工程学科硕士学位论文,2007:37-52.
    [60]余大典,王啸修.直缝焊管机械扩径工艺技术研究[J].宝钢技术,2008(3):62-65.
    [61] WEICKER K, SALAHIFAR R, MOHAREB M. Shell analysis of thin-walled pipes. Part I-Fieldequations and solution[J]. International Journal of Pressure Vessels and PIPI,2010,87(7):402-413.
    [62]杨兴厚.机械扩径工艺研究与工艺参数优化[D].秦皇岛:燕山大学材料加工工程学科硕士学位论文,2009:11-12.
    [63]金淼,郭宝锋,任运来,等.大口径管线钢管机械扩径工艺实验研究[J].锻压技术,2001(3):44-46.
    [64] KARRECH A, SEIBI A. Analytical model for the expansion of tubes under tension[J]. Journalof Materials Processing Technology,2010,210(2):356-362.
    [65]李聚群,杨晓红,姚志英.管材扩径时摩擦对变形状态的影响[J].锻压技术,2008(1):133-135.
    [66]胡念军,林大为.圆管扩径力的解析[J].锻压技术,2006(2):32-33,35.
    [67]胡念军,林大为.圆管扩径过程的变形分析[J].塑性工程学报,2006(3):52-55.
    [68]唐立峰,王立君,杨春阁.大口径直缝焊管扩径后外表面周向残余应力的估算[J].焊管,2006(2):13-16,77.
    [69]桂中祥,刘全坤,孙世保.直缝埋弧焊管端口扩径变形分析[J].模具技术,2009(4):15-18,22.
    [70]殷璟,赵军,屈晓阳,等.大型管件扩径矫圆弹复分析[J].机械工程学报,2011,47(12):32-42.
    [71]郭宝锋,金淼,吴生富,等.扩径率和重叠量对机械扩径制品品质的影响[J].中国机械工程,2004(12):79-82.
    [72]郭宝锋,聂绍珉,金淼,等.管筒形件的机械扩径成形条件[J].中国有色金属学报,2002(6):1149-1153.
    [73]郭宝峰,赵石岩,王东城,等.管筒形零件机械扩径工艺过程的多目标优化[J].塑性工程学报,2007(4):35-39.
    [74]郭宝峰,杨艳子,金淼.塑性成形工艺参数稳健优化设计方法[J].塑性工程学报,2009(6):1-5.
    [75] CHEN Xiao-yan, GUO Bao-feng, JIN Miao, et al. Optimization of forming parameters ofcylinders in mechanical expanding process[J]. Suxing Gongcheng Xuebao,2006,13(6):24-28.
    [76]张志明,卢胜勇,苏景富,等.X70JCOE焊管机械扩径工艺[J].焊管,2011(5):43-46,51.
    [77]周秀峰,杨庆东,张瑞乾,等.钢管扩径头重压摩擦副润滑技术研究及应用[J].焊管,2011(9):23-26.
    [78]黄克坚,苏章卓,甘遂谋,等.焊管机械扩径力的计算[J].焊管,2010(12):23-26.
    [79]肖曙红.管线用直缝焊管机械扩径及其影响因素研究[J].石油机械,2007(3):1-4.
    [80] HERYNK, M.D., KYRIAKIDES, S., ONOUFRIOU, A., et al. Effects of the UOE/UOC pipemanufacturing processes on pipe collapse pressure[J]. International Journal of MechanicalSciences,2007,49(5):533-553.
    [81]夏金明,严威,沈祎军.直缝埋弧焊钢管扩径头的研制[J].钢管,2006(2):25-28.
    [82]殷璟,赵军,孙红磊,等.大型管件的模压式精确缩径矫圆[J].光学精密工程,2011,19(9):2072-2078.
    [83] HILL R.The mathematical theory of plasticity [M]. London: Oxford University Press,1950.中译本:王仁等译.塑性数学理论[M].北京:科学出版社,1966:31-78.
    [84]曹祖青.关于弯曲理论的基本假设[J].南平师专学报,2000(2):29-32.
    [85]刘庚武.宽板弯曲时非线性硬化应力中性层位置的求解[J].热加工工艺,2009(15):76-79.
    [86] LI Jian, ZHAO Jun, SUN Hong-lei, et al. Improvement of springback prediction of wide sheetmetal air bending process[J]. Cent. South Univ. Technol.,2008(2):310-315.
    [87] QIAN Zhi-ping, MA Rui, ZHAO Jun, et al. Intelligent control technology for deep drawing ofsheet metal[J]. Cent. South Univ. Technol.,2008(2):273-277.
    [88]赵军,杨嵩,马瑞,等.智能化拉深控制中的侧壁起皱临界条件[J].塑性工程学报,2007,14(3):121-124.
    [89]官英平,赵军,苏春建.宽板V形自由弯曲智能化控制过程材料参数识别及最优工艺参数预测[J].机械工程学报,2005,41(4):199-202.
    [90]官英平,赵军,苏春建.宽板V型自由弯曲智能化控制过程的解析定量描述[J].塑性工程学报,2005,12(2):30-33.
    [91] JI Bin, CHEN Wan-ji. A new analytical solution of pure bending beam in couple stresselasto-plasticity: Theory and applications[J]. International Journal of Solids and Structures,2010,47(6):779-785.
    [92]李雪春,杨玉英,王永志,等.材料硬化模式对弯曲回弹模拟精度的影响[J].材料科学与工艺,2002(3):277-280.
    [93]张冬娟,崔振山,李玉强,等.宽板大曲率半径纯弯曲回弹量理论分析[J].工程力学,2006(10):77-81.
    [94] ZANG S-l, LIANG J, GUO C. A constitutive model for spring-back prediction in which thechange of Young's modulus with plastic deformation is considered[J]. International Journal ofMachine Tools and Manufac,2007,47(11):1791-1797.
    [95] PANTHI S K, RAMAKRISHNAN N, AHMED M, et al. Finite Element Analysis of sheetmetal bending process to predict the springback[J]. Materials and Design,2010,31(2):657-662.
    [96] PANTHI S K, RAMAKRISHNAN N, PATHAK K K, et al. An analysis of springback in sheetmetal bending using finite element method (FEM)[J]. Journal of Materials ProcessingTechnology,2007,186(1-3):120-124.
    [97] LEU, DAW-KWEI. Simplified approach for evaluating bendability and springback in plasticbending of anisotropic sheet metals[J]. Journal of Materials Processing Technology,1997,66(1-3):9-17.
    [98] GAU, JENN-TERNG, KINZEL, GARY L.. A new model for springback prediction in whichthe Bauschinger effect is considered[J]. International Journal of Mechanical Sciences,2001,43(8):1813-1832.
    [99] SANCHEZ L R. Modeling of springback, strain rate and Bauschinger effects fortwo-dimensional steady state cyclic flow of sheet metal subjected to bending under tension[J].International Journal of Mechanical Sciences,2010,52(3):429-439.
    [100] CHATTOPADHYAY J, KUSHWAHA H S, ROOS E. Improved integrity assessment equationsof pipe bends[J]. International Journal of Pressure Vessels and PIPI,2009,86(7):454-473.
    [101] MOON Y H, KIM D W, VAN T J. Analytical model for prediction of sidewall curl duringstretch-bend sheet metal forming[J]. International Journal of Mechanical Sciences,2008,50(4):666-675.
    [102]钱志平,周超,赵军,等.塑料包覆铝型材拉弯回弹研究[J].塑性工程学报,2008,15(3):77-80.
    [103]钱志平,赵军.塑料包覆铝型材拉伸弯曲实验研究[J].塑性工程学报,2007,14(3):117-120.
    [104]兰兴昌,张海军,于百勤,等.大口径直缝埋弧焊管成型技术的进步[J].钢管,2006(1):26-31.
    [105]谢仕强,桂光正,郑磊,等.X80钢级大直径UOE直缝埋弧焊管的开发及应用[J].钢管,2011(4):29-36.
    [106]黄卫锋,李建新,姚士杰,等.宝钢UOE大口径直缝埋弧焊管机组的技术特点与优势[J].宝钢技术,2008(5):11-14.
    [107]彭在美.关于宝钢建设UOE钢管生产线若干技术问题探讨[J].冶金信息导刊,2004(4):5-11.
    [108]唐中川,高强.UOE和JCOE管线管的性能和成本分析[J].现代制造技术与装备,2010(2):14-16.
    [109]赵石岩.UOE焊管成形质量控制的策略研究与仿真系统开发[D].秦皇岛:燕山大学材料加工工程学科博士学位论文,2009:48-49.
    [110]孙瑞华.UOE焊管生产及其现状[J].焊管,2000(5):24-39,61.
    [111]隋晏,张学胜,姚伟力,等.VB环境中平面曲线的绘制与坐标轴刻度的标注[J].福建电脑,2008,24(5):70-71.
    [112]马玉洁.基于VB的数学曲线动态绘制[J].电脑知识与技术,2007,1(2):491-492.
    [113]郑丽娟.VB中简易绘图的实现[J].中国科技信息,2006(6):187-187.
    [114]郑勇,吴勇.基于VB实现的实时数据趋势曲线[J].机械与电子,2003(5):72-73.
    [115]庄茁.有限元软件ABAQUS6.4版入门指南[M].北京:清华大学出版社,2004:1-3.
    [116]曹金凤,石亦平.ABAQUS有限元分析常见问题解答[M].北京:机械工业出版社,2009:1-10.
    [117] YOSHIDA F, UEMORI T, ABE S. Modeling of large-strain cyclic plasticity for accuratespringback simulation[C]//Key Engineering Materials:Department of Mechanical SystemEngineering, Hiroshima University,1-4-1, Kagamiyama, Higashi-Hirosh,2007:811-816.
    [118] DEL PRETE A, PRIMO T, DE VITIS A A. Non deterministic approach in metal formingspringback simulation[Z]: Department of Engineering Innovation, University of Lecce, Via perArnesano,73100-Lecce, Italy,2007:399-410.
    [119] LUC P, JEAN-PHILIPPE P. Finite element simulation of springback in sheet metal forming[Z]:LTAS-Milieux Continus et Thermomecanique, Universite de Liege,1, Chemin des Chevreuils,B-4000Lieg,2002:785-791.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700