JCOE成形工艺参数和模具参数对焊管质量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
JCOE渐进式多步模压成形是一种大口径直缝焊管成形技术,由于该工艺设备投资少,适应市场能力强,在很多国家得到了广泛应用。但其工艺路线长、成形工艺技术参数多、模具结构复杂,目前的大部分工艺参数的设计工作仍然依赖于操作人员的经验。这种生产方法存在焊管几何形状误差大、生产效率低等现实问题。同时,在直缝焊管的生产实践中,由于管坯材料性能等不确定因素对焊管成形质量的影响,导致焊管成形质量不稳定。本文以Φ1219mm×22mm×12000mm焊管为例,将直缝焊管JCOE成形过程作为分析对象,从JCOE成形变形特征、JCOE成形工艺参数和模具参数优化设计和JCOE成形焊管质量稳健性等三个方面展开系统研究,以生产效率、管坯几何精度和成形质量稳健性为优化目标,各工艺阶段工艺参数和模具参数为设计变量,提出JCOE成形工艺参数和模具参数优化方案。
     首先,本文以Hill精确弯曲理论为基础,考虑径向应力、宽向应力和中性层内移,建立预弯、对称弯曲和非对称弯曲三种弯曲模式数学模型,得到三种弯曲模式下的应力应变、截面弯矩、模具受力和板料回弹等相关理论模型。数学模型不仅分析预弯和JCO成形的基本变形特征,而且提供了工艺参数和模具参数的设计理论基础;同时,建立了理想状态下的JCO成形管坯几何规划模型,提出管坯不同工艺阶段的质量评价指标,确定各工艺阶段的工艺参数和模具参数,为JCOE成形工艺的系统分析奠定基础。
     其次,采用有限元分析软件ABAQUS建立了包括预弯、JCO成形和机械扩径在内的系统全面分析有限元模型,并通过实验的方法验证了模型的准确性。仿真结果揭示成形过程中应力/应变状态、几何形状和力学性能等变形特征。以JCO成形管坯几何规划模型为基础,得到了成形过程中各工艺参数和模具参数与成形质量的相关影响规律。
     第三,将预弯、JCO成形和机械扩径成形作为研究对象,采用优化拉丁方设计安排仿真实验方案,以仿真结果为样本点,采用径向基函数响应面法构建JCOE成形质量预测模型。以管坯横断面几何精度和成形效率为目标,应用遗传算法和灰色关联分析进行JCOE成形工艺参数和模具参数多目标优化设计,得到了JCOE成形工艺参数和模具参数的最优方案。通过与原始设计方案对比可知:在保证焊管横断面几何精度的前提下,优化方案的压下道次比原始设计方案减少12次,生产效率明显提高。
     最后,应用田口设计法设计仿真方案,建立包含材料性能参数在内的响应面模型,并采用蒙特卡洛模拟抽样分析了焊管成形质量的概率分布情况。通过分析可知原始设计方案和确定性优化方案的焊管质量稳健性均需进一步改善。本文根据稳健性设计原理和6sigma质量评价标准,基于随机模型的稳健设计方法获得了JCOE成形工艺参数和模具参数稳健性优化设计方案。通过对比分析可知:稳健性优化方案比确定性优化方案的弯曲次数增加2次,但显著提高了焊管成形质量稳健性。
     本文以产品制造品质及高效率要求为驱动,重点揭示了JCOE成形工艺参数和模具参数相关规律、提出JCOE成形工艺参数和模具参数多目标优化方案和JCOE成形质量稳健性设计方案,从而有效控制成形质量,为进一步提高大口径直缝焊管的制造技术水平提供了理论基础。
JCOE multi-step progress forming process as a large diameter straight welded(LSAW) steel pipe manufacturing technology is widely used in many countries foreconomic investment and adapting market. At present, most technical parameters designin JCOE forming still depended on the experience of workers for the length of routes,many forming parameters and complexity of mould structure. The production methodslead to welding pipe geometry error, low productivity efficiency et al. real problems.Meanwhile, the uncertainties such as material properties gave rise to unstable quality ofpipe in production. Taking JCOE forming process of Φ1219mm×22mm×12000mm pipefor example, the forming characteristics, optimization of technical parameters and productquality design are considered in this paper, in which efficiency, accuracy and quality asoptimization objective, the die parameters and process parameters of various processstages as design variables, JCOE forming die parameters and process parametersoptimization plan are discussed.
     Firstly, three bending mode mathematical model based on the Hill exact theory areestablished including crimping, symmetric bending and asymmetric bending, in which theradial stress, wide stress and neutral layer shift can be considered. the theory formulas ofstress, strain, bending moment, forming force and springback are obtained in the threekinds of bending mode. The results shown that the mathematical model meet well withexperimental results. The mathematical model not only analyzed the basic deformationcharacteristics of JCO forming, but also provided the theoretical basis of technicalparameters. At the same time, the establishment of the tube geometric programmingmodel of JCO in ideal forming state. The quality evaluation of different forming stages areproposed as JCOE systems analysis foundation.
     Secondly, a multi-process continuous forming finite element model is establishedusing the finite element analysis software ABAQUS including crimping, JCO forming andmechanical expanding. And the finite element model is verified by experiments, Thesimulation results revealed the stress/strain state in forming process, the geometry of forming and mechanical properties et al deformation characteristics. The effects of dieparameters and process parameters on JCOE forming quality based on geometricprogramming model of pipe are obtained.
     Thirdly, Taking crimping, JCO forming and mechanical expanding as researchobject, response surface models of JCOE forming quality are established using radial basisfunction (RBF) response surface method by simulation results from Latin square designsimulation program for the sample points. The optimal JCOE forming process plan isobtained by grey relation anaysis and genetic algorithm for cross section geometricaccuracy and forming efficiency. The optimization results are verified by finite elementanalysis methods. The twelve times of bending are reduced in optimization program onthe condition that welding pipe cross section geometric accuracy is guaranteed. So theproduction efficiency is obviously improved.
     Finally, The response surface models considered material properties are builded bysimulation program thougth taguchi design method. Probability distribution of weldingpipe forming quality is sampling analysed by Monte Carlo simulation. The analysis resultsshown that the welded pipe robustness of original design scheme and deterministicoptimization scheme needs to be further improved. In this paper, according robust designprinciple and six sigma quality criteria, the JCOE forming robustness optimized designbased on genetic algorithms, Monte Carlo simulation, and grey relational analysis arecompleted. Through the comparative analysis with deterministic optimization schemeshows that two times of bending are increased in robustness optimization scheme, butwelded pipe forming quality robustness is increased significantly.
     In order to improve effectively and control forming quality, the effects of JCOEforming die parameters and process parameters on welding pipe forming quality, JCOEforming die parameters and process parameters optimization and JCOE forming weldingpipe quality robustness design are proposed. Manufacturing quality and high efficiencyrequirements are focued. The technology systems of parameters manufacture for LSAWsteel pipe are developed further.
引文
[1]孙宏.西气东输二线X80级管线钢的开发和应用[J].焊管,2010,33(2):13-16.
    [2]李延丰,孙奇. JCOE直缝埋弧焊钢管生产线的研发和应用[J].焊管,2004,27(6):48-53.
    [3]潘家华.我国管道钢管的发展方向[J].焊管,1998,21(4):16-20.
    [4]陈宝林.我国建设直缝埋弧焊管机组的前景[J].钢管,2000,29(2):5-9.
    [5]李宏.直缝埋弧焊钢管生产线预弯工艺[J].焊管,2006,29(1):55-57.
    [6]蒲明.2009年我国油气管道新进展[J].国际石油经济,2010,(3):14-20.
    [7]李鹤林.油气输送钢管的发展动向与展望[J].焊管,2004,27(6):1-12.
    [8]屈平.我国成品油管道建设进展及促进措施[J].焊管,2006,29(5):17-20.
    [9]郑瑞,李铁军.我国管线钢的生产与发展[J].重型机械科技,2003(4):45-49.
    [10] Asahi H, Hara T, Sugiyama M,et al. Development of Plate and Seam Welding Technology forX120Line Pipe [C]//ISOPE Symposium on High-Performance Materials in Offshore Industry.Honolulu: ISOPE,2003.
    [11]兰兴昌,张海军,于百勤,等.大口径直缝埋弧焊管成型技术的进步[J].钢管,2006,35(1):166-171.
    [12]严圣祥,钟情霞.我国应发展大口径直缝焊管技术[J].焊管,2001,36(5):73-76.
    [13] Mohipour M. High pressure pipelines-trends for the new millennium[C].2000InternationalPipeline Conference Proceedings, Calgery, Canada, Otc.2000.
    [14]冯耀荣,刁顺,霍春勇,等.油气输送焊管残余应力测试与安全评价方法研究[J].中国安全科学学报,2007,17(9):159-165.
    [15] Fryer M, Tait P, Kyriakides S, et al. The prediction and enhancement of UOE-DSAW collapseresistance for deepwater pipelines[C]. Proceedings of the fifth biennial International PipelineConference, October4-8,2004, Calgary, Al, Canada,2004,(3):1961-1966.
    [16] Kyriakides S, Corona E, Fischer FJ. On the effect of the UOE manufacturing process on thecollapse pressure of long tubes[J]. ASME Journal of Engineering for Industry.1994,(116):93-100.
    [17] Al-Sharif A M, Preston R. Improvements in UOE pipe collapse resistance by thermal aging[C].Proceeding of the Offshore Technology Conference, OTC8211.1996,(2):579-588.
    [18] Suzuki M, Endo S, Suga M. Effect of PWHT on Flash Butt Welded Joint of TMCP Steel UOEPipe[C]. Proceedings of the International Conference on Offshore Mechanics and ArcticEngineering Symposium Proceedings of the Eighth International Conference on OffshoreMechanics and Arctic Engineering Hague,1989,(3):277-283.
    [19]唐中川,高强. UOE和JCOE管线管的性能和成本分析[J].现代制造技术与装备,2010,195(2):14-16.
    [20]谢志民,夏金明.直缝埋弧焊管预弯工艺参数设计[J].焊管,2007,30(3):52-54.
    [21]高颖.大口径直缝焊管JCO成形过程理论分析与计算机仿真[D].燕山大学,2010.
    [22]郭宝峰.管线钢管机械扩径工艺的数值模拟与实验研究[D].燕山大学,2001.
    [23]余大典,王啸修.直缝焊管机械扩径工艺技术研究[J].宝钢技术,2005,(3):62-65.
    [24]段志伟,仝天永.钢管机械扩径工艺研究[J].锻压技术,2003,28(1):44-47.
    [25]金森,郭宝峰.大口径管线钢管机械扩径工艺实验研究[J].锻压技术,2001,(3):44-46.
    [26]夏金明,严威,沈祎军.直缝埋弧焊钢管扩径头的研制[J].钢管,2006,35(2):25-28.
    [27]张绍庆.直缝埋弧焊钢管的扩径[J].焊管,2000,23(5):42-47.
    [28]肖曙红.管线钢直缝焊管机械扩径及其影响因索研究[J].石油机械,2007,35(3):1-4.
    [29]兰兴昌.我国建设大直径直缝埋弧焊管机组的机组选型[J].焊管,1998,1(4):41-45.
    [30]赵石岩. UOE焊管成形质量控制的策略研究与仿真系统开发[D].燕山大学,2010.
    [31]叶泽刚.逐步折弯成形原理及其应用研究[D].武汉理工大学,2002:21-40.
    [32]李建.大口径直缝埋弧焊管JCO成形智能化控制技术的研究[D].燕山大学,2009.
    [33] Gardiner F J. The Springback of Metals[J]. Transactions of ASME,1957,79:1-9.
    [34]余同希,张亮炽.塑性弯曲理论及其应用[M].北京:科学出版社,1992,45-86,181-187.
    [35] Hill R. The mathematical theory of plasticity[M]. Oxford, London,1950.
    [36] Zhang Z T, Lee D. Development of a new model for plane strain bending and springbackanalysis[J]. Journal of Materials Engineering and Performance.1995,4:291-299.
    [37] Zhang Z T, Hu S J. Stress and residual stress distributions in plane strain bending[J]. InternationalJournal of Mechanical Sciences,1998,40(6):533-543.
    [38]贺幼良,白光润,邹克让等.焊管胀径工艺理论研究[J].焊管,1997,20(6):9-11.
    [39]付正荣.螺旋焊管冷扩径技术的试验研究[J].重型机械,1999:18-22.
    [40]蔡锦达,程曦,付翔等.锥形模机械扩径力计算与主要影响因素分析[J].中国机械工程,2010,21(5):599-602.
    [41]杜喜代,杜海波.单头机械扩径机拉力分析[J].锻压装备与制造技术,2010,(1):72-74.
    [42]屈绪良.大口径螺旋焊管管端扩径机的改造[J].机床与液压,2009,37(1):183-187.
    [43]范利锋,高颖,李强,等.大口径直缝焊管机械扩径工艺的研究进展[J].重型机械,2011,(5):1-5.
    [44]吴鹏.大直径螺旋焊管管端扩径的数值模拟与实验研究[D].2001:24-40.
    [45]殷璟.小曲率平面弯曲弹复理论及其实验验证[D].燕山大学,2011.
    [46]马灿.大口径厚壁管成型技术[D].合肥工业大学,2010.
    [47]任强,李大永,邹天下,等. UOE焊管成形三维有限元模拟[J].光学精密工程,2011,3(6):80-84.
    [48] Palumbo G, Tricarico L. Effect of forming and calibration operations on the final shape of largediameter welded tubes[J]. Journal of Materials Processing Technology,2005,164-165(5):1089-1098.
    [49] Herynk M D, Kyriakides S, Onoufriou A, et al. Yun. Effects of the UOE/UOC pipemanufacturing processes on pipe collapse pressure[J]. International Journal of MechanicalSciences,2007,49(5):533-553.
    [50] Gao Ying, Li Qiang, Fan Lifeng. Finite Element Analysis of JCO Forming Process forLongitudinal Seam Submerged Arc Welded Pipes[J]. Journal of Modelling, Identification andControl,2010,11(3/4):239.
    [51]李强,范利锋,高颖,等.模具曲率半径对X80管线钢管JCO成形影响分析[J].塑性工程学报,2010,17(3):113-118.
    [52] Fan Lifeng, Gao Ying, Li Qiang. Quality Control on Crimping of Large Diameter WeldingPipe[J]. Chinese Jounal of Mechanical Engineering.2012,25(6):32-35.
    [53] Li Qiang, Fan Lifeng, Gao Ying, et al. Finite element analysis of pipeline steel air-bending[C].Advanced Materials Research.2011(V279):207-213.
    [54] Gao Ying, Fan Lifeng, Li Qiang, et al. Springback Analysis of Free Bending Based on UniformDesign[C]. The International workshop on Mechanic Automation and control Engineering(MACE2010). Wuhan. IEEE Computer Society,2010,3811-3814.
    [55] Gao Ying, Li Qiang, Fan Lifeng. Finite element analysis of JCO forming process for longitudinalseam submerged arc welded pipes[J]. International Journal of Modelling, Identification andControl,2010,11(3/4):239-249.
    [56] Gao Ying, Li Qiang, Fan Lifeng. Applications of Finite Element Method in Large-diameterLongitudinal Welded Pipe[C].2009International Conference on Measuring Technology andMechatronics Automation (ICMTMA2009). Zhangjiajie. IEEE Computer Society,2009,3:22-25.
    [57] Gao Ying, Wang Lijuan, Li Qiang, et al. Die parameter optimization in JCO bending based onFEM[C].2010The2nd International Conference on Computer Engineering and Technology(ICCET2010). Chengdu. IEEE Computer Society,2010,677-680.
    [58] Naceur H, Guo Y Q, Ben-Elechi S. Response surface methodology for design of sheet formingparameters to control springback effects[J]. Computers&Structures,2006(84):1651-1663.
    [59] Wang Lin, Chan L C, Lee T C. Process modeling of controlled forming with time variant blankholderforce using RSM method[J]. International Journal of Machine Tools and Manufacture,2007(47):1929-1940.
    [60] Alibrandi U, Impollonia N, Ricciardi G. Probabilistic eigenvalue buckling analysis solvedthrough the ratioof polynomial response surface[J]. Comput. Methods. Appl. Mech. Engrg,2010(199):450-464.
    [61] Kennedy C A, Lennox W C. Solution to the practical problem of moments usingnon-classicalorthogonal polynomials, with applications for probabilistic analysis[J]. ProbabilisticEngineering Mechanics,2000(15):371-379.
    [62] Wackernagel H. Multivariate geo-statistics[M]. Heidelberg: Springer-Verlag,1995.
    [63] Hardy R L. Theory and applications of the multiquadric-biharmonic method.20Years ofdiscovery.1968-1988[J]. Computers&Mathematics with Applications,1988,163-208.
    [64] Sin R, Chen W, Simpson T W. Comparative Studies of Metamodeling Techniques under MultipleModeling Criteria[J]. Journal of Structural and Multidisciplinary Optimization,2001,(1):1-13.
    [65]安志国.径向基函数模型在板料成形工艺多目标优化设计中的应用[D].重庆大学,2009.
    [66] Gao Ying, Liu Yuzhong, Fan Lifeng, et al. Influence of material properties on air bending basedon RBF[J]. Key Engineering Materials Vols.2011,(474-476):699-703.
    [67] Kurtaran H, Eskandarian A, Marzougui D, et al. Crashworthiness design optimization usingsuccessive response surface approximations[J]. Computational Mechanics,2002,29(4-5):409-421.
    [68] Kurtaran H, Erzurumlu T. Efficient warpage optimization of thin shell plastic parts usingresponse surface methodology and genetic algorithm[J]. International Journal of AdvancedManufacturing Technology.2006,27(5-6):468-472.
    [69]杨艳子.基于BP网络和稳健性分析的机械扩径工艺参数优化[D].燕山大学,2010.
    [70] Mishra S. Weighting method for bi-level linear fractionalprogramming problems[J]. EuropeanJournal of Operational Research.183(2007):296-302.
    [71] Holland J H. Adaptation in Natural and Artificial Systems[M]. A Bradford Book.1975.
    [72] Goldberg D E. Genetic Algorithms in Search, Optimization and Machine Learning[M].Massachusetts: Addison-Weslev Publishing Comoanv.1989.
    [73] Srinivas N, Deb K. Multi-objective function optimization using non-dominated sorting geneticalgorithms[J]. Evolutionary Computation,1995(3):221-248.
    [74] Deb K, Agrawa1S, Pratap A, et al. A fast elitist non-dominated sorting genetic algorithm formulti-objective optimization: NSGA II[J]. KanGAL RePort No.2000001. KanPur, India: IndianInstitute of Technology,2000.
    [75]阳湘安,阮锋.车身覆盖件回弹控制的成形工艺多目标优化[J].上海交通大学学报,2011,45(11):1673-1683.
    [76]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002.
    [77] Deng J L. Introduction to grey system theory[J]. Journal of Grey System,1989,1:1-24.
    [78] Joseph W K, Thomas K L. Multi-criteria material selections and end-of-life product strategy:Grey relational analysis approach[J]. Materials and Design,2007(28):1539-1546.
    [79]陈义保,姚建初,钟毅芳.基于灰色系统理论的多目标优化的一种策略[J].机械工程学报,2003,39(1):101-106.
    [80]林标华,王鸿基,陈晨.基于灰色系统理论的推挤成形工艺参数优化[J].模具技术,2011,4:5-8.
    [81]谢延敏,于沪平,陈军.基于灰色系统理论的冲压成形稳健设计[J].上海交通大学学报,2007,41(4):596-599.
    [82] Taguchi G., Chowdhurym S. Taguchi S.Robust engineering[C]. New York: McGraw-Hill,2000.
    [83]郭宝峰,杨艳子,金淼.塑性成形工艺参数稳健优化设计方法研究[J].塑性工程学报,2009,16(6):1-7.
    [84] Shoemaker A C, Tsui K L, Wu C F. Economical experimentation methods for robust design[J].Technometrics,1991,33(4):415-427.
    [85] http://www.docin.com/p-232800071.html.
    [86] Vining G G, Myers R H. Combining Taguchi and response surface philosophies: a dual responseapproach[J]. Journal of quality technology.1990,22(1):38-45.
    [87]李玉强.板料拉深成形工艺的6-sigma稳健优化设计研究[D].上海交通大学,2006.
    [88]李玉强,崔振山,陈军等.基于双响应面模6σ稳健设计[J].机械强度.2006,28(5):690-694.
    [89]谢延敏.基于Kriging模型和灰色关联分析的板料成形工艺稳健优化设计[D].上海交通大学,2007.
    [90]张祖明.质量工程学的进展:可靠性和健壮性.北京印刷学院学报[J].1995,(2):1-10.
    [91]陈立周.稳健设计[M].北京:机械工业出版社,1999,12.
    [92]郭惠昕.稳健设计研究现状与模糊稳健设计研究进展[J].机械设计,2005,22(2):1-5.
    [93] Jeyapaul R, Shahabudeen P, Krishnaiah K. Quality management research by consideringmulti-response problems in the Taguchi method-a review[J]. International Journal ofAdvanced Manufacturing Technology,2005,26(11-12):1331-1337.
    [94]林忠钦,艾健,张卫刚,等.冲压稳健设计方法极其应用[J].塑性工程学报,2004,11(4):56-60.
    [95] Wu F, Chyu C. Optimization of robust design for multiple quality characteristics[J].International Journal of Production Research.2004,(2):337-354.
    [96] Hammersley J E, Handscomb D C. Monte Carlo Methods[M]. Chapman and Hall, London.1964.
    [97] Hurtodao J E, Barbat A H. Simulation methods in Stochastic Mechanicis[C]. ComputationStochastic Mechanicis in a Meta-Computing Perspective. CIMNE, Barcelona.1997.
    [98] Saliby E. Descriptive sampling in structural safey[J]. Structural Safety.1995,17:33-41.
    [99] Bothe D R, Statistical reason for the1.5sigma shift[M]. Quality Engineering.2002,14(3):479-487.
    [100]张建方,宗福季.关于6Sigm管理中的1.5Sigma系统偏移[J].数理统计与管理,2004,24(6):l0-18.
    [101] Baril C, Yacout S, Clément B. Design for Six Sigma through collaborative multiobjectiveoptimization[J]. Computers&Industrial Engineering,2011(60):43-55.
    [102] Liu Gang, Lin Zhongqin, Bao Youxia. Optimization design of drawbead in drawing tools ofautobody cover panel[J]. Journal of Engineering Materials and Technology,2002,124(2):278-285.
    [103] Wei L. Yuying Y. Multi-objective optimization of sheet metal forming process using Pareto-basedgenetic algorithm[J]. Journal of materials processing technology,2008:1-8.
    [104] Huang,Y. Lo,Z.Y.&Du,R. Minimization of the thickness variation in multi-step sheet metalstamping[J]. Journal of materials processing technology,(117):84-86.
    [105] Mkaddem A, Bahloul R. Experimental and numerical optimisation of the sheet productsgeometry using response surface methodology[J]. Journal of materials processing technology.2007,(189):441-449.
    [106] Wang Hu, Enying L, Li C Y, et al. Development of metamodeling based optimization system forhigh nonlinear engineering problems[J]. Advances in Engineering Software,2007:1-17.
    [107] Browne M T, Hillery M T. Optimizing the variables when deep-drawing C.R.1cups[J]. Journal ofMaterials Processing Technology,2003,136(1-3):64-71.
    [108] Nakamura Y, Ohata T, Katayama T, et al. Optimum die design for sheet metal forming process byusing finite element and discretized optimization methods[C]. Sixth International Conference onNumerical Methods in Industrial Forming Processes (NUMIFORM98),1998:787-792.
    [109] Delameziere A, Naceur H, Batoz J L. A numerical procedure based on the deepdrawingsimplified inverse approach to optimize material properties of thin sheets[C]. Numiform2001,2001, Toyohashi, Japan,763-768.
    [110] Naceu H, Delemeziere A., Batoz J L, et al. Some improvements on the optimum process designin deep drawing using the inverse approach[J]. Journal of Materials Processing Technology.2004,146(2):250-262.
    [111] Nakamura Y, Ohata T, Nakamachi E. Study of optimum drawbead design in sheet forming[C].Numsheet2002,2002, Jeju Island, Korea,585-590.
    [112]潘江峰,钟约先,袁朝龙.基于多目标遗传算法的板料拉深成形工艺参数优化设计[J].中国机械工程,2006,17(10):74-76.
    [113]朱东波,马雷,李涤尘,等.复杂形状板料冲压件回弹评价指标研究[J].机械科学与技术,2000,19(6):953-955.
    [114] Murphy S, Cardw M, Hodgson P. Noval criteria and tools for the FE optimization of the sheetmetal forming process[C], Numsheet1999,1999, Besancon, France,305-310.
    [115]李建,赵军,展培培,等.板料自由弯曲成形及回弹理论解析[J].塑性工程学报,2009,16(4):1-6.
    [116]张冬娟.板料冲压成型回弹理论及有限元数值模拟研究[D].上海交通大学,2006.
    [117]王正林,何倩.精通Matlab科学计算[M].北京:电子工业出版社,2007.
    [118]薛小怀,杨淑芳,单以银等. X80管线钢的研究进展[J].上海金属.2004,26(2):45-49.
    [119]庄茁. ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005:17-128.
    [120]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006:9-63.
    [121]高颖,李强,孟宪昌. JCO钢管成形仿真技术[J].铸造技术,2009,1.
    [122]何少华,文竹清,娄涛.试验设计与数据处理[M].长沙:国防科技大学出版社,2002:214-228.
    [123] McKay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values ofinput variables in the analysis of out put from a computer code[J]. Technometrics,1979,(21):239-245.
    [124] Qin Boying, Lin Xiankun. Construction of Response Surface Based on Projection PursuitRegression and Genetic Algorithm[J]. Physics Procedia33(2012):1732-1740.
    [125] Steuer R E. Multiple Criteria Optimization: Theory, Computation and Application[M]. New York.Wiley.1986:14-28.
    [126] Carvalho R, Valente R, Campos A. Optimization strategies for non-linear material parametersidentificationin metal forming problems[J]. Computers and Structures,2011(89):246-255.
    [127] ParetoV. Cours D’ Economic Politique[M]. Volume Ι and II. F. Rouge, Lausanne,1896.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700