基于商品钢的淬火—分配组织结构演变与塑性变形行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁材料经淬火-分配(Q-P)处理可获得优异的综合力学性能。近年来,该工艺在基础理论和应用研究方面都取得了明显进展。目前应用研究主要集中于开发新一代先进高强度钢,对于传统钢的Q-P热处理强韧化研究比较匮乏。在理论研究方面,分配过程中奥氏体的富碳化机制、变形时残余奥氏体(RA)起作用的增塑机制等问题有待进一步深入和系统研究。本文选用商品化合金钢27SiMn,35CrMnSi,35CrMo,35CrMoSi,38CrMoAl,60Si2Mn,9SiCr为试验材料,进行Q-P热处理试验,优化其工艺参数,并与传统调质、等温淬火热处理工艺进行对比。通过深冷和回火试验,研究了Q-P处理钢的组织和力学性能稳定性。同时,采用声发射(AE)技术和分子动力学(MD)模拟方法,研究了RA提高钢塑性的机理。
     对27SiMn,35CrMnSi,38CrMoAl,35CrMoSi钢分别进行不同淬火温度、分配温度和分配时间的Q-P处理。结果表明,仅35CrMoSi钢组织中RA含量与“限制条件碳”(CCE)模型预测的规律基本一致。相反,分配温度对RA含量的影响规律在所有试验钢中一致,即在350~420℃分配处理时,获得的RA含量最高;在低温或高温分配处理时,RA含量均较低。Q-P处理35CrMnSi和35CrMoSi钢中,RA含量在2~30min的分配时间内,RA量持续降低,但能保持在10vol.%左右。结合对工程应用中工件尺寸、操作规程等因素的考虑,认为淬火获得约75%的马氏体再在350~420℃温度范围内分配处理30min以内,可获得较理想的Q-P组织。
     通过对Q-P处理35CrMnSi和35CrMoSi钢光学显微组织的分析,得出贝氏体转变是分配处理时奥氏体富碳化的重要机制,可以作为对碳原子分配CCE模型的补充,解释了分配温度和时间对RA含量的影响规律。分配温度和时间适中(350-420℃处理30min以内)时,贝氏体转变和碳原子分配同时进行,贝氏体转变过程中碳原子自贝氏体铁素体向奥氏体中扩散作用与CCE模型描述的碳原子分配行为共同起作用,获得最多的RA。分配温度较低时,仅CCE机制起作用;分配温度过高或时间过长时,贝氏体转变完成(获得贝氏体铁素体和Fe3C),二者均获得较少的RA。
     根据Q-P原理,提出了“循环淬火-分配”(M-Q-P)工艺,可实现在更大范围内调控Q-P组织中RA的含量,并在35CrMnSi钢中成功应用。结果表明,五次M-Q-P处理35CrMnSi钢中RA的含量是单次Q-P处理组织中的2倍。随着RA量的提高,钢的抗拉强度降低,延伸率升高,强塑积基本不变。
     与传统调质和等温淬火热处理相比,Q-P处理后35CrMnSi钢的综合性能最好,强塑积远高于另外两种热处理得到的性能。将Q-P处理后的试样再高温回火,得到的组织和力学性能与传统调质处理的试样相近。在Q-P和等温淬火处理的试样拉伸过程中,产生了部分具有较高能量和持续时间的特殊声发射信号,在Q-P处理后又高温回火的试样中没有这种信号。结合对断口和微观组织的分析,确定这部分信号是由组织中的RA在变形过程中发生马氏体相变产生的,为TRIP机制提高Q-P钢的塑性提供了证据。
     MD模拟结果表明,采用M势函数对纯Fe双晶Bain模型进行准静态拉伸和压缩时,FCC晶体的应变诱发FCC→BCC相变行为导致拉伸过程中屈服的产生,相变以均匀形核、非均匀性长大的方式进行,新生相与母相之间具有K-S位向关系。压缩时导致相变产生的临界应力大于拉伸时的应力,且二者新生相的形态不同。
     采用A势函数模拟纯Fe三晶体K-S模型准静态拉伸和压缩过程。拉伸时,FCC晶体内自相界面处的位错萌生和滑移导致拉伸过程中屈服的产生,随着形变量的增加,在滑移面的交界处产生BCC相形核并逐渐长大,快速完成相变。压缩时,FCC相在应变作用下也向BCC相转变,但转变是以相界面迁移的方式完成,且在屈服发生前已完成相变。采用不同应变率进行拉伸变形时,屈服强度随着应变率的升高而增加,FCC相在较高应变率下更稳定。
     深冷和回火试验结果表明,Q-P组织中RA的含量在-80℃以上深冷和400℃以下回火时变化不大,表现了良好的热稳定性。经低温和中温回火后,Q-P处理钢的强度和塑性均下降,可能是由于回火改变了RA的力学稳定性;高温回火后,强度继续下降,塑性略有回升,综合力学性能与传统调质处理的力学性能相近。
Quenching and partitioning (Q-P) heat treatments can be used to generate good combination of high strength and good plasticity in steels, and encouraging progress has been made in theoretical and applied studies of the process in the past few years. However, most of the studies are focused on the development of a new generation of advanced high strength steels (AHSS), while less attention are paid on the application of Q-P in traditional steels to enhance their mechanical properties. Additionally, theoretical perspectives such as the mechanism of carbon-enrichment of the austenite during partitioning treatment, the mechanism of the enhancement of plasticity and toughness works during deformation, etc. remain to be further developed. In this work, the experiments of the Q-P heat treatments are carried out on several traditional steels, e.g.27SiMn,35CrMnSi,35CrMo,35CrMoSi,38CrMoAl,60Si2Mn,9SiCr (in Chinese grade), and the results are compared with traditional quenching and tempering (Q-T) and austempering (AT) heat treatments after the optimization of the Q-P processing parameters. Moreover, the stability of retained austenite (RA) in the Q-P treated steels is studied systematically by cryogenic and tempering experiments. Meanwhile, acoustic emission (AE) technology and molecular dynamic (MD) simulations are applied to investigate the mechanism of the enhancement of plasticity and toughness by RA.
     Various Q-P heat treatments with different quenching temperature (QT), partitioning temperature (PT) and partitioning time (tp), are carried out on27SiMn,35CrMnSi,38CrMoAl,35CrMoSi steels. Firstly, the RA fraction follows the relationship with QT predicted by the CCE model qualitatively in35CrMoSi steel while different laws are found in other steels; Secondly, the variation of RA fraction versus the PT are similar in all of the experimental steels, i.e. the highest fraction of RA are attained in the range of350~420℃while a decreased RA fraction attained at lower or higher temperatures; Thirdly, the RA fraction decreases as the tp increases in the range of2~30min for35CrMnSi and35CrMoSi steels when partitioned at420℃maintaining at the level of10vol.%. Based on these results and combined with the consideration of engineering applications, it is suggested that the proper Q-P parameters acquiring desired microstructures should be quenched to attain about75%martensite and partitioned in the range of350~420℃for less than30min.
     Optical microstructural evidences that bainite transformation of austenite contributes to the carbon-enrichment of untransformed austenite are found in35CrMnSi and35CrMoSi, which accounts for the influence of PT and tp on the RA fraction along with the CCE model. When the proper partitioning process (partitioned at350~420℃for less than30min) was applied, both of carbon partitioning between martensite and austenite predicted by the CCE model and bainite transformation would take place. The carbide-free bainite is formed due to the effect of alloying elements in the steel, and the most austenite is stabilized by the two mechanisms. Only the carbon partitioning takes effect at lower temperatures and bainite with Fe3C formed at higher temperatures or at350~420℃for increased time, which induces the decrease of the RA fraction.
     A novel process termed "multi-cyclic quenching and partitioning"(M-Q-P), aiming at tailoring the RA fraction in an enlarged range, is developed based on the Q-P principle and applied in35CrMnSi steel successfully. For35CrMnSi steel,5times of Q-P heat treatment can increase the content of RA from8vol.%to17vol.%. As a result, the ultimate elongation of the steel is improved from17.4%after the typical Q-P heat treatment to27.1%after5times of Q-P treatment. Meanwhile, the improved combination of strength and ductility for steels by typical Q-P heat treatment is retained by the M-Q-P heat treatment.
     The Q-P heat treatments enhanced the combined mechanical properties of high strength and effective ductility for35CrMnSi steel, as compared with traditional heat treatments such as Q-T and AT. The mechanical properties would degenerate to a lower level as similar to Q-T heat treated steels once the RA degenerated by tempering for the Q-P treated steel. Additional AE signals with high amplitude and high energy were produced during the tensile deformation of the35CrMnSi steel with RA in microstructures (obtained via Q-P and AT heat treatments), and the additional AE signals would not appear again once the Q-P steel is tempered at high temperature. Combined the AE features with the Optical microstructural and fractography analysis, it is found that the additional AE signals are produced by the strain induced martensitic transformation of RA.
     Strain induced FCC→BCC phase transformation in a bi-crystal model of pure Fe containing interphase boundaries with a Bain orientation is investigated by MD simulation using the Meyer-Entel interaction potential. Under quasi-static tension and compresstion, homogeneous nucleation and heterogeneous growth of the BCC phase in the FCC crystal is observed. The phase transformation behavior induced the yielding and the yielding strength of the compression is higher than that of the tension. Moreover, the new-formed BCC phase has a K-S orientation with the FCC phase and no motion of the original interface is observed.
     The MD simulations of strain induced FCC→BCC phase transformation in a tri-crystal model of pure Fe containing interphase boundaries with a K-S orientation is also carried out using the Ackland potential. The heterogeneous nucleation of dislocation from the interphase boundaries induced the yielding and the BCC phase nucleates at the fault band as the strain increase. On the contrary, the FCC→BCC phase transformation has accomplished before the yielding via the motion of initial interphase boundaries under the quasi-static compression. When the tension is completed at a constant engineering strain rate, the yielding strength increases as the strain rate increases and the FCC phase is more stable at a higher strain rate.
     The results of cryogenic and tempering experiments show that the RA in Q-P treated steels are stable in the temperature range of-80~400℃. However, the strength and ductility are both decreased after tempering at low and medium temperatures due to the reduction of mechanical stability of RA in the Q-P treated steels. At the same time, the ductility is picking up while the strength is consistently decreasing as the tempering temperature is elevated continuously and the mechanical properties are at the same level as the Q-P treated steels.
引文
1潘健生.重视热处理自主创新,突破我国制造业发展的瓶颈[J].机械制造与自动化,2006,35(1):1-3.
    2董翰等.先进钢铁材料[M].北京:科学出版社,2008.
    3 Tomita Y. Development of fracture toughness of ultrahigh strength, medium carbon, low alloy steels for aerospace applications[J]. International Materials Reviews,2000,45(1):27-37.
    4 Matsumura O, Sakuma Y, Takechi H. Trip and its kinetic aspects in austempered 0.4C-1.5Si-0.8Mn steel[J]. Scripta Metallurgica,1987,21(10):1301-1306.
    5中国产业网.机械领域“三基”产业“十二五”发展规划.2011-11-28.http://news.jc001.cn/11/1128/643639.html.
    6九正建材网.我国机械装备制造业快速发展.2011-07-28.http://news.jc001.cn/11/0728/627031.html.
    7 World steel association. Www.worldsteel.org.2012-01-23.
    8·潘健生.热处理——我国制造业发展的瓶颈[R].2006年11月全国热处理学会技术报告会(杭州赞成宾馆,2006年11月)
    9 Speer J, Matlock D, De Cooman B, Schroth J. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia,2003,51:2611-2622.
    10 Edmonds D, Matlock D, Speer J. Developments in high strength steels with duplex microstructures of bainite or martensite with retained austenite:progress with quenching and partitioning heat treatment[A]. In:Y. Weng et al. (eds.), Advanced Steels, Springer-Verlag Berlin Heidelberg and Metallurgical Industry Press,2011:242-253.
    11 Speer J, Matlock D. Q&P钢热处理工艺的开发进展[J].世界钢铁,2009,1:31-35.
    12 Speer J, Edmonds D, Rizzo F, Matlock D. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation[J]. Current Opinion in Solid State and Materials Science,2004,8:219-237.
    13 Kim D, Speer J, Kim H, De Cooman B. Observation of an Isothermal Transformation during Quenching and Partitioning Processing [J]. Metallurgical and Materials Transactions A,2009,40A:2048-2060.
    14 Edmonds D, He K, Rizzo F, De Cooman B, Matlock D, Speer J. Quenching and partitioning martensite—A novel steel heat treatment[J]. Materials Science and Engineering A,2006,438-440:25-34.
    15刘宗昌等.金属固态相变教程,第2版[M].北京:冶金工业出版社,2003.
    16石德珂.材料科学基础[M].西安:西安交通大学出版社,2000.
    17 Speich GR, Leslie WC. Tempering of steel [J]. Metallurgical Transactions,1972, 3(5):1043-1054.
    18 Zuidema BK, Subramanyam DK, Leslie WC. The effect of aluminum on the work hardening and wear resistance of Hadfield manganese steel [J]. Metallurgical transactions A,1987,18(9):1629-1639.
    19 Bhadeshia H, Edmonds DV. The bainite transformation in a silicon steel[J]. Metallurgical Transactions A,1979,10(7):895-907.
    20 Matas S, Hehemann, F, Retained austenite and the tempering of martensite [J]. Nature 1960,187 (4738):685-686.
    21 Rao V, Thomas G. Transmission electron microscopy characterization of dislocated Lath martensite[J]. Proc. Inter. Conf. Martensitic Transformations-79, MIT.,1979,12-16.
    22徐祖耀.马氏体相变与马氏体,第二版[M].北京:科学出版社,1999.
    23徐祖耀,李学敏.低碳马氏体形成时碳的扩散[J].金属学报,1983,19(2):A83-87.
    24徐祖耀,李学敏.低碳马氏体形成时碳的扩散(续)[J].金属学报,1983,19(6):A505-510.
    25康沫狂,贾虎生,杨延清,杨东方,武小雷.新型系列准贝氏体钢[J].金属热处理,1995,12:3-5.
    26张明星,王军,康沫狂.残余奥氏体及其机械稳定性与钢强韧性关系的研究[J].理化检验-物理分册,1993,29(2):6-9.
    27程巨强,康沫狂.新型准贝氏体钢及其工程应用[J].西安工业学院学报,2000,20(1):43-48.
    28 Speer J, Rizzo F, Matlock D, Edmonds D. The "quenching and partitioning" process:background and recent progress[J]. Materials Research,2005,8(4): 417-423.
    29 Hultgren A. Isothermal transformation of austenite[J]. Transcations ASM.,1947, 39:915-1005.
    30 Hillert M, Agren J. On the definitions of paraequilibrium and orthoequilibrium[J]. Scripta Materialia,2004,50 (5):697-699.
    31 Speer JG, Matlock DK, DeCooman BC, et al. Comments on "On the definitions of paraequilibrium and orthoequilibrium" by M. Hillert and J. Agren, scripta materialia,50,697-9(2004)[J]. Scripta Materialia,2005,52 (1):83-85.
    32 Hillert M, Agren J. Reply to comments on "On the definition of paraequilibrium and orthoequilibrium"[J]. Scripta Materialia 2005,52 (1):87-88.
    33 De Moor E, Lacroix S, Clarke AJ, et al. Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels [J]. Metallurgical and Materials Transactions A,2008,39(11):2586-2595.
    34 Emmanuel DEM, Gordon SJ, Kidder MD, et al. Effect of carbon and manganese on the quenching and partitioning response of CMnSi steels[J]. ISIJ international, 2011,51(1):137-144.
    35 Clarke AJ, Speer JG, Miller MK, et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition (Q&P) process:a critical assessment[J]. Acta materialia,2008,56(1):16-22.
    36 Speer JG, De Moor E, Findley KO, et al. Analysis of microstructure evolution in quenching and partitioning automotive sheet steel [J]. Metallurgical and Materials Transactions A,2011,42(12):3591-3601.
    37 Clarke AJ, Speer JG, Matlock DK, et al. Influence of carbon partitioning kinetics on final austenite fraction during quenching and partitioning [J]. Scripta Materialia,2009,61(2):149-152.
    38 Thomas GA, Speer JG, Matlock DK. Quenched and partitioned microstructures produced via Gleeble simulations of hot-strip mill cooling practices [J]. Metallurgical and Materials Transactions A,2011,42(12):3652-3659.
    39 Hu F, Wu KM, Misra RDK. Nanostructured martensite-austenite dual phase steels[J]. Materials Science and Technology,2012,28(11):1314-1319.
    40 Mola J, De Cooman BC. Quenching and partitioning processing of transformable ferritic stainless steels[J]. Scripta Materialia,2011,65(9):834-837.
    41 Wang CY, Zhang YJ, Cao WQ, et al. Austenite/martensite structure and corresponding ultrahigh strength and high ductility of steels processed by Q&P techniques[J]. Science China Technological Sciences,2012,55(7):1844-1851.
    42 Santofimia MJ, Zhao L, Petrov R, et al. Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel [J]. Acta Materialia,2011,59(15):6059-6068.
    43 Chen T, Jiao D, Wu H. Effect of quenching and partitioning process on MA constituent in Nb-bearing HSLA steel [J]. Journal of Wuhan University of Technology-Materials Science Edition,2012,27(1):21-26.
    44 Hong SC, Ahn JC, Nam SY, et al. Mechanical properties of high-Si plate steel produced by the quenching and partitioning process[J]. Metals and Materials International,2007,13(6):439-445.
    45 Zhao C, Tang D, Jiang HT, et al. Process simulation and microstructure analysis of low carbon Si-Mn quenched and partitioned steel [J]. Journal of iron and steel research, international,2008,15(4):82-85.
    46 Grajcar A, Kwasny W. Microstructural study on retained austenite in advanced high-strength multiphase 3Mn-1.5 Al and 5Mn-1.5 Al steels[C]. Proceedings of the 20th Jubilee International Scientific Conference "Achievements in Mechanical and Materials Engineering"-AMME.2012:168-177.
    47钟宁,王晓东,黄宝旭等.Fe-C-Mn-Si TRIP钢经配分处理后显微组织的TEM观察[J].电子显微学报,2006,25(B08):118-119.
    48 Thomas G, Speer J, Matlock D, et al. Application of electron backscatter diffraction techniques to quenched and partitioned steels[J]. Microscopy and Microanalysis,2011,17(03):368-373.
    49 Santofimia MJ, Zhao L, Sietsma J. Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization[J]. Metallurgical and Materials Transactions A,2009, 40(1):46-57.
    50 Santofimia MJ, Zhao L, Petrov R, et al. Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel [J]. Materials Characterization,2008,59(12):1758-1764.
    51王存宇,时捷,刘苏等.淬火-分配-回火工艺处理钢的三体冲击磨损性能研究[J].材料研究学报,2009,13(3):305-310.
    52 Zhu YF, Wang FY, Zhou HH, et al. Stepping-quenching-partitioning treatment of 20SiMn2MoVA steel and effects of carbon and carbide forming elements[J]. Science China Technological Sciences,2012,55(7):1838-1843.
    53 Hauserova D, Duchek M, Dlouhy J, et al. Properties of Advanced Experimental CMnSiMo Steel Achieved by QP Process [J]. Procedia Engineering,2011,10: 2961-2966.
    54 Wang L, Feng W. Development and application of Q&P sheet steels [A]. In: Weng YQ et al. (Eds.) Advanced Steels. Springer Berlin Heidelberg,2011: 255-258.
    55 Klemradt U, Rieger T, Herrmann K, et al. Monitoring of Heat Treatment Processes by High Energy Synchrotron Radiation [J]. Acta Physica Polonica, A., 2012,121(1).
    56张柯,许为宗,郭正洪等.新型QPT和传统QT工艺对不同C含量马氏体钢组织和力学性能的影响[J].金属学报,2011,47(4):489-496.
    57 Emmanuel DEM, Gordon SJ, Kidder MD, et al. Effect of carbon and manganese on the quenching and partitioning response of CMnSi steels[J]. ISIJ international, 2011,51(1):137-144.
    58 De Moor E, Speer JG, Matlock DK, et al. Effect of Si, Al and Mo alloying on tensile properties obtained by quenching and partitioning[J]. MS&T 2009,2009: 1554-1563.
    59 Santofimia MJ, Nguyen-Minh T, Zhao L, et al. New low carbon Q&P steels containing film-like intercritical ferrite[J]. Materials Science and Engineering:A, 2010,527(23):6429-6439.
    60 Hell JC, Dehmas M, Allain S, et al. Microstructure-properties relationships in carbide-free bainitic steels[J]. ISIJ international,2011,51(10):1724-1732.
    61 Wang CY, Shi J, Cao WQ, et al. Characterization of microstructure obtained by quenching and partitioning process in low alloy martensitic steel [J]. Materials Science and Engineering:A,2010,527(15):3442-3449.
    62 Tan X, Xu Y, Yang X, et al. Effect of partitioning procedure on microstructure and mechanical properties of a hot-rolled directly quenched and partitioned steel[J]. Materials Science and Engineering:A,2014,594:149-160.
    63王存宇,时捷,曹文全等.Q&P工艺处理钢的单轴拉伸性能研究[J].材料热处理学报,2010(6):77-83.
    64 Liu H, Lu X, Jin X, et al. Enhanced mechanical properties of a hot stamped advanced high-strength steel treated by quenching and partitioning process[J]. Scripta Materialia,2011,64(8):749-752.
    65 Xiong XC, Chen B, Huang MX, et al. The effect of morphology on the stability of retained austenite in a quenched and partitioned steel[J]. Scripta Materialia, 2013,68(5):321-324.
    66任勇强,谢振家,尚成嘉.低碳钢中残余奥氏体的调控及对力学性能的影响[J].金属学报,2012,48(009):1074-1080.
    67解西强,高文涛,时捷等.Q&P(淬火和分配)工艺对25Si2Ni3钢组织和力学性能的影响[J].特殊钢,2008,29(5):56-58.
    68 Paravicini BE, Santofimia MJ, Zhao L, et al. Microstructure, tensile and toughness properties after quenching and partitioning treatments of a medium-carbon steel[J]. Materials Science and Engineering:A,2013,559: 486-495.
    69赵晖,时捷,李楠等.Si对中锰钢淬火配分组织和性能的影响[J].材料研究学报,2011,25(1):45-50.
    70 Samanta S, Das S, Chakrabarti D, et al. Development of Multiphase Microstructure with Bainite, Martensite, and Retained Austenite in a Co-Containing Steel Through Quenching and Partitioning (Q&P) Treatment[J]. Metallurgical and Materials Transactions A,2013,44(13):5653-5664.
    71王存宇,时捷,刘苏等.QP(-T)工艺对35Si2Ni2钢组织和力学性能的影响[J].钢铁,2010(1):79-82.
    72 Wang FY, Zhu YF, Zhou HH, et al. A novel microstructural design and heat treatment technique based on gradient control of carbon partitioning between austenite and martensite for high strength steels[J]. Science China Technological Sciences,2013,56(8):1847-1857.
    73 Zhong N, Wang XD, Wang L, et al. Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching-partitioning-tempering process[J]. Materials Science and Engineering A,2009,506(1):111-116.
    74 Sis J, Cerny I, Mikulova D. The Sensitivity of 42SiCr steel to inclusions under fatigue loading for for three different ways of heat treatment[J]. Metal 2012,5: 23-25.
    75高文涛,王存宇.淬火-配分马氏体钢的组织特征[J].甘肃冶金,2010(1): 1-3.
    76 Sun J, Yu H, Wang S, et al. Study of microstructural evolution, microstructure-mechanical properties correlation and collaborative deformation-transformation behavior of quenching and partitioning (Q&P) steel[J]. Materials Science and Engineering:A,2014,596:89-97.
    77 Gao G, Zhang H, Tan Z, et al. A carbide-free bainite/martensite/austenite triplex steel with enhanced mechanical properties treated by a novel quenching-partitioning-tempering process [J]. Materials Science and Engineering:A,2013,559:165-169.
    78 Li HY, Lu X W, Li WJ, et al. Microstructure and mechanical properties of an ultrahigh-strength 40SiMnNiCr steel during the one-step quenching and partitioning process[J]. Metallurgical and Materials Transactions A,2010,41(5): 1284-1300.
    79 Yi HL, Chen P, Hou ZY, et al. A novel design:Partitioning achieved by quenching and tempering (Q-T & P) in an aluminium-added low-density steel [J]. Scripta Materialia,2013,68(6):370-374.
    80 Nayak SS, Anumolu R, Misra RDK, et al. Microstructure-hardness relationship in quenched and partitioned medium-carbon and high-carbon steels containing silicon[J]. Materials Science and Engineering:A,2008,498(1):442-456.
    81 Tsuchiyama T, Tobata J, Tao T, et al. Quenching and partitioning treatment of a low-carbon martensitic stainless steel [J]. Materials Science and Engineering A, 2012,532:585-592.
    82 Mola J, De Cooman BC. Quenching and partitioning processing of transformable ferritic stainless steels[J]. Scripta Materialia,2011,65(9):834-837.
    83 Yuan L, Ponge D, Wittig J, et al. Nanoscale austenite reversion through partitioning, segregation and kinetic freezing:Example of a ductile 2GPa Fe-Cr-C steel[J]. Acta Materialia,2012,60(6):2790-2804.
    84 Mola J, De Cooman BC. Quenching and Partitioning (Q&P) Processing of Martensitic Stainless Steels[J]. Metallurgical and Materials Transactions A,2013, 44(2):946-967.
    85徐祖耀.淬火-碳分配-回火(Q-P-T)工艺浅介[J].金属热处理,2009(6):1-8.
    86徐祖耀.用于超高强度钢的淬火-碳分配-回火(沉淀)(Q-P-T)工艺[J].热处理,2008,23(2):1-5.
    87徐祖耀.钢热处理的新工艺[J].热处理,2007,22(1):1-11.
    88纪云航,冯伟骏,王利,等.新一代高强度淬火分配钢的研究和应用[J].钢铁研究学报,2009,20(12):1-5.
    89徐祖耀.将淬火—碳分配—回火(Q-P-T)及塑性成形一体化技术用于TRIP钢的创议[J].热处理,2010,25(4):1-5.
    90戎咏华.先进超高强度-高塑性Q-P-T钢[J].金属学报,2012,47(12):1483-1489.
    91戎咏华,陈乃录.淬火-分配-回火工艺和多循坏淬火-分配-回火工艺[J].热处理,2011,26(5):1-10.
    92 Jin XJ, Rong YH. Strengthening and toughening mechanisms of quenching-partitioning-tempering (Q-P-T) steels[J]. Journal of Alloys and Compounds,2013,577:S568-S571.
    93 Hsu TY, Jin X. Ultra-high Strength Steel Treated by Using Quenching-Partitioning-Tempering Process [A], In:Y. Weng et al. (eds.), Advanced Steels, Springer-Verlag Berlin Heidelberg and Metallurgical Industry Press,2011:67-73.
    94 Zhou S, Zhang K, Wang Y, et al. High strength-elongation product of Nb-microalloyed low-carbon steel by a novel quenching-partitioning-tempering process[J]. Materials Science and Engineering:A,2011,528(27):8006-8012.
    95 Wang Y, Zhang K, Guo Z, et al. A new effect of retained austenite on ductility enhancement in high strength bainitic steel [J]. Materials Science and Engineering:A,2012,552:288-294.
    96 Zhou S, Zhang K, Chen N, et al. Investigation on high strength hot-rolled plates by quenching-partitioning-tempering process suitable for engineering[J]. ISIJ international,2011,51(10):1688-1695.
    97 Zhou S, Zhang K, Wang Y, et al. The Mechanism of High Strength-Ductility Steel Produced by a Novel Quenching-Partitioning-Tempering Process and the Mechanical Stability of Retained Austenite at Elevated Temperatures[J]. Metallurgical and Materials Transactions A,2012,43(3):1026-1034.
    98 Wang Y, Guo Z, Chen N, et al. Deformation Temperature Dependence of Mechanical Properties and Microstructures for a Novel Quenching-Partitioning-Tempering Steel [J]. Journal of Materials Science & Technology,2013,29(5):451-457.
    99 Li HY, Lu XW, Wu XC, et al. Bainitic transformation during the two-step quenching and partitioning process in a medium carbon steel containing silicon[J]. Materials Science and Engineering A,2010,527(23):6255-6259.
    100 Wang XD, Xu WZ, Guo Z H, et al. Carbide characterization in a Nb-microalloyed advanced ultrahigh strength steel after quenching-partitioning-tempering process[J]. Materials Science and Engineering A,2010,527(15):3373-3378.
    101 Wang XD, Zhong N, Rong YH, et al. Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process [J]. J. Mater. Res, 2009,24(1):260-267.
    102 Chen MM, Wu RM, Liu HP, et al. An ultrahigh strength steel produced through deformation-induced ferrite transformation and Q&P process[J]. Science China Technological Sciences,2012,55(7):1827-1832.
    103 Matlock DK, Speer JG, De Moor E, et al. Recent development in advanced high strength sheet steels for autotive applications:an overview[J]. Engineering Science & Technology, an International Journal,2012,15(1):1-12.
    104 Matlock DK, Speer JG. Third generation of AHSS:microstructure design concepts[A], In:Haldar A (Eds.) Microstructure and Texture in Steels. Springer London,2009:185-205.
    105 Santofimia MJ, Van Bohemen SMC, Sietsma J. Combining bainite and martensite in steel microstructures for light weight applications [J]. The journal of the southern african institute of mining and metallurgy,2013,113: 143-148.
    106束德林.工程材料力学性能[M].北京:机械工业出版社,2007.
    107科恩M.钢的微合金化及控制扎制[M],北京:冶金工业出版社,1990.
    108齐俊杰,黄运华,张跃.微合金化钢[M],北京:冶金工业出版社,2006.
    109哈宽富,编著.金属力学性质的微观理论[M].北京:科学出版社,1983.
    110马鸣图,吴宝榕.双相钢——物理和力学冶金(第2版)[M].北京:冶金工业出版社,2009.
    111雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006.
    113 Sauveur A. What is a steel? Another answer[J]. Iron Age,1924,113:581-583.
    114 Zackay VF, Parker ER, Fahr D, et al. The enhancement of ductility in high-strength steels [J]. Transactions of the ASM,1967,60(2):252-259.
    115 Tomota Y, Tokuda H, Adachi Y, et al. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction[J]. Acta Materialia, 2004,52:5737-5745.
    116 Bhadeshia HKDH. TRIP-assisted steels[J]. ISIJ international,2002,42(9): 1059-1060.
    117 Sakuma Y, Matsumura O, Takechi H. Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions[J]. Metallurgical Transactions A,1991, 22(2):489-498.
    118 Webster D. Increasing the toughness of the martensitic stainless steel AFC77 by control of retained austenite content, ausforming and strain aging[J]. Transactions of the ASM,1968,61(4):816-828.
    119 Morito S, Tanaka H, Konish R, et al. The morphology and crystallography of lath martensite in Fe-C alloys[J]. Acta Materialia,2003,51:1789-1799.
    120 Kitahara H, Ueji R, Tsuji N, Minamino Y. Crystallographic features of lath martensite in low-carbon steel[J]. Acta Materialia,2006,54(5):1279-1288.
    121 Morris JW, Lee CS, Guo Z. The nature and consequences of coherent transformations in steel[J]. ISIJ International,2003,43(3):410-419.
    122 Guo Z, Lee CS, Morris JW. On coherent transformations in steel [J]. Acta Materialia,2004,52(19):5511-5518.
    123王颖,张柯,郭正洪,等.残余奥氏体增强低碳QPT钢塑性的新效应[J].金属学报,2012,48(006):641-648.
    124 Gibbs PJ, De Moor E, Merwin MJ, et al. Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel [J]. Metallurgical and Materials Transactions A,2011,42(12):3691-3702.
    125 Park KK, Oh ST, Baeck SM, et al. In situ deformation behavior of retained austenite in TRIP steel[C], Materials Science Forum(Switzerland).2002,408: 571-576.
    126 Scruby CB. An introduction to acoustic emission[J]. Journal of Physics E: Scientific Instruments,1987,20(8):946.
    127杨明纬.声发射检测.北京:机械工业出版社,2005.
    128 Kaiser J. TeehniseheHoehsehuloMunehenMunich[D],Germany,1950
    129伍蒋军,黄振峰,毛汉领.金属拉伸声发射信号特征分析[J].浙江工业大学学报,2011,39(3):301-303.
    130 Vinogradov A, Lazarev A, Linderov M, et al. Kinetics of deformation processes in high-alloyed cast transformation-induced plasticity/twinning-induced plasticity steels determined by acoustic emission and scanning electron microscopy:Influence of austenite stability on deformation mechanisms[J]. Acta Materialia,2013,61(7):2434-2449.
    131 Jacques P, Furnemont Q, Mertens A, et al. On the sources of work hardening in multiphase steels assisted by transformation-induced plasticity[J]. Philosophical Magazine A,2001,81(7):1789-1812.
    132 Hausild P, Davydov V, Drahokoupil J, et al. Characterization of strain-induced martensitic transformation in a metastable austenitic stainless steel [J]. Materials & Design,2010,31(4):1821-1827.
    133 Mukherjee M, Mohanty ON, Hashimoto S, et al. Acoustic emission technique to study the effect of strain rate on the deformation behaviour of TRIP aided steels with different matrix microstructures[J]. ISIJ international,2006,46(8): 1241-1250.
    134张跃,谷景华,尚家香等.计算材料学基础[M].北京:北京航空航天大学出版社,2007.
    135 Born M, Oppenheimer R. Zur quantentheorie der molekeln[J]. Annalen der Physik,1927,389(20):457-484.
    136 Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects[J]. Physical Review,1965,140(4A):A1133.
    137D罗伯编,项金钟,吴兴惠译.计算材料学[M].北京:化学工业出版社,2002.
    138 Lennard-Jones JE. On the determination of molecular(?) elds. Ⅱ[C], Proc R Soc London, Ser A.1924,106:463-477.
    139 Morse PM. Diatomic molecules according to the wave mechanics. Ⅱ. vibrational levels [J]. Physical Review,1929,34(1):57.
    140 Born M, Mayer JE. Zur gittertheorie der ionenkristalle[J]. Zeitschrift fur Physik, 1932,75(1-2):1-18.
    141 Alder BJ, Wainwright TE. Phase transition for a hard sphere system[J]. The Journal of Chemical Physics,1957,27(5):1208.
    142陈舜麟.计算材料科学[M].北京:化学工业出版社,2005.
    143 Daw MS, Baskes MI. Embedded-atom method:Derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B,1984, 29(12):6443.
    144 Finnis MW, Sinclair JE. A simple empirical N-body potential for transition metals[J]. Philosophical Magazine A,1984,50(1):45-55.
    145 Frenkel D, Smit B. Understanding molecular simulation from algorithms to applications[M].世界图书出版公司,2010.
    146 Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the fee metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[J]. Physical Review B,1986, 33(12):7983-7991.
    147 Rose JH, Smith JR, Guinea F, et al. Universal features of the equation of state of metals[J]. Physical review B,1984,29(6):2963-2969.
    148 Johnson RA. Analytic nearest-neighbor model for fee metals[J]. Physical Review B,1988,37(8):3924-3931.
    149 Banerjea A, Smith JR. Origins of the universal binding-energy relation[J]. Physical review B,1988,37(12):6632-6645.
    150 Johnson RA, Oh DJ, Analytic embedded atom method model for bcc metals[J]. Journal of materials research,1989,4:1195-1201
    151 Ackland GJ, Tichy G, Vitek V, et al. Simple N-body potentials for the noble metals and nickel[J]. Philosophical magazine A,1987,56(6):735-756.
    152 Engin C, Sandoval L, Urbassek HM. Characterization of fe potentials with respect to the stability of the bcc and fcc phase[J]. Modelling and Simulation in Materials Science and Engineering,2008,16(3):035005.
    153 Meyer R, Entel P. Martensite-austenite transition and phonon dispersion curves of Fe 1-x Ni x studied by molecular-dynamics simulations[J]. Physical Review B,1998,57(9):5140.
    154 Entel P, Meyer R, Kadau K, et al. Martensitic transformations:first-principles calculations combined with molecular-dynamics simulations[J]. The European Physical Journal B-Condensed Matter and Complex Systems,1998,5(3): 379-388.
    155 Entel P, Meyer R, Kadau K. Molecular dynamics simulations of martensitic transitions[J]. Philosophical Magazine B,2000,80(2):183-194.
    156 Sandoval L, Urbassek HM, Entel P. Solid-solid phase transitions and phonon softening in an embedded-atom method model for iron[J]. Physical Review B, 2009,80(21):214108.
    157 Sandoval L, Urbassek HM, Entel P. The Bain versus Nishiyama-Wassermann path in the martensitic transformation of Fe[J]. New Journal of Physics,2009, 11(10):103027.
    158 Entel P, Kadau K, Meyer R, et. al. Molecular-dynamics simulations of martensitic transformations[A]. In:Cramer B (Eds.), Advances in Solid State Physics, Springer Berlin Heidelberg,2000,40:345-360.
    159 Wang B, Sak-Saracino E, Gunkelmann N, et al. Molecular-dynamics study of the α←→γ phase transition in Fe-C[J]. Computational Materials Science,2014, 82:399-404.
    160 Urbassek HM, Sandoval I, Molecular dynamics modeling of martensitic transformations in steel [A]. In:Pereloma E, Edmonds DV (Eds.), Phase Transformations in Steel. Diffussionless Transformations High Strength Steels Modelling and Advanced Analytical Techniques, Cambridge Woodhead,.
    161 Wang B, Urbassek HM. Molecular dynamics study of the α-γ phase transition in Fe induced by shear deformation[J]. Acta Materialia,2013,61(16): 5979-5987.
    162 Yang Z, Johnson RA. An EAM simulation of the alpha-gamma iron interface [J]. Modelling and Simulation in Materials Science and Engineering,1993,1(5): 707.
    163 Tateyama S, Shibuta Y, Kumagai T, et al. A molecular dynamics study of bidirectional phase transformation between bcc and fcc iron[J]. ISIJ international,2011,51(10):1710-1716.
    164 Bos C, Sietsma J, Thijsse BJ. Molecular dynamics simulation of interface dynamics during the fcc-bcc transformation of a martensitic nature[J]. Physical Review B,2006,73(10):104117.
    165 Tateyama S, Shibuta Y, Suzuki T. A molecular dynamics study of the fcc-bcc phase transformation kinetics of iron[J]. Scripta Materialia,2008,59(9): 971-974.
    166 Tateyama S, Shibuta Y, Suzuki T. Orientation relationship in fcc-bcc phase transformation kinetics of iron:a molecular dynamics study[J]. ISIJ international,2010,50(8):1211-1216.
    167 Song H, Hoyt JJ. A molecular dynamics simulation study of the velocities, mobility and activation energy of an austenite-ferrite interface in pure Fe[J]. Acta Materialia,2012,60(10):4328-4335.
    168 Engin C, Urbassek HM. Molecular-dynamics investigation of the fee→bcc phase transformation in Fe[J]. Computational Materials Science,2008,41(3): 297-304.
    169 Suiker ASJ, Thijsse BJ. Nucleation, kinetics and morphology of displacive phase transformations in iron[J]. Journal of the Mechanics and Physics of Solids,2013,61(11):2273-2301.
    170 Wang B, Urbassek HM. Phase transitions in an Fe system containing a bcc/fcc phase boundary:An atomistic study[J]. Physical Review B,2013,87(10): 104108.
    171 Zhang Y, Zhang F, Qian L, et al. Atomic-scale simulation of α/γ-iron phase boundary affecting crack propagation using molecular dynamics method[J]. Computational Materials Science,2011,50(5):1754-1762.
    172 Sinclair CW. A molecular dynamics study of deformation induced phase transformations at fault bands[C]. Journal of Physics:Conference Series. IOP Publishing,2010,240(1):012105.
    173 Sinclair CW, Hoagland RG. A molecular dynamics study of the fee→bcc transformation at fault intersections[J]. Acta Materialia,2008,56(16): 4160-4171.
    174 Ackland GJ, Bacon DJ, Calder AF, et al. Computer simulation of point defect properties in dilute Fe—Cu alloy using a many-body interatomic potential[J]. Philosophical Magazine A,1997,75(3):713-732.
    175叶卫平,张覃铁.热处理实用数据速查手册.北京:机械工业出版社,2006.
    176GB/T 229-2007.金属材料夏比摆锤冲击试验方法[S].
    177YB/T 5338-2006.金属材料定量相分析-X射线衍射K值法[S].
    178王存宇.30GPa%级超高强度马奥组织钢的研究[D].钢铁研究总院,2010.
    179GB/T 4340.1-2009.金属材料维氏硬度试验第1部分:试验方法[S].
    180GB/T 230.1-2009.金属材料洛氏硬度试验第1部分:试验方法[S].
    181GB/T 228-2002.金属材料拉伸试验第1部分:室温试验方法[S].
    182 Kurdjumov GV, Sachs G. Over the mechanisms of steel hardening [J]. Z. Phys, 1930,64:325-343.
    183 Nishiyama Z. X-ray Investigation of the Mechanism of the Transformation from Face-centered Cubic Lattice to Body-centered Cubic[J]. Sci. Rep. Tohoku Univ, 1934,23:637-664.
    184 Bain EC, Dunkirk NY. The nature of martensite[J]. trans. AIME,1924,70(1): 25-47.
    185 Tschopp MA, Solanki KN, Gao F, et al. Probing grain boundary sink strength at the nanoscale:Energetics and length scales of vacancy and interstitial absorption by grain boundaries in α-Fe[J]. Physical Review B,2012,85(6): 064108.
    186 http://lammps.sandia.gov/.
    187 http://lammps.sandia.gov/doc/Manual.html
    188 Stukowski A. Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering,2010,18(1):015012.
    189 Irving JH, Kirkwood JG. The statistical mechanical theory of transport processes. Ⅳ. The equations of hydrodynamics[J]. The Journal of Chemical Physics,2004,18(6):817-829.
    190 Kelchner CL, Plimpton SJ, Hamilton JC. Dislocation nucleation and defect structure during surface indentation[J]. Physical Review B,1998,58(17): 11085.
    191 Faken D, Jonsson H. Systematic analysis of local atomic structure combined with 3D computer graphics[J]. Computational Materials Science,1994,2(2): 279-286.
    192尚成嘉,杨善武,王学敏等.低碳贝氏体钢的组织类型及其对性能的影响[J].钢铁,2005,40(4):57-61.
    193 Bhadeshia HKDH. Bainite in Steels-2nd Edition[M]. Cambridge:The university press,2001.
    194 Goune M, Danoix F, Allain S, et al. Unambiguous carbon partitioning from martensite to austenite in Fe-C-Ni alloys during quenching and partitioning[J]. Scripta Materialia,2013,68(12):1004-1007.
    195 Dmitrieva O, Ponge D, Inden G, et al. Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation[J]. Acta Materialia,2011,59(1):364-374.
    196 Dmitrieva O, Ponge D, Inden G, et al. Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation[J]. Acta Materialia,2011,59(1):364-374.
    197 De Moor E, Lacroix S, Samek L, et al. Dilatometric Study of the Quench and Partitioning Process[C]. Proceedings of the 3rd International Conference on Advanced Structural Steels.2006.
    198 Epp J, Hirsch T, Curfs C. In situ X-Ray Diffraction Analysis of Carbon Partitioning During Quenching of Low Carbon Steel[J]. Metallurgical and Materials Transactions A,2012,43(7):2210-2217.
    199 Klemradt U, Rieger T, Herrmann K, et al. Monitoring of Heat Treatment Processes by High Energy Synchrotron Radiation [J]. Acta Physica Polonica A, 2012,121(1).
    200 Bigg TD, Edmonds DV, Eardley ES. Real-time structural analysis of quenching and partitioning (Q&P) in an experimental martensitic steel [J]. Journal of Alloys and Compounds,2013,577:S695-S698.
    201 Lu X, Liu H, Jin X. Preliminary study on kinetics of carbon partitioning in a high Ni Q&P steel[J]. Journal of Alloys and Compounds,2013,577:S72-S75.
    202 He K, Edmonds DV, Speer JG, et al. Microstructural characterisation of steel heat-treated by the novel quenching and partitioning process[C]. EMC 2008 14th European Microscopy Congress 1-5 September 2008, Aachen, Germany. Springer Berlin Heidelberg,2008:429-430.
    203 Kim D, Speer JG, De Cooman BC. Isothermal Transformation of a CMnSi Steel Below the MS Temperature [J]. Metallurgical and Materials Transactions A,2011,42(6):1575-1585.
    204 Kim DH, Speer JG, Kim HS, et al. Observation of an isothermal transformation during quenching and partitioning processing[J]. Metallurgical and Materials Transactions A,2009,40(9):2048-2060.
    205 Zhong N, Wang X, Rong Y, et al. Interface migration between martensite and austenite during the quenching and partitioning process[J]. Journal of Materials Science and Technology,2006,22.
    206 Takahama Y, Santofimia MJ, Mecozzi MG, et al. Phase field simulation of the carbon redistribution during the quenching and partitioning process in a low-carbon steel[J]. Acta Materialia,2012,60(6):2916-2926.
    207 Santofimia MJ, Zhao L, Sietsma J. Model for the interaction between interface migration and carbon diffusion during annealing of martensite-austenite microstructures in steels[J]. Scripta Materialia,2008,59(2):159-162.
    208 Santofimia MJ, Speer JG, Clarke AJ, et al. Influence of interface mobility on the evolution of austenite-martensite grain assemblies during annealing[J]. Acta Materialia,2009,57(15):4548-4557.
    209 Santofimia MJ, Zhao L, Sietsma J. Overview of Mechanisms Involved During the Quenching and Partitioning Process in Steels[J]. Metallurgical and Materials Transactions A,2011,42(12):3620-3626.
    210 Zhang J, Ding H, Wang C, et al. Work hardening behaviors of a low carbon Nb-microalloyed Si-Mn quenching-partitioning steel with different cooling styles after partitioning[J]. Materials Science and Engineering:A,2013,585: 132-138.
    211康沫狂,朱明.淬火合金钢中的奥氏体稳定化[J].金属学报,2005,41(7):673-679.
    212 Xu L, Yan Z, Liu Y, et al. Microstructure evolution and martensitic transformation behaviors of 9Cr-1.8 W-0.3 Mo ferritic heat-resistant steel during quenching and partitioning treatment[J]. Journal of Materials Research, 2013,28(20):2835-2843.
    213闫述,刘相华,刘伟杰,等.含Cu低碳钢Q&P工艺处理的组织性能与强化机理[J].金属学报,2013,49(8):917-924.
    214 Tan X, Xu Y, Yang X, et al. Microstructure-properties relationship in a one-step quenched and partitioned steel[J]. Materials Science and Engineering:A,2014, 589:101-111.
    215 Tobata J, Ngo-Huynh KL, Nakada N, et al. Role of Silicon in Quenching and Partitioning Treatment of Low-carbon Martensitic Stainless Steel[J]. ISIJ international,2012,52(7):1377-1382.
    216 Matlock DK, Brautigam VE, Speer JG. Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel[C]. Materials Science Forum.2003,426:1089-1094.
    217贾晓帅,左训伟,陈乃录,等.经新型QPT工艺处理后Q235钢的组织与性能[J].金属学报,2013,49(1):35-42.
    218赵英利,时捷,包耀宗,等.X120级超高强度管线钢生产工艺研究现状[J].特殊钢,2009,30(5):25-27.
    219邓黎辉,汪宏斌,李绍宏,等.高强韧性冷作模具钢SDC55的QPT工艺及性能[J].金属热处理,2010(9):16-19.
    220 Ying S, Dong H. The Third Generation Auto Sheet Steel:Theory and Practice[C]. Proceedings of the FISITA 2012 World Automotive Congress. Springer Berlin Heidelberg,2013:933-947.
    221 Li Y, Xiao GY, Chen LB, et al. Microstructural evolution in 35CrMnSi steel during multi-cyclic quenching and partitioning heat treatment[J]. Science China Technological Sciences,2013,56(10):2581-2585.
    222张绪平,任强,蔡钢.两次淬火对35CrMnSi钢抗拉强度的影响[J].热处理,2011,26(5):45-48.
    223 Park KK, Oh ST, Baeck SM, et al. In situ deformation behavior of retained austenite in TRIP steel[C]. Materials Science Forum(Switzerland).2002,408: 571-576.
    224 James DR, Carpenter SH. Relationship between acoustic emission and dislocation kinetics in crystalline solids[J]. Journal of Applied Physics,2003, 42(12):4685-4697.
    225 Han Z, Luo H, Wang H. Effects of strain rate and notch on acoustic emission during the tensile deformation of a discontinuous yielding material [J]. Materials Science and Engineering:A,2011,528(13):4372-4380.
    226刘国光,程青蟾.声发射技术及其在金属材料领域的应用[J].上海金属,2001,23(6):35-41.
    227 Haneef TK, Mukhopadhyay CK, Rao BPC, et al. Acoustic emissions generated during Liiders band elongation of tempered medium carbon steel [J]. Strength, Fracture and Complexity,2010,6(4):149-159.
    228 Long QY, Huazi Y. Acoustic emission during deformation of dual-phase steels[J]. Metallurgical Transactions A,1990,21(1):373-379.
    229代永娟,米振莉,唐荻,等.Fe-Mn-C系TWIP钢的组织和性能[J].上海金属,2007,29(5):132-136.
    230 Bouaziz O, Guelton N. Modelling of TWIP effect on work-hardening [J]. Materials Science and Engineering:A,2001,319:246-249.
    231 Clapp PC. How would we recognize a martensitic transformation if it bumped into us on a dark & austy night?[J]. Le Journal de Physique Ⅳ,1995,5(C8): C8-11-C8-19.
    232 Van Bohemen SMC, Sietsma J, Hermans MJM, et al. Kinetics of the martensitic transformation in low-alloy steel studied by means of acoustic emission[J]. Acta materialia,2003,51(14):4183-4196.
    233 Van Bohemen SMC, Hermans MJM, Den Ouden G, et al. A study of acoustic emission energy generated during bainite and martensite formation[J]. Journal of Physics D:Applied Physics,2002,35(15):1889.
    234 Mukhopadhyay CK, Jayakumar T, Kasiviswanathan KV, et al. Study of ageing-induced a'-martensite formation in cold-worked AISI type 304 stainless steel using an acoustic emission technique[J]. Journal of materials science,1995, 30(18):4556-4560.
    235 Oh ST, Park KK, Han HN, et al. Transformation behavior of retained austenite in hydroformed TRIP steel[C]. Materials Science Forum(Switzerland).2002, 408(2):1341-1346.
    236 Olson GB, Cohen M. Kinetics of strain-induced martensitic nucleation[J]. Metallurgical Transactions A,1975,6(4):791-795.
    237单体坤,张卫刚,李淑慧,等.应力状态对TRIP钢残余奥氏体稳定性的影响[J].上海交通大学学报,2008(10):1691-1693.
    238 Lomholt TN, Adachi Y, Bastos A, et al. Partial transformation of austenite in Al-Mn-Si TRIP steel upon tensile straining:an in situ EBSD study[J]. Materials Science and Technology,2013,29(11):1383-1388.
    239熊自柳,蔡庆伍,江海涛,等.TRIP钢中奥氏体的力学稳定性研究[J].材料工程,2011(3):11-15.
    240 Cherkaoui M, Berveiller M, Lemoine X. Couplings between plasticity and martensitic phase transformation:overall behavior of polycrystalline TRIP steels[J]. International Journal of Plasticity,2000,16(10):1215-1241.
    241 Tamura I. Deformation-induced martensitic transformation and transformation-induced plasticity in steels[J]. Metal Science,1982,16(5): 245-253.
    242 Perlade A, Bouaziz O, Furnemont Q. A physically based model for TRIP-aided carbon steels behaviour[J]. Materials Science and Engineering A,2003,356(1): 145-152.
    243康沫狂,朱明,陈大明,等.硅合金钢淬火组织中残留奥氏体的力学稳定性与力学性能[J].金属热处理,2005,30(1):14-19.
    244江海涛,唐荻,刘强,等.TRIP钢中残余奥氏体及其稳定性的研究[J].上海金属,2007,29(5):155-159.
    245熊自柳,蔡庆伍,江海涛,等.TRIP钢中奥氏体的力学稳定性研究[J].材料工程,2011(3):11-15.
    246定巍,江海涛,唐荻,等.低硅TRIP钢的力学性能及残余奥氏体稳定性研究[J].材料工程,2010(4):72-75,80.
    247孙鹏,李麟,符仁钰,等.HSLA-TRIP钢动态拉伸性能和残余奥氏体转变[J].钢铁,2005,39(10):63-67.
    248郭俊梅,潘健生.计算材料学与材料设计[J].贵金属,1999,20(4):62-68.
    249 Kong LT. Phonon dispersion measured directly from molecular dynamics simulations[J]. Computer Physics Communications,2011,182(10):2201-2207.
    250 Kong LT, Li JF, Shi QW, et al. Dynamical stability of iron under high-temperature and high-pressure conditions[J]. EPL (Europhysics Letters), 2012,97(5):56004.
    251 Kong L T, Lewis LG, Surface diffusion coefficients:Substrate dynamics matters[J]. Physics review B,2008,77:165422.
    252 Hudon C, Meyer R, Lewis LG, Low-frequency vibrational properties of nanocrystalline materials:Molecular dynamics simulations of two-dimensional systems[J]. Physics review B,2007,76:045409.
    253 Dieter GE. Mechanical metallurgy, third edition.北京:清华大学出版社,2006.
    254姜江.材料工程基础[讲义].济南:山东大学,2007.
    255 Wang B, Urbassek HM. Atomistic dynamics of the bcc←→fcc phase transition in iron:Competition of homo-and heterogeneous phase growth[J]. Computational Materials Science,2014,81:170-177.
    256 Yu ZZ, Clapp PC. Growth dynamics study of the martensitic transformation in Fe-30 pct Ni alloys:Part Ⅱ. computer simulation of martensitic growth[J]. Metallurgical Transactions A,1989,20(9):1617-1629.
    257 Latapie A, Farkas D. Molecular dynamics simulations of stress-induced phase transformations and grain nucleation at crack tips in Fe[J]. Modelling and Simulation in Materials Science and Engineering,2003,11(5):745.
    258 Spearot DE, Tschopp MA, McDowell D L. Orientation and rate dependence of dislocation nucleation stress computed using molecular dynamics[J]. Scripta Materialia,2009,60(8):675-678.
    259 Spearot DE, Jacob KI, McDowell DL. Dislocation nucleation from bicrystal interfaces with dissociated structure[J]. International Journal of Plasticity,2007, 23(1):143-160.
    260 Spearot DE, Jacob KI, McDowell DL. Nucleation of dislocations from [001] bicrystal interfaces in aluminum[J]. Acta Materialia,2005,53(13):3579-3589.
    261 Spearot DE, Tschopp MA, Jacob KI, et al. Tensile strength of< 100> and< 110> tilt bicrystal copper interfaces[J]. Acta Materialia,2007,55(2):705-714.
    262 Tschopp MA, McDowell DL. Grain boundary dislocation sources in nanocrystalline copper[J]. Scripta Materialia,2008,58(4):299-302.
    263 Ekman M, Sadigh B, Einarsdotter K, et al. Ab initio study of the martensitic bcc-hcp transformation in iron[J]. Physical Review B,1998,58(9):5296.
    264 Mikhaylushkin AS, Simak SI, Dubrovinsky L, et al. Pure iron compressed and heated to extreme conditions[J]. Physical review letters,2007,99(16):165505.
    265 Dubrovinsky L, Dubrovinskaia N, Narygina O, et al. Body-centered cubic iron-nickel alloy in Earth's core[J]. Science,2007,316(5833):1880-1883.
    266 Belonoshko AB, Derlet PM, Mikhaylushkin AS, et al. Quenching of bcc-Fe from high to room temperature at high-pressure conditions:a molecular dynamics simulation[J]. New Journal of Physics,2009,11(9):093039.
    267 Merkel S, Wenk HR, Gillet P, et al. Deformation of polycrystalline iron up to 30GPa and 1000K[J]. Physics of the Earth and Planetary Interiors,2004,145(1): 239-251.
    268 Shao JL, Duan SQ, He AM, et al. Dynamic properties of structural transition in iron under uniaxial compression[J]. Journal of Physics:Condensed Matter, 2009,21(24):245703.
    269 Djohari H, Milstein F, Maroudas D. Dynamics of the bcc→hcp transition in crystals under uniaxial stress[J]. Physical Review B,2009,79(17):174109.
    270 Cheung KS, Harrison RJ, Yip S. Stress induced martensitic transition in a molecular dynamics model of α-iron[J]. Journal of Applied Physics,1992, 71(8):4009-4014.
    271 Kadau K, Germann TC, Lomdahl PS, et al. Shock waves in polycrystalline iron[J]. Physical Review Letters,2007,98(13):135701.
    272 Hawreliak J, Colvin JD, Eggert JH, et al. Analysis of the x-ray diffraction signal for the α-∈ transition in shock-compressed iron:Simulation and experiment[J]. Physical Review B,2006,74(18):184107.
    273 Wang BT, Shao JL, Zhang GC, et al. Nucleation of hcp and fcc phases in bec iron under uniform compression:classical molecular dynamics simulations[J]. Journal of Physics:Condensed Matter,2010,22(43):435404.
    274 Chen SH, Zhao MJ, Li XY, et al. Compression Stability of Reversed Austenite in 9Ni Steel[J]. Journal of Materials Science & Technology,2012,28(6): 558-561.
    275秦煜.用分子动力学模拟研究FCC金属的应变率敏感性[D].中国科学技术大学,2009.
    276 Van Slycken J, Verleysen P, Degrieck J, et al., High strain rate behaviour of low-alloy multiphase aluminum-and silicon-based transformation-induced plasticity steels[J]. Metallurgical and materials transactions A,2006, 37:1527-1539.
    277 Bleck W, Schael I, Determination of crash-relevant material parameters by dynamic tensile tests[J]. Steel Res.,2000,71:173-178.
    278 Choi ID, Bruce DM, Kim SJ, et al., Deformation behavior of low carbon TRIP sheet steels at High strain rates[J]. ISIJ International,2002,42:1483-1489
    279 Pychmintsev IY, Savrai RA, De Cooman BC, High strain rate behavior of TRIP-aided automotive steels[C], In:Conference on TRIP-aided high strength ferrous alloys, Ghent, Belgium,2002,299-302
    280 Wei XC, Fu RY, Li L, Tensile deformation behavior of cold-rolled TRIP-aided steels over large range of strain rates[J]. Material science and engineering A. 2007,465:260-266
    281苏钰.新型高强度和高塑性孪晶诱发塑性钢的研究[D].上海大学,2012.
    282王颖.先进高强塑性QPT钢增塑机制及其动态力学性能[D].上海交通大学,2012.
    283 Tschopp MA. Atomistic simulations of dislocation nucleation in single crystals and grain boundaries[D].2007.
    284 Li Y, Lu YP, Wang C, et al. Phase Stability of Residual Austenite in 60Si2Mn Steels Treated by Quenching and Partitioning[J]. Journal of Iron and Steel Research, International,2011,18(2):70-74.
    285张潇文.35CrMnSi的QP处理及残余奥氏体稳定性分析[D].山东大学,2013.
    286俞德刚.铁基马氏体时效-回火转变理论及其强韧性[M].上海:上海交通大学出版社,2008.
    287 Thomas G. Retained austenite and tempered martensite embrittlement[J]. Metallurgical Transactions A,1978,9(3):439-450.
    288 Sarikaya M, Jhingan AK, Thomas G. Retained austenite and tempered martensite embrittlement in medium carbon steels[J]. Metallurgical Transactions A,1978,14(6):1121-1133.
    289陈传忠.材料物理方法[M].济南:山东大学,2007.
    290 Caballero FG, Miller MK, Clarke AJ, et al. Examination of carbon partitioning into austenite during tempering of bainite[J]. Scripta Materialia,2010,63(4): 442-445.
    291 Horn RM, Ritchie RO. Mechanisms of tempered martensite embrittlement in low alloy steels[J]. Metallurgical Transactions A,1978,9(8):1039-1053.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700