考虑大变形的深水立管涡激振动非线性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深海环境复杂,这必然对深水油气开发设备的要求有了质的提高,在这些必不可少的油气开发设备中,深水立管是连接海底与海面作业平台的关键设备。在复杂的海洋环境中,造成立管疲劳破坏的主要因素是海流引起的涡激振动(VIV),如果立管发生疲劳破坏,不但会影响巨大的经济利益,还会使油气泄露,导致爆炸火灾甚至造成海洋环境的污染。所以准确地预测深水立管的涡激振动响应具有极其重要的意义。本文在总结国内外学者对深水立管涡激振动研究现状的基础上,采用立管模型试验、理论推导和数值分析相结合的方法,提出了深水立管涡激振动非线性分析模型,并对深水顶张力立管涡激振动的响应及强度进行研究。
     首先,基于课题组模型试验研究发现:当理论涡脱频率与管道的固有频率不一致时,作用在振荡管道上的涡激力并非简谐扰力,而是具有一定带宽的窄带随机扰力,所以管道的涡激振动响应是一个随机过程,由此考虑到立管涡激振动过程中流体与结构之间的耦合作用,将熟知的涡激力模型进行修正,并将该修正的涡激力模型应用于深水立管的涡激振动响应分析,提出考虑流固耦合的深水立管非线性涡激振动时域分析模型,编制了相应的深水立管动力响应分析程序TTRTD1.0,研究了服役于1500m水深的顶张力立管涡激振动的响应和强度,计算结果表明:提出的分析模型能够较好地预测出深水立管的涡激振动响应特征,包括高阶模态响应、多阶模态响应和非对称涡激响应大变形的特征。
     其次,深水柔性立管涡激振动响应具有大变形的现象,而由于深水立管大长细比的结构特点,传统的分析通常是基于小变形理论,本文通过理论推导将大变形考虑进深水立管涡激振动力学模型,对前一部分提出的非线性涡激振动时域分析模型的力学模型进行改进,提出了考虑大变形的深水立管涡激振动非线性时域分析模型,编制了相应的深水立管动力响应及强度分析程序TTRLD1.0,通过理论分析该模型立管的动力特性发现:大变形使得立管的固有频率降低,且低阶频率降低的幅度较大,而大变形对简支立管的振型并没有影响。同时,通过与不考虑大变形效应的深水顶张力立管非线性涡激振动时域分析模型响应的计算结果对比发现:随着流速的增大,立管响应的变形增大,大变形的影响使得结构振幅随之增大。但增大的幅度并不是呈线性增长。并且大变形效应增大了立管发生最大位移处的等效应力幅值,影响立管的疲劳寿命,因此,在深水立管设计分析时,应该充分考虑大变形效应对立管涡激振动响应的影响。
     最后,鉴于深水立管顶端与深水平台相连,深水平台在海洋环境中易发生较大幅度的垂荡运动,平台的垂荡运动引起的参数激扰将影响立管的涡激振动响应,所以,这一部分对前一部分提出的考虑大变形的深水立管涡激振动模型进一步改进,将浮式平台垂荡运动引起的参数激扰对立管涡激振动的影响考虑进分析模型中,以有限元理论为基础编制了深水立管动力响应分析程序TTRPD1.0,并研究了深水浮式平台垂荡运动对立管响应和应力强度的影响,研究发现:海洋平台的垂荡运动引起的参数激扰影响了立管的涡激振动响应和强度,并且参数激扰对立管响应的影响是环境荷载、立管参数、平台垂荡幅值和垂荡频率的函数。
     本文的创新主要体现在:对熟知的涡激力进行了修正,提出了能够预测深水柔性立管区别于传统刚性立管涡激振动特征的非线性时域分析模型;将深水柔性立管大变形效应和海洋平台的垂荡运动对立管涡激振动响应的影响考虑进立管结构的涡激振动力学模型中,研究了大变形和深海平台垂荡运动对立管涡激振动响应和强度的影响;最终提出了更加符合工程实际的适用于深水立管涡激振动响应预测的非线性时域分析模型。
In recent years, owing to the large demand of crude oil and gas in the world,explorations have been moved to deeper water regions. Ocean structures such aslong flexible risers exposing to current flows at deep water are plagued with vortex-induced vibration problems. If failure occurs, it will not only cause economiclosses,but also cause environment pollution. Correctly predicting dynamiccharacters of deepwater risers become more and more important. This paperproposes a non-linear time-domain analysis model for VIV response of deepwaterrisers by model test, theoretic deduction and numerical analysis, and studies thedynamic responses and stress strength of deepwater TTR
     Firstly, on the base of the results of model test, the paper finds that thevortex-excited force on oscillating riser is not a harmonic force, but a random forcewith narrow bandwidth character. So the VIV responses of risers is random. Andthe paper holds that when the risers oscillate in fluid, the oscillation of riser acts onthe the fluid which is around structure, the fluid conversely acts on structure. Thuscoupling effect exists between structure and fluid which is around risers.Considering the coupling effect, the paper modifies Morrison vortex-excited force,and applies the modified vortex-excited force to analysis on VIV response ofdeepwater risers. A non-linear time-domain analysis model for VIV response ofdeepwater TTR is proposed, and corresponding program TTRTD1.0is designedwith MATLAB. The paper also studies on VIV response and stress strength ofdeepwater TTR operated in a water depth of1500m. The calculated results indicatethat the program TTRTD1.0can effectively predict the VIV responses characters ofdeepwater TTR on base of the proposed analysis model, including multi-modeexcited, high order mode excited, asymmetrical distribution of displacement andlarge displacement.
     Secondly, the paper modifies the non-linear time-domain analysis model forVIV response of deepwater risers by theoretic deduction considering the largedeformation character of deepwater risers when vortex-induced vibration occurs. Anew analysis model is proposed considering large deformations, Accordingly theprogram TTRLD1.0is designed on the base of the new model. And the dynamiccharacteristic of the new model is analysis ed theoretically. The theoretical analysisresults indicate that large deformation decreases the natural frequency of structure,especially low-order natural frequencies. But large deformation had no effect onvibration mode of simply supported risers. At the same time, The paper also studiesthe large deformation effect on the response and stress strength of deepwater risers.The calculated results compared with the results of no considering large deformationindicate that large deformation increase the amplitude of risers with the increase ofvelocity of current, but it is non-linear relationship between them. And t hecalculated results of stress strength indicate that large deformation increase the stressstrength amplitude of weak location of risers. All the results confirm that largedeformation go against fatigue life, so large deformation effect can’t be neglected.
     Lastly, deepwater risers are installed between wellhead at the sea bed andfloating platform.The heave of a floating platform induces a fluctuation in time ofthe axial tension of the riser, especially semi-submersible platform. A possible andundesirable phenomenon is the excitation of a transverse riser vibration caused bythis fluctuation. According to the above, the paper further improve the VIVpredicting model considering the heave of a floating platform. Accordingly theprogram TTRPD1.0is designed. The paper studies VIV response and stress strengthof deepwater TTR operated in a water depth of1500m. The calculated resultsindicate that the heave of a floating platform affect the amplitude of VIV responseand stress strength. And the effect of the heave of a floating platform ion VIVresponse of deepwater risers is the function of environmental load, riser parameter,the amplitude of heave and frequency of heave.
     The new ideas and innovative points lie in the following:1. This paperimproves the Morison vortex-induced force, and proposes a non-linear time-domain analysis model for VIV response of deepwater risers.2. This paper further improvesthe VIV predicting model considering large deformation, and studies the effect onVIV response of deepwater risers.3.This paper further improves the VIV predictingmodel considering the heave of a floating platform, and studies large its effect onVIV response and stress strength of deepwater risers.4. A more corresponded toengineering practice model for predicting VIV response of deepwater risers isproposed finally in this paper.
引文
[1] J.M.Bell,Y.D.Chin,S.Hanrahan.State of the Art of Ultra Deepwater Production Technologies[C]. Offshore Technology Conference, Houston,Texas,2005.
    [2] B.F.Ronalds, Deepwater Facility Selection, Offshore Technology Conference[C],2002.
    [3] Frank L, Tim E. The Need for Standardizing Deepwater Riser Systems?. OffshoreDrilling and Deepwater/Underwater Technology,27-28November2006Kuala Lumpur,MALAYSIA.
    [4] Blevins, R D, Flow-induced vibrations[M].2nd edn. New York: Van Nostrand&Co.,1990.
    [5]黄维平,曹静,张恩勇,等.大柔性圆柱体两自由度涡激振动试验研究.力学学报,2011,43(2):436~439
    [6] Dahl, J.M., Hover, F.S., Triantafillou, M.S.,2010. Dual resonance in vortex-inducedvibrations at subcritical and supercritical Reynolds numbers. Journal of Fluid Mechanics643,395~424.
    [7] Dahl, J.M., Hover, F.S., Triantafillou, M.S.,2008. High harmonic forces and predictedvibrations from forced in-line and cross-flow cylinder motions. In: International Offshore andPolar Engineering Conference Proceedings2008, pp.481~488.
    [8] Al Jamal, H., Dalton, C.,2004. Vortex induced vibrations using large eddy simulation at amoderate Reynolds number. Journal of Fluids and Structures19,73~92.
    [9] Al Jamal, H., Dalton, C.,2005. The contrast in phase angles between forced andself-excited oscillations of a circular cylinder. Journal of Fluids and Structures20,467~482.
    [10] Pontaza, J.P., Chen, H.C.,2007. Three-dimensional numerical simulations of circularcylinders undergoing two degree-of-freedom vortex-induced vibrations. Journal of OffshoreMechanics and Arctic Engineering129,158~164.
    [11] Pontaza, J.P., Menon, R.G., Chen, H.C.,2009. Three-dimensional numerical simulationsof flows past smooth and rough/bare and helically straked circular cylinders allowed to undergotwo degree-of-freedom motions. Journal of Offshore Mechanics and Arctic Engineering131,021301.
    [12] Yamamoto, C.T., Meneghini, J.R., Saltara, F., Fregonesi, R.A., Ferrari, J.J.,2004.Numerical simulations of vortex-induced vibration on flexible cylinders. Journal of Fluids andStructures19,467~489.
    [13] Lucor, D., Triantafyllou, M.S.,2008. Parametric study of a two degree-of-freedomcylinder subject to vortex-induced vibrations. Journal of Fluids and Structures24,1284~1293.
    [14] Landl, R.,1975. A mathematical model for vortex-excited vibrations of bluff bodies.Journal of Sound and Vibration42,219~234.
    [15] Iwan, W.D.,1981. The vortex-induced oscillation of non-uniform structural systems.Journal of Sound and Vibration79,291~301.
    [16] Skop, R.A., Griffin, O.M.,1973. A model for the vortex-excited resonant response ofbluff cylinders. Journal of Sound and Vibration27,225~233.
    [17] Skop, R.A., Balasubramanian, S.,1997. A new twist on an old model for vortex-excitedvibrations. Journal of Fluids and Structures11,395~412.
    [18] Gabbai, R.D., Benaroya, H.,2005. An overview of modeling and experiments ofvortex-induced vibration of circular cylinders. Journal of Sound and Vibration282,575~616.
    [19] Facchinetti, M.L., de Langre, E., Biolley, F.,2004b. Vortex-induced travelling wavesalong a cable. European Journal of Mechanics B-Fluids23,199~208.
    [20] Mathelin,.,deLangre,E.,2005.Vortex-induced vibrations and waves under shear flowwith a wake oscillator model.European Journal of Mechanics B—Fluids24(4),478~490.
    [21] Violette, R., de Langre, E., Szydlowski, J.,2007. Computation of vortex-inducedvibrations of long structures using a wake oscillator model: comparison with DNS andexperiments. Computers&Structures85,1134~1141.
    [22] Farshidianfar, A., Zanganeh, H.,2010. A modified wake oscillator model forvortex-induced vibration of circular cylinders for a wide range of mass-damping ratio. Journalof Fluids and Structures26,430~441.
    [23] Srinil, N.,2010. Multi-mode interactions in vortex-induced vibrations of flexiblecurved/straight structures with geometric nonlinearities. Journal of Fluids and Structures26,1098~1122.
    [24] Skop, R.A., Bala subramanian, S.,1997. A new twist on an old model for vortex-excitedvibrations. Journal of Fluids and Structures11,395–412.
    [25] Kim, W.J., Perkins, N.C.,2002. Two-dimensional vortex-induced vibration of cablesuspensions. Journal of Fluids and Structures16,229~245.
    [26] Ge, F., Long, X., Wang, L., Hong, Y.S.,2009. Flow-induced vibrations of long circularcylinders modeled by coupled nonlinear oscillators. Science in China, Series G: Physics,Mechanics and Astronomy52,1086~1093.
    [27] Vandiver, J.K., Allen, D., Li, L.,1996. The occurrence of lock-in under highly shearedconditions. Journal of Fluids and Structures10,555~561.
    [28] Lie, H., Larsen, C.M., Vandiver, J.K.,1997. Vortex induced vibrations of long marinerisers; model test in a rotating rig. In: Proceedings of the16th. International Conference onOffshore Mechanics and Arctic Engineering, Yokohama, Japan.
    [29] Chaplin, J.R., Bearman, P.W., Huera-Huarte, F.J., Pattenden, R.J.,2005a. Laboratorymeasurements of vortex-induced vibrations of avertical tension riser in a stepped current. Journalof Fluids and Structures21,3~24.
    [30] Kim, Y.H., Vandiver, J.K., Hollar, R.,1986. Vortex-induced vibration and dragcoefficients of long cables subjected to sheared flows. Journal of Energy Resources Technology108,77~83.
    [31] Dahl, J.M., Hover, F.S., Triantafyllou, M.S.,2006. Two-degree-of-freedomvortex-induced vibrations using a force assisted apparatus. Journal of Fluids and Structures22,807~818.
    [32] Dahl, J.M., Hover, F.S., Triantafyllou, M.S.,2007. Resonant vibrations of bluff bodiescause multivortex shedding and high frequency forces. Physical Review Letters99,144~503.
    [33] Dahl, J.M., Hover, F.S., Triantafyllou, M.S.,2010. Dual resonance in vortex-inducedvibrations at subcritical and supercritical Reynolds numbers. Journal of Fluid Mechanics643,395~424.
    [34] Huera-Huarte, F.J., Bearman, P.W.,2009. Wake structures and vortex-induced vibrationsof along flexible cylinder-Part1: Dynamic response. Journal of Fluids and Structures25,969~990.
    [35] Dahl, J.M., Hover, F.S., Triantafyllou, M.S.,2010. Dual resonance in vortex-inducedvibrations at subcritical and supercritical Reynolds numbers. Journal of Fluid Mechanics643,395~424.
    [36] Jeon, D., Gharib, M.,2001. On circular cylinders undergoing two-degree-of-freedomforced motions. Journal of Fluids and Structures15,533~541.
    [37] Sanchis, A., Saelevik, G., Grue, J.,2008. Two-degree-of-freedom vortex-inducedvibrations of a spring-mounted rigid cylinder with low mass ratio. Journal of Fluids andStructures24,907~919.
    [38] Blevins, R.D., Coughran, C.S.,2009. Experimental investigation of vortex-inducedvibration in one and two dimensions with variable mass, damping, and Reynolds number.Journal of Fluids Engineering131,101202.
    [39] Huera-Huarte, F.J., Bearman, P.W.,2009. Wake structures and vortex-induced vibrationsof along flexible cylinder-Part1: Dynamic response. Journal of Fluids and Structures25,969~990.
    [40] Tognarelli, M.A., Slocum, S.T., Frank, W.R., Campbell, R.B.,2004. VIV response of along flexible cylinder in uniform and linearly sheared currents. In: Proceedings of the OffshoreTechnology Conference, OTC16338, Houston.
    [41] Trim, A.D., Braaten, H., Lie, H., Tognarelli, M.A.,2005. Experimental investigation ofvortex-induced vibration of long marine risers. Journal of Fluids and Structures21,335~361.
    [42] Lie, H., Kaasen, K.E.,2006. Modal analysis of measurements from a large-scale VIVmodel test of a riser in linearly sheared flow. Journal of Fluids and Structures22,557~575.
    [43] Vandiver, J.K., Jaiswal, V., Jhingran, V.,2009. Insights on vortex-induced, travelingwaves on long risers. Journal of Fluids and Structures25,641~653.
    [44] Chaplin, J.R., Bearman, P.W., Cheng, Y., Fontaine, E., Graham, J.M.R., Herfjord, M.,Isherwood, M., Lambrakos, K., Larsen, C.M., Meneghini, J.R., Moe, G., Triantafyllou, M.S.,Willden, R.H.J.,2005b. Blind predictions of laboratory measurements of vortex-inducedvibrations of a tension riser. Journal of Fluids and Structures21,25~40.
    [45] Ge, F., Long, X., Wang, L., Hong, Y.S.,2009. Flow-induced vibrations of long circularcylinders modeled by coupled nonlinear oscillators. Science in China, Series G: Physics,Mechanics and Astronomy52,1086~1093.
    [46] Y. Modarres-Sadeghi, F.Chasparis, M.S.Triantafyllou. Chaotic response is a generic featureof vortex-induced vibrations of flexible risers[J]. Journal of Sound and Vibrations.2011,330:2565~2579.
    [47] XIE Fang-fang, DENG Jian, ZHENG Yao. MULTI-MODE OF VORTEX-INDUCEDVIBRATION OF A FLEXIBLE CIRCULAR CYLINDER.Journal of hydrodynamics.2011,23(4):483~490.
    [48] Shan Huang, MahdiKhorasanchi, KjellHerfjord. Drag amplification of long flexible risermodels undergoing multi-mode VIV in uniform currents. Journal of Fluids and Structures.2011,27:342~353.
    [49] Re′mi Bourguet, DidierLucor, MichaelS.Triantafyllou. Mono-and multi-frequencyvortex-induced vibrations of a long tensioned beam in shear flow.2011,23:1~13.
    [50] Xiaodong Wu, Fei Ge,Youshi Hong. A view of recent studies on vortex-induced vibrationsof long slender cylinders. journal of fluid and structures.2011,28:292~308.
    [51] WILLIAMSON C H K, GOVARDHAN R. A Brief Review of Recent Results inVortex-Induced Vibrations. Journal of Wind Engineering and Industrial Aerodynamics.2008,6(6-7):714~735.
    [52]蔡杰,尤云祥,李巍,等.均匀来流中大长细比深海立管涡激振动特性.水动力学研究与进展,2010,25(1):50~58
    [53]聂武,刘玉秋.海洋工程结构动力分析.哈尔滨:哈尔滨工程大学出版社,2002.93~95
    [54] Sarpkaya T. Hydrodynamic damping, flow-induced oscillations, and biharmonicresponse[J]. ASME Journal of Offshore Mechanics and Arctic Engineering,1995,117:232~238.
    [55]黄维平,刘福顺.船舶与海洋工程结构力学.北京:中国出版集团现代教育出版社.2011.64~90
    [56]唐友刚.高等结构动力学.天津:天津大学出版社,2007.52~57
    [57]吴应湘,徐万海,钟兴福,等.海洋立管的涡激振动模型预测方法.中国造船,51(2):40~43.
    [58] ZHOUCY,SORM,LAMK.Vortex-induced vibrations of elastic circular cylinders.Journalof Fluids and Structures.1999, l3: l65~189.
    [59] GUILMINEAU E, QUEUTEY P.Numerical simulation of vortex-induced vibration of acircular cylinder with low mass-damping in a turbulent flow.Journal ofFluids andStructures.2004,l9:449~466.
    [60]潘志远,崔维成.细长海洋立管涡激振动预报模型.船舶力学,2006,10(3):5~11.
    [61] AL—JAMALH, DALTONC.Vortex induced vibrations using large eddy simulation at amoderate Reynolds number. Journal of Fluids and Structures.2004, l8:73~92.
    [62] LUCORD, IMAS L, KARNIADAKISGE.Vortex dislocation and force dist ribution of longflexible cylinders subject to sheared flows. Journal of Fluids and Structures.200l,15:641~650.
    [63] HARTLEN, R T, CURRIE, I G. Lift-oscillator model for vortex-induced vibrations.Journalof the Engineering Mechanics Division EM5,l970,577~591.
    [64] IWAN, W D,BLEVINS R D.A model for vortex-induced oscillation of structures.Journalof Applied Mechanics. l974,41:58l~586.
    [65] IWAN W D.The vortex induced oscillation of non-uniform structure systems.Journal ofSound and Vibration.198l,72(2):291~301.
    [66] SKOP R A,GRIFFIN O M.A model for the vortex-excited response of bluffcyIil1ders.Journal of Sound and Vibration.1973,27:225~233.
    [67] GRIFFIN O M,SKOP R A,KOOPMAN G H.The vortex-excited resonant vibration ofcircular cylinders.Journal of Sound and Vibration.1973,3l:235~249.
    [68] LANDLE R, A mathematical model for the vortex excited vibrations of bluffbodies.Journal of Sound and Vibration.1975,42:219~234.
    [69] BALASUBRAMANIAN S,SKOP R A,HAAN F L,SZEWCZYK A A.Vortex.excitedvibrations of uniform pivoted cylinders in uniform and shear flow.Journal of Fluids andStructures.2000,14:65~85.
    [70]郭海燕,傅强,娄敏.海洋输液立管涡激振动响应及其疲劳寿命研究.工程力学,2005,22(4):220~224.
    [71]潘志远,崔维成,刘应中.阶梯状来流中立管的涡激振动响应预报.上海交通大学学报,2006,40(6):1064~1068.
    [72] FACCHINETTI M L,LANGRE E,DE,BIOLLEY F.Coupling of structure and wakeoscillators in vortex.Induced vibrations]J].Journal of Fluids and Structures.2004,19(2):123~140.
    [73] FACCHINETTI M L,LANGRE E,DE,BIOLLEY F.Vortex-induced traveling wavesalong a cable.European Journal of Mechanics B/Fluids.2004,23:l99~208.
    [74] FACCHINETTI M L,LANGRE E,de.Vortex-induced vibrations and waves under shearflow with a wake oscillator mode1.European Journal of Mechanics B/Fluids.2005,24:478~490.
    [75] VIOLETTE R,LANGRE,E,DE,SZYDLOWSKI J.Computation of vortex-inducedvibrations of long structures using a wake oscillator model:Comparison with DNS andexperiments.Computers and Structures.2007,85:1134~1141.
    [76] WANHAI XU,XIAOHUI ZENG,YINGXIANG WU.High aspect ratio(L/D)riser VlVprediction using wake.oscillator mode1.Ocean Engineering,2008,35:1769~l774.
    [77] Larsen Carl M, Baarholm Gro Sagli, Passano Elizabeth, Koushan Kamran. Non-lineartime domain analysis of vortex induced vibrations for free spanning pipelines [A]. Proceedingsof the International Conference on Offshore Mechanics and Arctic Engineering [C].Vancouver,Canada, OMAE,2004.207~215.
    [78] Larsen Carl M, Koushan Kamran, Passano Elizabeth. Frequency and time domainanalysis of vortex induced vibrations for free span pipelines [A]. Proceedings of theInternational Conference on Offshore Mechanics and Arctic Engineering [C]. Oslo, Norway,OMAE,2002.103~111.
    [79]李昕,刘亚坤,周晶,马恒春.海底悬跨管道动力响应的试验研究和数值模拟[J].工程力学,2003,20(1):21~25.
    [80]余建兴,罗延生,方华灿.海底管线管跨段涡激振动响应的实验研究[J].地震工程与工程振动,2001,21(4):93~97.
    [81]黄维平,王爱群,李华军.海底管道悬跨段流致振动实验研究及涡激力模型修正。工程力学,2007,24(12):153-157.
    [82] Furnes G K, Berntsen J. On the response of a free span pipeline subjected to oceancurrents [J]. Ocean Engineering,2003,30(12):1553~1577.
    [83] Kocabiyik S. Fluid forces on transversely oscillating cylinder [J]. Applied MathematicLetter,2000,13(4):59~64.
    [84]黄维平,刘娟,唐世振.考虑流固耦合的大柔性圆柱体涡激振动非线性时域模型.振动与冲击.2012,31(9):140~143
    [85] R.克拉夫, J.彭津.结构动力学.王光远,译.第二版.北京:高等教育出版社,2007:183~185.
    [86]唐世振.考虑顺流向振动的深水顶张力立管涡激振动分析:[博士学位论文].青岛:中国海洋大学港口、海岸及近海工程系,2010.
    [87] Y. Modarres-Sadeghi, F.Chasparis, M.S.Triantafyllou. Chaotic response is a genericfeature of vortex-induced vibrations of flexible risers[J]. Journal of Sound and Vibrations.2011,330:2565~2579.
    [88] XIE Fang-fang, DENG Jian, ZHENG Yao. MULTI-MODE OF VORTEX-INDUCEDVIBRATION OF A FLEXIBLE CIRCULAR CYLINDER[J].Journal of hydrodynamics.2011,23(4):483-490.
    [89] Shan Huang, MahdiKhorasanchi, KjellHerfjord. Drag amplification of long flexibleriser models undergoing multi-mode VIV in uniform currents[J]. Journal of Fluids andStructures.2011,27:342~353.
    [90] Re′mi Bourguet, DidierLucor, MichaelS.Triantafyllou. Mono-and multi-frequencyvortex-induced vibrations of a long tensioned beam in shear flow[J].2011,23:1~13.
    [91] Xiaodong Wu, Fei Ge,Youshi Hong. A view of recent studies on vortex-inducedvibrations of long slender cylinders[J]. journal of fluid and structures.2011,28:292~308.
    [92] WILLIAMSON C H K, GOVARDHAN R. A Brief Review of Recent Results inVortex-Induced Vibrations[J]. Journal of Wind Engineering and Industrial Aerodynamics.2008,6(6-7):714~735.
    [93] Griffin, O.M., Ramberg, S.E.,1982. Some recent studies of vortex shedding withapplication to marine tubulars and risers. Journal of Energy Resources Technology104,2~13.
    [94] Khalak, A., Williamson, C.H.K.,1999. Motions, forces and mode transitions invortex-induced vibrations at low mass-damping. Journal of Fluids and Structures13,813~851.
    [95] Blackburn, H.M., Govardhan, R.N., Williamson, C.H.K.,2001. A complementarynumerical and physical investigation of vortex-induced vibration. Journal of Fluids andStructures15,481~488.
    [96] Sarpkaya, T.,2004. A critical review of the intrinsic nature of vortex-induced vibrations.Journal of Fluids and Structures19,389~447.
    [97] Williamson, C.H.K., Govardhan, R.,2004. Vortex-induced vibrations. Annual Review ofFluid Mechanics36,413~455.
    [98] Gabbai, R.D., Benaroya, H.,2005. An overview of modeling and experiments ofvortex-induced vibration of circular cylinders. Journal of Sound and Vibration282,575~616.
    [99] Sumner, D.,2010. Two circular cylinders in cross-flow: a review. Journal of Fluids andStructures26,849~899.
    [100] Bearman, P.W.,2011. Circular cylinder wakes and vortex-induced vibrations. Journal ofFluid Mechanics27,648~658.
    [101] Pa doussis,.P.,Price,S.J.,de Langre,E.,2011.In:Fluid–Structure Interactions:Cross-Flow-Induced Instabilities Cambridge University Press, New York.
    [102] Argyris, H.,Symeonidis,Sp..Nonlinear finite element analysis of elastic systems undernonconservative loading-natural formulation.PartI.Quasi-static problems. Computer Methods inApplied Mechanics and Engineering.1981,26:75–123.
    [103] Atadan,.S.,Calisal,S.M.,Modi,V.J.,Guo,Y..A nalytical and numerical analysis of thedynamics of a marine riser connected to a floating platform. Ocean Engineering.1997,24:111~131.
    [104] Hosseini Kordkheili,S.A.,Bahai,H.Non-linear finite element analysis of flexible risers inpresence of buoyancy force and seabed interaction boundary condition Archive of AppliedMechanics.2008,78:765~774.
    [105] Hosseini Kordkheili,S.A.,Naghdabadi,R.,Jabbarzadeh,M.. A geometrically nonlinearfinite element formulation for shells using a particular linearization method. Journal of FiniteElement in Analysis and Design.2008,44:123~130.
    [106] Chainarong Athisakul, Thongchai Phanyasahachart, Karun Klaycham.Static equilibriumconfigurations and appropriate applied top tension of extensible marine riser with specified totalarc-length using finite element method.Engineering Structures.2012,34:271~277.
    [107] S.A. HosseiniKordkheili a, H.Bahai b,n, M. Mirtaheri. An updated Lagrangian finiteelement formulation for large displacement dynamic analysis of three-dimensional flexible riserstructures,Ocean Engineering,2011,38:793~803.
    [108] Han-IlPark, Dong-HoJung. A finite element method for dynamic analysis of longslender marine structures under combined parametric and forcing excitations. OceanEngineering,2002,29:1313~1325.
    [109] I.K. Chatjigeorgiou. On the parametric excitation of vertical elastic slender structuresand the effect of damping in marine applications. Applied Ocean Research,2004,26:23~33.
    [110] Ioannis K. Chatjigeorgiou, Spyridon A. Mavrakos. Nonlinear resonances ofparametrically excited risers—numerical and analytic investigation for21. Computers andStructures,2005,83:560~573.
    [111] G.L. Kuiper, J. Brugmans, A.V. Metrikine. Destabilization of deep-water risers by aheaving platform. Journal of Sound and Vibration,2008,310:541~557.
    [112]杨和振,李华军.参数激励下深海立管动力特性研究.振动与冲击,2009,28(9):65~78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700