高速列车VIP车厢送风均匀性及气流组织优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速列车的迅速发展,乘客对列车的舒适性提出了更高的要求。高速列车空调的送风方式、送风速度、送风温度等影响着车内的气流组织和舒适性。列车VIP车厢内气流组织的要求更高。
     本文采用CFD模拟和实验方法,以实现列车送风均匀性和优化包厢内气流组织为目的,对VIP车厢孔板送风道和车厢内气流组织进行了系统研究。研究结果对高速列车送风系统设计及车厢内舒适度的研究具有一定的指导意义。
     由于VIP车厢结构的特殊性,本文采用N点风口模型对某高速列车送风系统进行了CFD模拟。模拟结果显示各个包厢与其对应的走廊侧送风量近似相等,但是由于包厢的空间较走廊大,且包厢与走廊间有1.65m的隔断,导致包厢内风量不能很好的满足要求。于是提出了加大包厢侧风量的方法,通过在主风道内加挡板、调整软管和小静压箱尺寸的方法进行调整,调整后仿真结果表明列车各包厢的风量不平衡率均在10%以内,其中最大值为6.67%,满足工程要求。同时CFD模拟结果也表明包厢内温度场和速度场分布较为均匀,满足客室内舒适性要求。
     以1:1的比例在列车实验台上搭建实际的送风系统进行实验。实验分别测试了各个包厢及对应的走廊侧送风口风量。将实验和仿真结果对比发现各送风口的CFD模拟值与实测值趋势一致且最大相对误差为9.57%,基本满足工程要求。包厢内温度和风速测试结果与CFD模拟结果也比较吻合,满足铁标中关于温度场和速度场的要求,并用不均匀系数评价指标对实验结果进行了评估。
Along with the rapid development of high-speed train, passengers put forward higher request of train comfort. High-speed train air-conditioning air supply mode, air speed, air temperature affects airflow distribution and comfort. The requirement of airflow distribution of train VIP is higher.
     In order to achieve air uniformity and the rationality of airflow distribution, using CFD simulation and experiment method to study the orifice plate air supply and airflow distribution in the box of the VIP carriage systematically. Research results have certain directive significance on high-speed trains supply system design and research of comfort in carriage.
     Due to the particularity structure of VIP carriage,do the CFD simulation of the train air distribution system basing on N-point outlet model. the simulation results show that air quantity of each box and its corresponding corridor side are approximately equal, but because the box space is bigger than the corridor, and there is the 1.65 m brettis between the box and the corridor, therefore causing the air quantity of each box are not very well meet the requirements. Then put forward the increase of air quantity of each box, through the way of adding baffile in the air main, adjusting the size of flexible hose and little plenum box to adjust simulation, Simulation results show that the train after adjusting the air quantity uneven rate of every box is less than 10%, the maximum is 6.67%, meet the engineering requirements. The CFD simulation results of the box velocity field and temperature field demonstrate that the velocity field and temperature field distribution uniformity, basicly meet the passenger comfort requirement.
     Then the experiment table is established by 1:1proportion to test the air quantity of each box and the corresponding corridor side. Through the comparison of the CFD simulation air quantity and the experiment value show that the tendency is consistent and the maximal relative error is 9.57%, that basicly meet the engineering requirements, so the method of through CFD simulation adjusting model and air quantity is feasible and effective. Box temperature and velocity test results with CFD simulation results are consistent too,which meet the iron standard about temperature and velocity field requirement, and the experimental results are evaluated by the indexe of non-uniform coefficient.
引文
[1]王文平.我国客车空调装置的发展历程及趋势.铁道车辆.1997,29(12):1-6
    [2]王小成,陈焕新铁路客车通风系统的现状与发展,制冷与空调.2003(3):59-64
    [3]周家林,周玉美.空调客车送回风道的性能实验及相关问题的探讨.铁道机车车辆.2005,25(1):12-16
    [4]胡万玲,管勇.我国列车空调的现状及其节能途径探讨.甘肃科技2003,19(6):55-56
    [5]顾建明,祝伯福等.空调客车的通风及节能[J].节能技术.2000,18(4):25-26
    [6] Lin C H,Han T,Koromilas C A.Effects of HVAC design parameters on passenger thermal comfort.SAE(Society of automotive engineers),1992
    [7]张曙光.铁路高速列车应用基础理论与工程技术.科学出版社.2007,1
    [8]杨晚生,张吉光,韩海涛.静压式均匀送风道送风机理分析.广东工业大学学报,2005,22(1):110-114
    [9]杨晚生.客车空调静压均匀送风道的性能研究及诱导器的研制.青岛建筑工程学院硕士学位论文,2002,3
    [10]裴念强,胡松涛.诱导空调系统在高速铁路客车上的应用探讨.暖通空调,2005,35(3):121-122
    [11]裴念强.铁路列车客车诱导器的研制.青岛建筑工程学院硕士学位文,2004
    [12]林田(日) .法国TGV-Duplex高速双层客车.国外铁道车辆,1998(6):18-21
    [13]陈海.世界各国高速铁路比较.国外铁道车辆,1996 (6)
    [14]李瑞淳,王騃.德国高速列车综述.国外铁道车辆,2005,42(6):1-6
    [15]龙静,王书傲.地铁车辆空调系统送风风道分析.电力机车与城轨车辆,2004,27(4):40-42
    [16] Okamoto.Shinkansen Bogies.Japan Railway Transport Rev,1999 (19):46-48
    [17]冈田诚.日本新干线电动车组用空调系统.国外铁道车辆2003,40(3):20-24
    [18]胡晓军.新干线300系电动车空调装置.国外铁道车辆,1992(6):26-28
    [19]殷占民.环状铁路客车送风系统设计及水力计算方法研究.青岛理工大学硕士学位论文,2006(4)
    [20]胡亚峰.200km/h动车组空调环状送风道系统特性研究.青岛理工大学硕士学位论文,2007(4)
    [21]周昂.列车外接螺旋风管式变截面送风系统研究.青岛理工大学硕士学位论文,2008(4)
    [22]张文胜,安大伟,娄承芝.孔板送风方式下密闭小室内气流分布的研究.2006全国暖通空调制冷学术年会.2006
    [23] Peter Diepen.德国密封客车.国外铁道车辆,1999(3)
    [24]孙彤等译.采用新技术的德国高速客车.西南交通大学出版社.1992
    [25]王来.孔板送风静压箱静压分布规律的实验研究[J].制冷学报,1991,49(3):10—16
    [26]徐旭,张旭.多孔板送风末端流量与管路阻力特性的数值模拟.制冷技术.2009,29(2)
    [27]孙丽颖,李岩.空调房间污染物分布特性的模拟研究.流体机械.2010,38(3)
    [28]陈江平等.轻型客车室内通风的数值模拟与实验研究.应用科学学报.2002,20(2):169-172
    [29] Subrata Roy et al.An Efficient CFD Algorithm for the Prediction of Contaminant Dispersion in room Air Motion,ASHRAE Transaction,1994
    [30] Busch J,Pien W S.Computational Fluid Dynamics Analysis and Validation for a HVAC Duct Design[J],SAE 940597
    [31]赵斌等.室内空气流动数值模拟的风口模型综述.暖通空调.2000,30(5):16-19
    [32]端木琳,舒海文,杜国付.工位空调送风静压箱及其送风气流性能评价.暖通空调.2004,34(10):17-20
    [33] Lin C H,Han T,Koromilas C A.Effects of HVAC design parameters on passenger thermal comfort.In:SAE(Society of automotive engineers),1992
    [34] KomoriyaT.Analysis of vehicle passenger compartment ventilation using Experimental and numerieal model.SAE Paper 89312,1989
    [35] HanT.Three-dimensional navier-stokes simulation for passenger compartment cooling[J].Int J of Vehicle Design,1989,10(2):223~235
    [36] LinCH, LelliMA, HanT, et al.A experimental and computational study of cooling ina simplified gm-10passenger eompartment[R] .SAE paper 910216,1991
    [37]吴俊云,童灵,陈芝久.空调客车室内三维紊流流动与传热数值研究上海交通大学学报,1999,33(3):331-334
    [38]丛晓春.空调列车厢气流分布的数值模拟与优化研究.青岛建筑工程学院硕士学位论文.2001
    [39]王利,陆震,黄兴华.铁路空调硬卧客车室内气流组织的数值模拟.上海交通大学学报.2002,36(11):1579-1582
    [40]卢纪富.空调列车室内气流组织模拟及其评价.青岛建筑工程学院硕士学位论文.2003
    [41]邢欣.高速列车空调通风系统实验研究与仿真优化.青岛建筑工程学院硕士学位论文.2003
    [42]张登春.空调硬卧车内气流组织的数值模拟研究.中国工程科学.2004,6(9):66-72
    [43]陈焕新,张登春.空调硬卧车内人体热舒适性研究.铁道学报.2004,26(3):46-50
    [44]王东屏,兆文忠,马思群.CFD数值仿真在高速列车设计中的应用.铁道学报.2007,29(5):64-68
    [45]郝桂珍.列车软卧包厢诱导通风气流组织的仿真研究.北京交通大学.硕士学位论文.2008
    [46]郝桂珍,钱兴华.诱导通风在高速软卧车中的优势分析.铁道机车车辆.2008,28(2)
    [47]刘文华.空调列车气流组织的数值分析.北京交通大学.硕士学位论文.2008
    [48]方宗升.300km/h动车组双源环状管网送风系统及水力特性的研究.青岛理工大学.硕士学位论文.2010
    [49]张吉光,史自强,杨晚生.空调静压送风道合理结构的分析研究.制冷空调与电力机械.2002,23(4)
    [50]姚征,陈康民.CFD通用软件综述.上海理工大学学报.2002,24(2)
    [51]王东屏,兆文忠,马思群.CFD数值仿真在高速列车设计中的应用.铁道学报.2007,29(5)
    [52]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001:333-352
    [53]赵琴,王靖著.FTUENT在暖通空调领域中的应用.制冷与空调,2003年1月第15卷第3期:15—18
    [54]陈晨.嵌入式空调气流组织评价.上海交通大学.硕士学位论文.2008
    [55] Fluent Inc.GAMBIT Modeling Guide.Fluent Inc, 2003
    [56]余常昭.紊动射流.北京:高等教育出版社, 1993
    [57]赵彬,李先庭,延启森.孔板空调风口送风射流的数值模拟.力学与实践.2002,24(1)
    [58]赵彬,曹莉,李先庭.洁净室孔板型风口入流边界条件的处理方法.清华大学学报.2003,43(5)
    [59] Tuve GL.Air velocities in ventilating jcts.ASHVE Transaction,1953,59:261~282
    [60] Ashrae Fundamentals. Space Air Diffusion. USA, ASHRAE,1993.Chap31,31.1-3l.17
    [61] Nielsen P V Description of supply openings in numerical models for room air distribution.1992(01)
    [62]刘红敏,连之伟,周湘江,倪久建.通风系统的气流组织评价指标及分析.2003,31(1):17-31
    [63]吴和英.气流组织对空气品质的影响分析.冷与空调,2006,(4):62-64
    [64]薛殿华主编.空气调节(第1版)[M]北京:清华大学出版社.1991
    [65] W.P.Jones,B.E.Launder.The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence.Int J Heat Mass Transfer,1973,16:1119-1130
    [66] Subrata Roy et al.An Efficient CFD Algoriyhm for the Pediction of Contaminant Dispersion in room Air Motion, ASHRAE Transaction,1994
    [67] Busch J,Pien W S.Computional Fluid Dynamics Analysis and Validation for a HVAC Duct Design,SAE 940597
    [68] Fluent Inc.FLUENT User Guide.Fluent Inc, 2003
    [69] Fluent Inc.FLUENT User Defined Function Manual.Fluent Inc,2003
    [70] Fluent Inc.GAMBIT Modeling Guide.Fluent Inc,2003
    [71]李金海.误差理论与测量不确定度评定.中国计量出版社,2003,11:35~115
    [72]刘志敏.误差与数据处理.原子能出版社,1981:3~5
    [73]黄泽铣.热电偶原理及其检定.中国计量出版社,1993:76~79
    [74]李慎安译.测量不确定度与检验-国际文献、标准选择.中国计量出版社,1989:25~59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700