管道内预混可燃气体爆炸与抑爆的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可燃气体爆炸事故往往导致惨重的人员伤亡和巨大的财产损失。考虑多数情况下可燃气体都是在管路中流动的,因此关于管路中爆炸波的传播状况及如何抑制管中爆炸波传播的研究已成为爆炸研究的重点之一。
     本文主要研究压力波和火焰在圆形管道和多层丝网结构内传播时其参数的变化规律以及参数之间的耦合关系。本文的主要工作和结论如下:
     (1)自行设计、加工、购买、组建了圆形管道内预混可燃气体爆炸及抑爆实验装置。并以乙炔/空气混合气为实验介质进行了关于爆炸波在受约束空间中传播与抑制的实验研究。实验条件如下:乙炔浓度为化学计量比(7.75%),爆炸初压为常压,管道内径为81mm,长度为1.4~2.9m,点火端密闭,出口端开放。多层丝网结构与管道轴线垂直,丝网材质为不锈钢。
     (2)根据实验结果将超压的变化过程分为四个阶段,将气体燃烧的变化过程分为三个阶段。得到了前驱冲击波峰值的经验公式、以及前驱冲击波末端与火焰面的相对时间及相对位置关系的经验公式、最大超压值在时间上的变化规律的经验公式、燃烧时间与火焰传播速度及测点位置关系的经验公式。前驱冲击波阶段超压上升曲线比较规则,且压力上升速率逐渐增加,离点火处越远压力上升速率增加得越快。实验中燃烧反应区的宽度要远大于湍流燃烧理论中的反应区宽度。测到的管内各处最大超压值和二次反冲压力差值为管道内爆炸的预防提供了参考。
     (3)对爆燃转爆轰过程(DDT)进行了初步研究,观察到此过程中前驱冲击波阵面仍然行进在火焰面的前方,但二者的间距在减小。火焰面紧跟在激波前缘的后面,二者同速传播,超压峰值的位置与火焰面重合。
     (4)利用理论模型对火焰传播速度进行了计算,并将火焰传播速度的实验值与计算值进行了对比分析。依据实验值得到了管内火焰传播速度的经验公式。
     (5)分析了多层丝网结构对管内传播中的火焰的淬熄能力。得到了临界淬熄速度、临界淬熄压差、临界淬熄量(临界淬熄速度与临界淬熄压差之积)与丝网层数、丝网目数、金属丝径这三个多层丝网结构的几何参数之间关系的经验公式。介绍了多层丝网结构对压力波的抑制效果。得出了最大超压下降比率与多层丝网结构的三个几何参数之间的数学关系式。
Flammable gases explosions can cause great casualty and economic loss. Since flammable gases usually flow in pipelines, the investigations into propagation of explosion waves and its suppression technology become one of key points of explosion researches.
    Experimental investigations are carried out to analyze variation regulations of parameters in flow field and their couple relations as explosion waves and flame propagating along tube or through multi-layer mesh construction. The main work and conclusions of this paper are as follows:
    (1)Experimental apparatus used for explosion and explosion suppression of flammable gases in tube are designed and set up. With premixed ethyne-air gases, experimental investigations about explosion waves and flame propagating in tube are dealt with. Experimental conditions are set as follows: Stoichiometric rate and atmospheric pressure are used for initial concentration of Ethyne and initial pressure; the inside diameter and length of tube, which is closed at ignition end and open at the other, are 81mm and 1.4-2.9m respectively; multi-layer mesh construction made of stainless steel, is vertical to tube axle.
    (2) According to experimental results, the variations of overpressure and flame can be described as four and three phases respectively. Some empirical formulae about, such as peak value of precursory shock waves, relative time and relative position of the of precursory shock waves and flame front, the variations of overpressure with time, the relationships between combustion time and flame propagation velocity and measuring points, are obtained. At precursory shock wave segment, overpressure-increasing curves are regular. With acceleration of pressure increasing rate, the farther measuring point is apart from ignition point, the faster pressure-increasing rate is. The width of combustion region is far bigger than theoretical value in turbulent combustion theory. Difference value of peak overpressure and reactive pressure for the second time can provide references for explosion prevention in tubes.
    (3) Preliminary study on deflagration to detonation (DDT) process is made. It is found that precursory shock waves still travel before the flame front, and the distance between them decreases gradually. Flame front closely follows Shockwaves at the same speed, and location of peak overpressure is coincident with flame front.
    (4) Based on theoretical model, flame propagation speed is computed and compared with experimental value. Empirical formula about flame propagation speed in tube is obtained.
    (5) The effects of multi-layer mesh construction on flame propagation in tube
    
    
    are analyzed. Empirical formulas about relationship between critical values, include of quenching speed, quenching pressure difference and quenching amount (the product of quenching speed and quenching pressure difference), and geometrical parameters, such as layer, screen mesh and wire diameter, are obtained. Suppression effects of multi-layer mesh construction on explosion waves are introduced, and mathematical relations between decreasing rate of the maximum overpressure and three geometrical parameters are obtained.
引文
[1] Khan Faisal Ⅰ, Abbasi S A. Major Accidents in Process Industries and an Analysis of Causes and Consequences[J]. Journal of Loss Prevention in the Process Industries, 1999, 12(5): 361~378
    [2] 余力新,孙文超,吴承康.半开口管道中的氢/空气火焰加速和压力发展过程[J].工程热物理学报.2001.9:637~640
    [3] 周凯元,李宗芬.丙烷—空气爆燃波的火焰面在直管道中的加速运动[J].爆炸与冲击,2000.4:137~142
    [4] 桂晓宏,林伯泉.火焰速度与超压关系[J].淮南工业学院学报,1999.12:14~17
    [5] 金果.可燃性气云爆炸研究:[硕士学位论文].大连:大连理工大学,2000
    [6] 津田健,北條英光.多届金網形消炎性能[J].安全工学论文集,1989.5:279~284
    [7] 王振成,小川辉繁.金属网阻火器设计参数的优化选择[J].中国安全科学学报(增刊),1995,12:176~182
    [8] Faisal I K, Abbasi S A. Major accident in process industries and an analysis of causes and consequence. Journal of Loss Prevention in the process Industries 1999,12:361~378
    [9] 蒋运茂译.工业防爆技术(美).北京:劳动人事出版社,1987
    [10] Gugan K. Unconfined Vapor Cloud Explosion of Chemical Engineers. U.K. 1987 Journal of Hazardous Materisls. 1954.8:45~56
    [11] 孙名振.燃料空气炸药概况.北京:机械工业出版社,1984
    [12] 赵衡阳.气体与粉尘爆炸原理.北京:北京理工大学出版社,1996,13~14,23~25,80~89,180~207
    [13] Mercx W P M, Berg A C van den. Modeling and Experimental Research in to Gas Explosions, Overall Final Report for CEC Contact: STEP-CT-0111, 1994.
    [14] Mercx W P M, Van Den Berg A C. The Explosion Blast Prediction Model in the Revised"Yellow Book". Houston, TX, USA: Proceedings of the Annual Loss Prevention Syrnposium, 1997, 31.42E
    [15] 毕明树,王淑兰,丁信伟,罗正鸿.无约束气云弱点火爆炸压力实验研究.化工学报,2001,52(1):68~70
    [16] 蒋德明.内燃机燃烧与排放学[M].西安:西安交通大学出版社,2001.174,275
    [17] 刘正白.燃烧学[M].大连:大连理工大学出版社,1992.44~45,57~60,76~93
    [18] W.P.M.Mercx,A.C.van de berg,C.J.Hayhurst,et al. Developments in vaopor cloud explosion blast modeling[J].Joural of Hazardous Materials 2000, 71: 301~319
    [19] 刘晓利,李鸿志,叶经方,刘殿金.障碍物对铝粉火焰加速作用的研究.爆炸与冲击,1995,15(1):11~19
    [20] 胡畔.石化装置设计中阻火器的选用[J].炼油设计,2002,32(6):37~39
    [21] 王振成,小川辉繁.金属网阻火器设计参数的优化选择[J].中国安全科学学报(增刊),1995,12:176~182
    [22] 北條英光,津田健,新井 信,加納能一.管内炎传播舉動消炎性能[J].化学工学論文集,1986.2:153~158
    
    
    [23] 北條英光,津田健,加納能一.金網形流動抵抗消炎舉動[J].高压,1984,5:239~247
    [24] 津田健,北條英光.垂直管金網形消炎性能[J].安全工学論文集。1990.4:251~255
    [25] 津田健,北條英光.多層金網形消炎性能[J].安全工学論文集,1989.5:279~284
    [26] 小川勇治,近藤俊文,淹史郎.開放空間中炎加速爆邊移実驗[J].日本機械学会論文集(B編),1985,10:3421~3425
    [27] 王宝兴,李振彦.可燃气体爆炸泄压过程中声振动不稳定燃烧压力峰减弱方法的研究[J].爆炸与冲击,1989,9(2):130~136
    [28] Van Wingerden C J M,Zeeuen J P.On the tole of acoustically driven flame insrabilities in vented gas explosions and their elimination[J].Combustion and Flame, 1983,51:109~111
    [29] 喻健良,刘润杰,毕明树,王淑兰.网孔结构和可压缩材料抑制爆炸波的研究评述[J].化学工业与工程技术,2002,23(91):12~15
    [30] Gvozdeva L G et al. Normal shock waves reflection on porous compressible materials [J]. Dynamics of explosions, Prog. Astronautics and Aeronautics, AIAA, New York, 1986,106:155~165
    [31] Dupre G et al. Propagation of detonation waves in acoustic absorbing walled tube [J]. Dynamics of explosion, Prog. Astronautics and Aeronautics, AIAA, Washington, 1988,114:248~263
    [32] 郭长铭,李剑.爆轰波在阻尼管道中声吸收的实验研究[J].爆炸与冲击,2000,20(4):289~295
    [33] 郭长铭,陈志刚.多孔钢板对气相爆轰波传播影响的实验研究[J].实验力学,2000,15(4):400~407
    [34] 桂晓宏,余华,林伯泉.瓦斯爆炸过程中火焰与超压的实验研究[J].江苏煤炭,2000.1:14~16
    [35] 居江宁,吴文权,吴中立,邵辉.TVD方法在瓦斯爆炸可压缩流场中的应用[J].淮南工业学院学报,2000.9:19~24
    [36] 居江宁,吴文权.巷道瓦斯爆炸二次反冲的数值模拟[J].上海理工大学学报,1999.1:39~42
    [37] 王从银,何学秋.瓦斯爆炸火焰厚度的实验研究[J].爆破器材,2001.4:28~32
    [38] 王从银,何学秋.瓦斯爆炸阻隔爆装置失效原因的实验研究[J].中国安全科学学报,2001.4:60~64
    [39] 陈爱平.管道内流动气体爆炸问题的实验研究[J].爆炸与冲击,1999.10:347~352
    [40] 陈义良,张孝春,孙慈,李鹤鸣.燃烧原理[M].北京:航空工业出版社,1992.185~231
    [41] 林柏泉,桂晓宏.瓦斯爆炸过程中火焰传播规律的模拟研究[J].中国矿业大学学报.2002,1:6~9
    [42] 赵衡阳等.防爆工程学[M].北京理工大学出版社,1992
    [43] Nagy J.Development and Control of Dust Explosions.Marcel Deker Inc.New York,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700