考虑流固耦合的管路系统振动噪声及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体管道系统广泛应用于海洋工程、生物工程、电力工业、石油能源工业、核工业、舰船、飞行器动力装置以及日常生活中。因为在管路系统中存在泵和阀门等内部声源以及基础振动和管道破裂等外部激励,所以会诱发流体管道产生振动噪声,并在管道和流体中传播。振动噪声问题在舰船管路系统中,显得十分突出,一方面会造成管路以及精密仪器附件破坏,影响管路系统以及动力系统的正常运行;另一方面管路系统的振动噪声会通过船体以及内外部流体交换而产生声辐射,影响其隐身性,直接对舰船安全构成威胁。
     首先忽略流体和管道之间摩擦效应的影响,直管考虑轴向泊松耦合效应,弯管考虑泊松耦合效应以及Bourdon耦合效应,参考Tenteralli的建模思想,建立管路系统中最基本的管路部件单元——直管和弯管的动力学模型。模型包括轴向振动、横向振动以及管道的扭转振动,一共14个参量的一阶时域偏微分方程。然后利用Laplace变换把时域方程变换到频域,对于直管,对频域方程经过复杂的推导,把14个多元一阶偏微分方程转化为14个一元高阶常微分方程,对高阶方程直接求解得到直管的频域解析解;对于弯管,借鉴张立翔教授对直管轴向4方程模型的求解思想,同样得到弯管的频域解析解。管道的最终解还必须结合管路系统的边界条件,在这里,把管路的边界简化为六个自由度方向(线弹性和扭转弹性)的弹性刚度,通过设定不同的弹性刚度,可以得到各种组合的边界形式,比如固定边界、简支边界、自由边界以及弹性边界等。
     建立典型管路结构的传递矩阵模型,包括直管和弯管、折管、分支管(一点分支以及多点分支)和锥形管的传递矩阵,传递矩阵中管段连接点(点传递矩阵)处支撑可以为任意形式。一点分支通过分支点处的力平衡和位移平衡得到了任意形状分支管的点传递矩阵,并结合边界条件得到了其求解方程;在此基础上,通过在点传递矩阵等式左右添加零矩阵的方法得到了多点分支的传递矩阵,同样结合边界条件得到了其求解方程。锥形管通过划分单元,把锥形管划分为N段,用直管近似等效锥形管的单元,建立了锥形管的传递矩阵。
     在管路系统中,存在大量的法兰、阀门、泵等管路附件,这些附件都会影响管路系统的动力学行为,对于法兰、夹具等简化为一个集中质量元件,利用理论力学、结构力学等理论建立了集中质量的传递矩阵;而阀门、泵等声源附件不仅给管路带来了附加质量,而且是管路系统的激励源,因而,利用四端网络法以及力学理论,建立阀门、泵等声源附件的传递矩阵模型。
     在前面研究的基础上,利用典型管路结构以及附件等在任意支撑下的点传递矩阵以及场传递矩阵,推导出任意管路系统的整体传递矩阵,结合边界条件得到了管路系统的求解方程,这里的管路系统的传递矩阵以及求解方程适用于任意形状以及布置的管路系统。
     设计、搭建管路试验台架,通过测量直管、Y型分支管以及十字型分支管在激励下的轴向和横向振动噪声响应特性参数,通过与理论预测的对比来验证理论模型以及方法的正确性,同时也说明本文方法的应用,并从试验角度对管路流固耦合振动噪声特性进行分析。
     最后,对管路典型部件进行计算,通过调整管道的结构参数以及支撑形式等特性参数,对管路振动噪声响应特性进行分析,并从总声级和总速度级的角度出发,研究管路结构振动噪声特性和规律,为管路振动噪声控制以及低噪声设计提供理论指导。
As we all know, liquid-filled pipeline systems exist in many fields, just like marineengineering, biological engineering, electrical industry, petroleum energy industry, nuclearindustry, warships, aircraft device and daily life. Because of the existence of excitation insideand outside as pumps, valves, vibration of basement and cracking of pipelines and so on,vibration and noise of pipelines is induced, and propagating in pipelines. It becomes veryserious in pipeline system of warships. For one thing, the vibration and noise of pipelinesystems can make the pipeline and precision apparatus destroyed, which will affect the run ofpipeline and power system; for another thing, the vibration and noise of pipeline systems canradiate through hull and the process when exchange of inside and outside fluid happens, and itwill affect the conceal of the warship and bring in menace to security.
     At first, neglecting friction between pipeline and fluid, the model of two most commonpipeline section elements is established, namely, straight and curved pipeline, and the axismotion, flexural motion and torsion motion are included. For straight pipeline, Poissoncoupling is considered, and for curved pipeline, Poisson coupling as well as Bourdoncoupling is considered. Then, the time-domain equations describing vibration of pipelinesconsidering fluid-structure interaction are transformed into frequency domain by Laplacetransformation, and for straight pipeline, twelve fourth order ordinary differential equationsand two second order ordinary differential equations are deduced from the frequency-domainequations; for curved pipeline, using the reference of the method of professor Zhang solvingfour-equation model of axis motion, the analytical solution of curved pipeline is also obtained.In order to get the final solution of pipelines, boundary conditions of pipeline is required.Here, the boundary conditions are simplified to springs along six freedoms. Using the method,all the pipelines with classical constraints can be easily calculated by simply setting thestiffness of the restraining springs from zero to infinite, for example fixed supported, simplysupported, freely supported and elastically supported pipelines.
     The transfer matrix models of pipeline components, as straight and curved pipeline,L-shaped pipeline, branch pipeline (one branch point and multi-branch point inclueded) andtaper pipeline are established. Here, the joint condition between pipeline sections can bearbitrary. Through balance of displacement and force of branch point, the transfer matrixmodel for branch pipeline with one branch point is also obtained. Combined with boundaryconditions, the solution equation for it is got. Base on these, through complex matrixtransformation, the transfer matrix model for branch pipeline with more branch points isobtained. The solution equation is also gained with boundary condition. For taper pipeline, by divided into N sections, and any section equivalent with straight pipeline, the transfer matrixmodel of taper pipeline is set up.
     There exist many flanges, clamps, valves and pumps in pipeline systems, which canaffect the dynamic behavior of pipeline systems. Flanges and clamps, can be simplified intoconvergence mass component, and with theory of mechanics, the transfer matrix of them aregained. But valves and pumps, not only they can increase an added mass on pipelines, butalso they are the excitation of the pipelines. So, using four-channel method and theory ofmechanics, the transfer matrix model of valves and pumps are set up.
     Based on the results above, with the point transfer matrix and field transfer matrix ofpipeline components and accessories with arbitrary support, the transfer matrix for arbitrarypipeline systems is set up. The solution equation is also obtained combined with boundarycondition, which can be used for any pipeline systems.
     A testing bed for measuring pipelines is designed and built. By the measurement ofcharacteristic parameters of the response of straight pipeline, Y-shaped pipeline andcross-shaped pipeline under excitation, the correctness of the model and method is validated.And the characteristic of the vibration and noise of pipeline considering fluid-structureinteraction is also analyzed through the measurement data.
     In the end, the classic pipeline components are calculated and analyzed with differentstructural parameters and types of support. And the characteristic and law of vibration ofpipelines considering fluid-structure interaction is analyzed, which can be used to guide thecontrol of vibration and noise of pipeline and design of low-noise pipeline components.
引文
[1]曹亮.输流管道流固耦合振动特性分析.昆明理工大学,2004年6月
    [2] A.Anderson.Menabrea’s Note on Waterhammer:1858. ASCE Journal of theHydraulics Division,1963,89(HY4):1-21P
    [3] N Joukowsky. On the Hydraulic Hammer in Water Supply Pipes.Englishtranslation by O. Simin: Water hammer. Proceedings of the American WaterWorks Association.1904,24:341-424P
    [4] T Young. Hydraulic Investigations, Subservient to an Intended CroonianLecture on the Motion of the Blood. Philosophical Transaction of the RoyalSociety,1808,98(Part2,Paper13):164-186P
    [5] D J Korteweg. On the Velocity of Propagation of Sound in Elastic Pipes (inGERMAN). Annalender Physikund Chemie,New Series.1878,5(12):525-542P
    [6] Zhang L, Tijsseling A.S., Vardy A.E. FSI analysis of liquid-filled pipes.Journal of Sound and Vibration,1999,224(1):69-99P
    [7] W Variyart, M.J. Brennan. Active control of the n=2axial propagationg wavein an infinite in vacuo pipe.Smart Materials and Structures,2004,13:126-133P
    [8] J.Maillard. Active control of pressure pulsations in piping systems.Reasearch Report,1998,University of Karlskrona/Ronneby37225Ronneby,Sweden
    [9]率志军.充液管道压力脉动有源控制技术研究.哈尔滨工程大学,2006年6月,硕士学位论文
    [10] M.J. Brennan, S.J.Elliott and R.J.Pinnington. Active control of fluidwaves in pipe.Newprot Beach,CA,USA:ACTIVE95,1995,7:383-394P
    [11] Laugesen S. Active control of multi-modal propagation of tonal noise inducts. Journal of Sound and Vibration,1996,195(1):33-56P
    [12] Kang S.W. Kim Y.H. Active intensity control for the reduction of radiatedduct noise. Journal of Sound and Vibration,1997,201(1):595-611P
    [13] Lin Y.H., Tsai Y.K. Non-linear active vibration control of a cantileverpipe conveying fluid. Journal of Sound and Vibration,1997,202(4):477-490P
    [14] Eriksson L.J..Active sound and vibration control:a technology intransition. Noise Control Engineering,1996,44(1):1-9P
    [15] Sen M Kuo, Jianming Tsai. Acoustical mechanisms and performance of voriousactive duct noise control systems.Applied Acoustics,1994,41:81-91P
    [16] Lin Y.H., Chu C. L.. Active flutter control of a cantilever tube conveyingfluid using piezoelectric actuators.Journal of Sound and Vibration,1996,196(1):97-105P
    [17] Zhou Jiluo, Shi Tielin. On the study of the active attenuation of noisein an L-formed duct. Applied Acoustics,1991,34:181-191P
    [18]费仁元,伊善贞.管道有源消声控制技术的发展与动向.北京工业大学学报,2003,29(3):257-263页
    [19]吴斌,周大森,费仁元,等.管道有源消声实验系统的阻抗控制研究.中国机械工程,2003,14(6):457-458页
    [20]吴斌,费仁元,周大森.管道噪声有源控制的声学特性研究Ⅰ理论分析.北京工业大学学报,2003,29(4):411-413页
    [21]吴斌,费仁元,周大森.管道噪声有源控制的声学特性研究Ⅱ实验部分.北京工业大学学报,2004,30(1):31-34页
    [22]刘忠族,孙玉东,吴有生.管道流固耦合振动及声传播的研究现状及展望.船舶力学,2001,5(2):82-90页
    [23] Budny D.D., Hatfield F.J., Wiggert D.C.. An experimental study on theinfluence of structural damping on internal fluid pressure during atransient flow. ASME, Journal of Pressure Vessel Technology,1990,112:284-290P
    [24] Chiba T, Kobayashi H. Response characteristics of piping system supportedby visco-elastic and elasto-plastic dampers.ASME Journal of PressureVessel Technology,1990,112:34-38P
    [25] Hin Y.W., Wiedermann A.H. A method for suppression of pressure pulses influid-filled piping,part I:Theoretical analysis.ASME,Journal ofPressure Vessel Technology,1992,114:60-65P
    [26] Shin Y.W., Bielick E.F., Wiedermann A.H., et al. A method for suppressionof pressure pulses in fluid-filled piping-part II: Experimentalverification. ASME, Journal of Pressure Vessel Technology,1992,114:66-73P
    [27] Fang J,Lyons G.J. Structural damping of tensioned pipes with reference tocables. Journal of Sound and Vibration,1996,193(4):891-907P
    [28] Smith T, Rae J M, Lawson P. Pipe lagging-an effective method of noisecontrol. Applied Acoustics,1980,13:393-404P
    [29] Munjal M.L..Acoustic analysis and parametric studies of lagged pipes.Noise
    [30] Kanapathipillai S,Byrne K.P. A model for calculating the insertion lossesof pipe lagging. Journal of Sound and Vibration,1997,200(5):579-587P
    [31]张立翔,杨柯.流体结构互动理论及其应用.北京:科学出版社,2004.3
    [32] Tijsseling A.S., D.C.Wiggert.Fluid transients and fluid-structureinteraction in flexible liquid-filled pipeing.Department of Mathematicsand Computing Science Eindhoven University of Technology, May,2001
    [33] A.R.D. Thorley, Pressure transients in hydraulic pipelines.AmericanSociety of Mechanical Engineers,Journal of Basic Engineering,1969,91:453–461P
    [34] A.E. Vardy, D. Fan, Water Hammer in A Closed Tube, Proceedings of the5thInternational Conference on the Pressure Surge, BHRA, Hanover, Germany,September,1986,123-137P
    [35] A.F. D’souza, R. Oldenburger.Dynamic response of fluid lines, AmericanSociety of Mechanical Engineers, Journal of Basic Engineering,1964,86:589–598P
    [36] Tentarelli. Propagation of noise and vibration in complex hydraulic tubingsystems.Ph.D Thesis of Lehigh University of Mechanical Engineering, USA,1989.
    [37] Brown F.T..The transient response of fluid lines. Journal of BasicEngineering,1962,12:546-553P
    [38] Brown F.T.. A quasi method of characteristics with application to fluidlines with frequency dependent wall shear and heat transfer. Journal ofbasic engineering,1969,6,217-227P
    [39] D’Souza, A.F. and Grag V.K. Advanced dynamics modeling and analysis.Pretice-hall. Inc,Englewood cliffs,NJ,1984
    [40] Holmboe E.L. and Rouleau W.T. The effect of viscous shear on transientsin liquid lines. Journal of Basic Engineering, Trans, ASME,1967,3:174-180P
    [41] Ahmad Ahmadi,Ali Reza Keramat.Investigation of the Junction coupling dueto various types of the discrete points in a piping system. The12thInternational Conference of International Association for ComputerMethods and Advances in Geomechanics(IACMAG),2008,Goa,India,10:4016-4024P
    [42] Ke Yang, Q.S. Li&Lixiang Zhang. Longitudinal vibration analysis ofmulti-span liquid-filled pipelines with rigid constraints.Journal ofSound and Vibration,2004,273:125-147P
    [43] D.H. Wilkinson, Acoustic and mechanical vibrations in liquid-filledpipework systems. Proceedings of the BNES International Conference onVibration in Nuclear Plant, Paper8.5, Keswick, UK, May,1978,863–878P
    [44] M. EL-Raheb, Vibrations of three-dimensional pipe systems with acousticcoupling, Journal of Sound and Vibration,1981,78:39–67P
    [45] S. Nanayakkara, N.D. Perreira.Wave propagation and attenuation in pipingsystems. American Society of Mechanical Engineers, Journal of Vibration,Acoustics,Stress,and Reliability in Design,1986,108:441–446P
    [46] R.A. Clark, E.Reissner.Bending of Curved Tubes. Advances in AppliedMechanics,1951,2:93-122P
    [47] R.A. Clark, I.R. Gilroy and E.Reissner. Stress and Deformations of ToriodalShells of Elliptical Cross Section with Applications to the Problems ofBending of Curved Tubes and Bourdon Gage.Journal of Applied Mechanics,Transations of ASME,March,1954,37-38P
    [48] J.F. Watham.The Shell Analysis of Noncircular Pipe Bends.Journal ofNuclear Engineering and Design,1981,67:287-296P
    [49] J.F. Watham.Analysis of Pipe Bends with Symmetrical Noncircular CrossSections.Journal of Applied Mechanics,1987,54:604-610P
    [50]刘忠族,孙玉东,吴有生.空间管路振动频率计算的精确传递矩阵法.计算力学学报,2002,19(2):207-216页
    [51] Paidoussis M P. Flow-induced instabilities of cylindrical structures.Applied Mechanics Reviews.1987,40163-171P
    [52]黄玉盈,邹时智,钱勤等.输液管的非线性振动、分叉与混沌——现状与展望.力学进展,1998,28(1):30-42页
    [53]王本利,王世忠,安为民等.有限元法分析导管固液耦合振动.哈尔滨工业大学学报,1985,17:8-14页
    [54]王世忠,王茹.三维管道固液耦合振动分析.哈尔滨工业大学学报,1992,24(4):43-49页
    [55]王世忠,于石声.输流管道固液耦合振动计算..哈尔滨工业大学学报,2001,33(6):816-841页
    [56] A S Tijsseling.Water hammer with fluid-structure interaction inthick-walled pipe. Computers and Structures,2007,85:844-851P
    [57] A S Tijsseling,A E Vardy and D.Fan. Fluid structure interaction in a T-piecePipe. Journal of Fluids and Structure,1996,10763-786P
    [58] A.S.Tijsseling, A.E.Vardy and D.Fan. Fluid structure interaction andcavitation in a single-elbow pipe system.Journal of Fluids andStructure,1996,10:395-420P
    [59] L.C Davidson, J.E Smith. Liquid-structure coupling in curved pipes.Shockand Vibration Bulletin,1969,40(4):197-207P
    [60] M. W. Lesmez,D.C. Wiggert&F.J. Hatfield.Modal analysis of vibrations inliquid-filled piping systems.Journal of Fluids Engineering,1990,112:311-318P
    [61] Shley H., Haviland G.Bending vibrations of a pipe line containing flowingfluid. Journal of Applied Mechanics,1950,17:229-232P
    [62]Bu&&r mann. Water hammer in coaxial pipe systems.Ph.D Thesis, UniversityKarlsruhe,German,1974
    [63]Bu&&r mann. Water hammer in coaxial pipe systems. ASCE Journal of theHydraulics Division,1975,101:699-715P
    [64] Walker,J.S.&Phillps,J.W..Pulse propagation in fluid-filled tubes.Journalof Applied Mechanics,1977,44(3):31-35P
    [65] Hu, C.K.&Phillips. J.W. Pulse propagation in fluid-filled elastic curvedtubes. ASME Journal of Pressure Vessel Technology,103:43-49P
    [66] A.S Tijsseling.Fluid-Structure interaction in case of waterhammer withcavitation.University Delft,1993
    [67]Bu&&r mann, W. Longitudinal motion of piplines laid in the open due to waterhammer.3R international,1980,19:84-91P
    [68] Hu,C.K.&Phillips. J.W. Pulse propagation in fluid-filled elastic curvedtubes. ASME Journal of Pressure Vessel Technology,103:43-49P
    [69] Wiggert D.C., Hatfield F.J.&Stuckenbruck.S..Analysis of liquid andstructural transients by the method of characteristics. ASME Journal ofFluids Engineering,1987,109:161-165P
    [70]蔡亦刚.流体传输管道动力学.杭州:浙江大学出版社,1990
    [71] Olson L G, Jamison D. Application of a general purpose finite element methodto elastic pipes conveying fluid. Journal of Fluids and Structures,1997,11:207-222P
    [72] Svingen B. Fluid structure interaction in slender pipes. Ph.D. Thesis, theNorwegian University of Science and Technology,Faculty of MechanicalEngineering,Trondheim,Norway,1996
    [73] Svingen B. Fluid structure interaction in slender pipes. Proceedings ofthe7th International Conference on Pressure Surges and Fluid Transientsin Pipelines and Open Channels,BHR Group,Harrogate,UK,385-396P
    [74] Svingen B.A frequency domain solution of the coupled hydromechanicalvibrations in piping systems by the finite element method.Proceedings ofthe17th IAHR Symposium on Hydraulic Machinery and Cavitation, Beijing,PR China,1259-1269P
    [75] Zienkiewicz, O. C., and Newton, R. E..Coupled Vibration of a StructureSubmerged in a Compressible Fluid. Proceedings of the InternationalSymposium on Finite Element Techniques, Stuttgart,1969,1-15P
    [76] Zienkiewicz, O. C., Onate, E., and Heinrich, J. C.. A General Formulationfor Coupled Thermal Flow of Metals Using Finite Elements.Int. J. Numer.Methods Eng.,1981,17:1497-514P
    [77] Lewis R.W, Bettess P. and Hinton E.. Numerical Methods in Coupled Systems.1984,Wiley,Chichester
    [78] Bathe,K.J.,Zhang,H.andWang,M.H..Finite Element Analysis ofIncompressible and Compressible Fluid Flows With Free Surfaces andStructural Interactions. Comput. Struct.,1995,56(2/3):193-213P
    [79] Bathe, K. J., Zhang, H., and Ji, S.. Finite Element Analysis of Fluid FlowsFully Coupled With Structural Interactions.Comput.Struct.,1999,72:1–16P
    [80] Kwon, Y. W., and McDermott, P. M..Effects of Void Growth andNucleation on Plastic Deformation of Plates Subjected to Fluid-StructureInteraction.ASME J. Pressure Vessel Technol.,2001,123:480–485P
    [81] Newton,R.E.. Finite Element Study of Shock Induced Cavitation. ASCE SpringConference,Portland,OR.1980
    [82] Zienkiewicz,O.C.,Paul,D.K., and Hinton, E.. Cavitation in Fluid-StructureResponse With Particular Reference to Dam Under Earthquake Loading.Earthquake Engineering Structure,Dyn.,1983,11:463–381P
    [83] Bathe, K.J., Nitikipaiboon, C., and Wang, X.. A Mixed Displacement-BasedFinite Element Formulation for Acoustic Fluid-Structure Interaction.Comput.Struct.,1995,56:225-237P
    [84] Hatfield FJ,Wiggert D.C., Otwell RS. Fluid structure interaction in pipingby component synthesis.ASME Journal of Fluids Engineering,1982,104:318-325P
    [85] Hatfield F.J. and Wiggert D.C..Waterhammer response of flexible piping bycomponent synthesis. Journal of Pressure Vessel Technology,113:115-119P
    [86] Beckert,A. Coupling Fluid CFD and Structural FE Models Using FiniteInterpolation Elements,2000,Aerospace,Science and Technology (AST),No.5082
    [87] Kuntz, M.,Ferreira,J.C., Menter,F.R.,and Oudendijk,G.N.M..Analysisof Fluid-Structure Interaction With an Improved Coupling Strategy.Proceedings of the Third International Conference EngineeringComputational Technology, Stirling, Scottland,2002,85-86P
    [88] Cheng,Y., Oertel,H.,and Schenkel,T..Fluid-Structure Coupled CFDSimulation of the Left Ventricular Flow During Filling Phase, Ann. Biomed.Eng.,2005,33(5):567–576P
    [89] Y.W. Kwon, J.C. Jo.3D modeling of fluid-structure interaction withexternal flow using coupled LBM and FEM. Journal of Pressure VesselTechnology,2008,130:1-9P
    [90] Kwon,Y.W.,and Fox, P. K.. Underwater Shock Response of a Cylinder Subjectedto a Side on Explosion,Comput.Struct.,1993,48(4):637–646P
    [91] Kwon,Y.W.,Bergensen,J.K.,and Shin,Y.S..Effect of Surface Coatings OnCylinders Exposed to Underwater Shock. Shock Vibration,1994,1(3):637-646P
    [92] Kwon, Y. W., and Cunningham, R. E.. Comparison of USA-DYNA Finite ElementModels for a Stiffened Shell Subject to Underwater Shock.Comput. Struct.,1998,66(1):127–144P
    [93] Everstine,G.C., and Henderson,F.M.. Coupled Finite Element/BoundaryElement Approach for Fluid-Structure Interaction.Journal of AcousticSoceity of America,1990,87:1938-1947P
    [94] Giordano, J. A., and Koopmann, G. H.. State Space Boundary Element-FiniteElement Coupling for Fluid-Structure Interaction Analysis. Journal ofAcoustic Soceity of America,1995,98:363–372P
    [95]刘庆潭,倪国荣.结构分析中的传递矩阵法.北京:中国铁道工业出版社,1997.
    [96]芮筱亭等.多体系统传递矩阵法及其应用(精).北京:科学出版社,2008,5
    [97]张志勇.考虑固液耦合的充液管道系统振动特性及能量流研究.上海交通大学,2000
    [98]魏发远,黄玉盈,任志良等.分析输液曲管临界流速的迁移矩阵法.固体力学学报,2000,21(1):33-39页
    [99] Tijsseling A.S., A.E. Vardy.20years of FSI experiments in Dundee.Proceedings of the Third M.I.T. Conference on Computational Fluid and SolidMechanics,2005,Vol I:1-8P
    [100] Vardy A.E., Fan D. Water hammer in a closed tube. Proceedings of the5thInternational Conference on Pressure Surges,BHRA,Hanover,Germany,September,1986,123-137P
    [101] Vardy A.E., Fan D. Flexural waves in a closed tube. Proceedings of the6thInternational Conference on Pressure Surges,BHRA,Cambridge,UK,October,1989,43-57P
    [102] Fan D., Tijsseling A.S. Fluid-structure interaction with cavitation intransient pipe flows. ASME Journal of Fluids Engineering,1992,114(2):268-274P
    [103] Tijsseling A.S., Vardy A.E.. Axial modelling and testing of a pipe rack.Proceedings of the7th International Conference on Pressure Surges, BHRGroup, Harrogate,UK,April,1996,363-383P
    [104] Tijsseling A.S., Vardy A.E.. On the suppression of coupled liquid/pipevibrations. Proceedings of the18th IAHR Symposium on Hydraulic Machineryand Cavitation,Valencia,Spain,September,1996,945-954P
    [105] Tijsseling A.S., Vardy A.E., Fan D.. Fluid-structure interaction andcavitation in a single-elbow pipe system. Journal of Fluids and Structures1996,10(4):395-420P
    [106] Tijsseling A.S., Vaugrante P.. FSI in L-shaped and T-shaped pipe systems.Proceedings of the10th International Meeting of the IAHR Work Group onthe Behaviour of Hydraulic Machinery under Steady Oscillatory Conditions,Trondheim, Norway, June2001, Paper C3
    [107] Vardy A.E., Fan D., Tijsseling A.S.. Fluid/structure interaction in aT-piece pipe. Journal of Fluids and Structures,1996,10(7):763-786P
    [108] Tijsseling A.S., Vardy A.E.. FSI and transient cavitation tests in aT-piece pipe. Proceedings of the8th International Conference onFlow-Induced Vibration, FIV2004,Paris,France,July,2004,Vol.I,373-378P
    [109] Leslie,Milbourne D.J., Vardy A.E., Tijsseling A.S.. Transient FSI in a pipesystem with elbow and tee junction.Proceedings of the8th InternationalConference on Flow-Induced Vibration, FIV2004, Paris,France,July,2004,Vol.I,355-360P
    [110] Forbes T. Brown, Stephen C. Tentarelli. Dynamic behavior of complexFluid-filled systems-part1: tubing analysis. Journal of Dynamic Systems,Measurement,and Control,ASME,2001,123:71-77P
    [111] Stephen C. Tentarelli,Forbes T. Brown. Dynamic behavior of complexFluid-filled systems-part2: system analysis. Journal of Dynamic Systems,Measurement,and Control,ASME,2001,123:78-84P
    [112] A.G.T.J. Heinsbroek, A.S. Tijsseling. The influence of support rigidityon waterhammer pressures and pipe stresses
    [113]张立翔,黄文虎,A.S. Tijsseling.水锤诱发弱约束管道流固耦合振动频谱分析.工程力学,2000,17(1):1-12页
    [114]张立翔,杨柯,黄文虎。FSI效应对管道水击运动特性的影响分析.水电能源科学,2001,19(4):43-47页
    [115]杨柯.充液管道流固耦合对称方程的振型分解法.温州大学学报自然科学版,2007,28(1):49-54页
    [116]杨柯,张立翔,王冰笛.充液管道流固耦合轴向振动的对称模型.水动力学研究与进展,2005,20(1):8-13页
    [117] Q.S. Li, Ke Yang&Lixiang Zhang etc. Frequency domain analysis offluid-structure interaction in liquid-filled pipe systems by transfermatrix method. International Journal of Mechanical Sciences,2002,44:2067-2087P
    [118]易贾布,张立翔.用矩阵变换法对充液管道进行频响分析.云南工业大学学报,1998,14(3):51-60页
    [119]任建亭,林磊,姜节胜.管道流固耦合振动的行波方法研究.应用力学学报,2005,22(4):530-535页
    [120]任建亭,林磊,姜节胜。管道轴向流固耦合振动的行波方法研究[J].航空学报,2006,27(2):280-284页
    [121] Chiba,T., Koyanagi,R., Ogawa, N. and Minowa, C. A Test and Analysis of theMultiple Support Piping System, Journal of Pressure VesselTechnology,1989,111:291-299P
    [122] Chiba,T., Koyanagi,R., Ogawa, N. and Minowa, C. Dynamic Response Studiesof Piping Support System, Journal of Pressure Vessel Technology,1990,112:39-45P
    [123] Chiba,T., Koyanagi,R., Ogawa, N. and Minowa, C. Response Characteristicof Piping System Supported by Visco Elastic and Elasto-Plastic Damper.Journal of Pressure Vessel Technology,1990,112:34-38P
    [124] Chiba, T and Koyanagi, R.An Experimental Study of the Response of MultipleSupport Piping System, Res Mechanica,1988,25:145-157P
    [125] Lockau,J.,Haas,E.andSteinweder,F.The influence of High-FrequencyExcitation on Piping and Support Design. Journal of Pressure VesselTechnology,1984,106:175-187P
    [126]包日东,金志浩,闻邦椿.分析一般支承输流管道的非线性动力学特性.振动与冲击,2008,27(7):87-90页
    [127]包日东,毕文军,唐黎明.海底悬跨输流管道固有特性的DQ解法.振动与冲击,2008,27(11):73-76页
    [128]包日东,闻邦椿.水下悬跨管道动力响应分析.振动与冲击,2007,26(8):140-143页
    [129]杨晓东,金基铎.输流管道流-固耦合振动的固有频率分析.振动与击,2008,27(3):80-81,86页
    [130] Wang Lin, Ni Qiao. In-plane vibration analyses of curved pipes conveyingfluid using the generalized differential quadrature rule. Computers andStructures,2008,86:133-139P
    [131] A. Craggs and D.C. Stredulinsky.Analysis of acoustic wave transmission ina piping network. Journal of Acoustic Soceity of America,1990,88(1):542-547P
    [132] S.Ziada, K.W.McLaren&Y. Li. Flow-acoustic coupling in T-junctions: effectof T-Junction geometry.Journal of Pressure Vessel Technology,2009,131:1-14P
    [133] Miroslaw Meissner.Acoustic modes induced by flow in a pipe with twoclosed side-branches. Applied Acoustic,2002,63:1071–1083P
    [134] Duan Guangbin,Liu Zongming,Chen Guangli,Hu Shougen,Zhao Jun. Experimentalinvestigation of gas–solid two-phase flow in Y-shaped pipeline. AdvancedPowder Technology,2010,21:468–476P
    [135] Duan Guangbin,Hu Shougen,Zhao Jun,Shen Jinggang Wang Lijue. Research onresistance properties of gas-solid flow in Y-shaped branch pipe.International Conference on Experimental Mechanics,2008
    [136] Marcel Ottens,Huub C.J. Hoefsloot, Peter J. Hamersma. Transient gas-liquidflow in horizontal T-junctions.Chemical Engineering Science,2001,56:43-55P
    [137] C.Walkera,A.Manerab,B. Nicenob, M. Simianoa, H. M. Prassera Steady-stateRANS-simulations of the mixing in a T-junction. Nuclear Engineering andDesign,2010,240:2107–2115P
    [138] J. Pe′rez-Garc′, E. Sanmiguel-Rojas, J. Herna′ndez-Grau, A. Viedma.Numerical and experimental investigations on internal compressible flowat T-type junctions. Experimental Thermal and Fluid Science,2006,31:61-74P
    [139] TANG Jinglin,WANG Liwei,and LI Xia. Resistance Characteristics ofHydraulic Oil through Isodiametric T—type Duct with Sharp Corners. ChinseJournal of Mechanical Engineering,2009,22(2):250-255P
    [140] Bruggeman JC. Flow induced pulsations in pipe systems. Ph.D thesis,Eindhoven University of Technology,Netherlands1987
    [141] Jungowski WM, Botros KK, Studzinski W. Cylindrical side-branch as tonegenerator. Journal of Sound and Vibration,1989,131(2):265-85P
    [142] Bruggeman JC, Hirschberg A, van Dongen MEH, Wijnands APJ, Gorter J. Flowinduced pulsations in gas transport systems: analysis ofthe influence ofclosed side branches. ASME Journal of Fluids Engineering,1989,111:484-91P
    [143] Bruggeman J.C., Hirschberg A., van Dongen M.E.H., Wijnands A.P.J., GorterJ. Self-sustained aeroacoustic pulsations in gas transport systems:experimental study ofthe influence ofclosed side branches. Journal ofSound and Vibration,1991,150(3):371-93P
    [144] Ziada S., Bu&&hlmann E.T. Self-exited resonances of two side-branches inclose proximity. Journal of Fluids and Structures,1992,6:583–601P
    [145] Ziada S. A flow visualisation study offlow-acoust ic coupling at the mouthof resonant side-branch.Journal of Fluids and Structures,1994,8:391-416
    [146] Kriesels P.C., Peters MCAM, Hirschberg A, Wijnands APJ. High amplitudevortex-induced pulsations in a gas transport system. Journal of Sound andVibration,1995,184(2):343–68P
    [147] Ziada S,Shine S.Strouhal number offlow-excited acoustic resonanceofclosed side branches.Journal of Fluids and Structures,1999,13:127–42P
    [148] Telfer,A.D. Darlington fuel damage investigation. Proceeding SHF1stinternational congress on pump noise and vibration,1993,Clamart,France,443-456P
    [149] J. Lavrentjev, M Abom and H Boden. A measurement method for determiningthe source data of acoustic two-port sources. Journal of sound andvibration,1995,183(3):517-531P
    [150] D.F. Ross and M. J. Crocker. Measurement of the acoustic internal impedanceof an internal combustion engine. Journal of the acoustical society ofAmerica,1983,74:18-27P
    [151] M.G. Prasad and M.J. Crocker. Acoustical source characterization studieson a multi-cylinder engine exhaust system. Journal of sound and vibration,1983,90:479-490P
    [152] D. L. O’Neal and G.E. Maroney. An analysis of four methods for measuringpump fluid borne noise generation potential. National Conference on FluidPower,1977,18-23P
    [153] M.L.Kathuriya and M.L.Munjal.Experimental evaluation of theaeroacoustical characteristics of a source of pulsating. Journal of theAcoustical Society of America,1979,65:240-248P
    [154] H.S. Alves and A.G. Doige. A three-load method for noise sourcecharacterization in ducts. NOISE-CON,1987,87:329-334P
    [155] M.G.Prasad. A four-load method for evaluation of acoustical sourceimpedance in a duct. Journal of sound and vibration,1987,114:347-356P
    [156] M.J. Crocker and B.S. Sridhara. Error analysis for the four load method.Journal of the acoustical society of America,1993,65:240-248P
    [157] H.Boden. The multiple load method for measuring the source characteristicsof time-variant sources. Journal of sound and vibration,1991,148:437-453P
    [158] De Jong, C.A.F.,Krieseles,P.C.,Bruggeman,J.C.&Van Bokhorst,E.Measurement of the characteristics of a centrifugal pump as a source ofpressure pulsations.Proceedings1st International Symposium on Pump Noiseand Vibrations, Clamart,France,167-174P
    [159] L.Cremer. The second annual Fairey lecture:the treatment of fans as blackboxes.Journal of sound and vibration,1971,16:1-15P
    [160] P.K. Baade.Die behandlung des axialventilator als akustisches zweitor.Doctoral Thesis,Technischen universitat berlin,1971
    [161] P.K. Baade. Effects of acoustic loading on axial flow fan noise generation.Noise control engineering,1977,8:5-15P
    [162] H.Wollherr1970Frankfurt Forschumgsvereinigung fur Luft-andTrocknungstechnik, Forschungsbericlne719, Zweitormessungen an einemradialventilator-modell
    [163] H.Wollherr.Die primaren quellen in radialventilatoren. C.A. Budapest,1971,279-300P
    [164] M.Terao and H.Sekine. In-duct pressure measurements to determine soundgeneration, characteristic reflection and transmission factors of an airmoving device in air-flow.Internoise,1989,89:143-146P
    [165] M.Abom, H.Boden and J.Lavrentjev.Source characterisation of fans usingacoustic2-port models. Proceedings of fan noise92,1992,France,359-364P
    [166] M.Tero, H.Sekine. Fan acoustical characteristics required for reliableHVAC duct sound prediction.Proceeding of fan noise92,1992,France,343-350P
    [167] G.CAIGNAERT9(editor),1993,Proceedings of the first internationalsymposium on pump noise and vibrations, Clammart,France,7-9July
    [168] C.A.F. D.E. Jong,P.C. Kriesels, J.C. Bruggeman and E.VAN BOKHORST.Measurement of the characteristics of a centrifugal pump as a source ofpressure pulsations. Proceedings of the Conference on pump noise andvibrations,1993,France,167-175P
    [169] Stirneman, A.J.Eberl, U.Bolleter&S.Pace.Experimental determination ofthe dynamic transfer matrix for a pump. ASME Journal of FluidsEngineering,1987,109:218-225P
    [170] Bolleter, U.A.Stirneman, J.Eberl&T.MCCLOSKEY.The dynamic transfermatrix of a pump and its use in pumping system design. Proceedings ISROMAC-3on Transport Phenomena&Dynamics of Rotating Machinery,1990,Honolulu,493-504P
    [171] Bolleter, U. Interaction of pumps and piping systems with regard topressure pulsations. Proceedings SHF1st international congress on pumpnoise and vibration,1993,Clamart(France):3-10P
    [172] C.W.S. To and A.G.Doige. A transient testing technique for thedetermination of matrix parameters of acoustic systems,I:Theory andprinciples.Journal of Sound and Vibration,1979,62:207-222P
    [173] C.W.S. To and A.G.Doige. A transient testing technique for thedetermination of matrix parameters of acoustic systems, II: Experimentalprocedures and results.Journal of Sound and Vibration,1979,62:223-233P
    [174] T.Y.Lung and A.G.Doige.A time-averaging transient testing method foracoustic properties of piping systems and mufflers with flow. Journal ofthe acoustical society of America,1983,73:867-876P
    [175] M.Nishimura, S.Fukatsu and K.Akamatsu. Measurements of transfer matricesof duct elements and source impedances, using the pair-microphonetechnique.Proceedings of Inter-Noise,1983,83:395-398P
    [176]袁寿其,杨勇,袁建平,等。离心泵内部流动诱导噪声测试系统设计。排灌机械。2009,27(1):10-14页
    [177]王晶,冯涛,刘克,周启君.离心泵流动噪声与其水力学参数关系的实验研究.流体机械,2007,35(5):8-11页
    [178]李晓宏,刘克,乔五之,冯涛.离心泵水动力学噪声参数测控系统的设计与分析.北京工商大学学报(自然科学版),23(1):15-17页
    [179]冯涛,刘克,李晓宏,佟小鹏.离心泵水动力噪声测试系统的研制.流体机械,33(4):27-30页
    [180]李晓宏,冯涛,刘克.离心泵转速和出口压力对其噪声影响的实验研究
    [181] A.G.Doige, M.L.Munjal and H.S. Alves. An improved experimental method fordetermining transfer matrices or pipeline elements with flow. Proceedingsof Noise-Conference88,1988,481-485P
    [182] A.G.Doige,M.L.Munjal and H.S.Alves.An improved experimental method fordetermining transfer matrices or pipeline elements with flow. Proceedingsof Noise-Conference88,1988,481-485P
    [183] A.S Tijsseling.Fluid-structure interaction in liquid filled pipe systems:a review. Journal of Fluids and Structures,1996,10:109-146P
    [184] Jaeger C. The theory of resonance in hydropower systems: Discussion ofincidents and accidents occurring in pressure systems. ASME Journal ofBasic Engineering,1963,85:631-640P
    [185]孙玉东.舰船管路系统声弹耦合动力学研究.中国舰船研究院博士学位论文,2009
    [186] Jong De.Analysis of pulsations and vibrations in fluid-filled pipe systems.Thesis of doctor degree, Eindhoven University of Technology,1994.
    [187] D J Korteweg. On the velocity of propagation of sound in elastic pipes.Annalen der Physic und Chemie, New Series,1878,5(12):525-542
    [188]王孚懋,任勇生,韩宝坤.机械振动与噪声分析基础.北京:国防工业出版社,2006.11
    [189]夏侯淳,盛德恩,洪莲洁编译.振动测量的应用.北京:中国环境科学出版社,1986.3
    [190] J.R. Hutchinson. Shear Coefficients for Timoshenko Beam Theory. Journalof Applied Mechanics,2001,68:87-92P
    [191] M.W. Lesmez. Modal analysis of vibrations in liquid-filled piping systems.Michigan State University,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700