介入诊疗机器人多体系统建模分析与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物工程、微电子机械技术(MEMS)的发展和微系统加工技术的成熟,用于介入诊疗手术的介入诊疗机器人,已经成为国内外研究的热点问题。人体管腔是个复杂的管道系统,不仅几何形状复杂,而且内部存在生物液流场。机器人在介入诊疗过程中的受力情况相当复杂。
     介入诊疗机器人在人体管腔这样的特殊环境中作业,必须保证绝对安全和可靠。在此前提下,机器人要在有限尺寸限制下集成尽可能多的功能模块,并保证运动灵活性,基于力学模型的设计与控制尤为重要。本论文建立了主动介入机器人典型运行环境——动脉血管和消化道的数学模型,并进行了数值模拟,在此基础上基于多体系统动力学理论,研究了介入诊疗机器人在管道几何形状约束和流场作用下的运动学和动力学问题,论文的研究结果对包括水下机器人在内的液体环境下作业的管道机器人研究也具有重要的参考价值。
     由于没有固定基座,介入诊疗机器人的运动与人体管腔以及管内流场运动相互耦合,系统整体受人体管腔几何形状约束,姿态变化范围较大,因此其动力学问题相对复杂,在分析了典型人体管腔的基础上,引入Euler四元数表达机器人的姿态,解决了模型数值计算中的奇异性问题。机器人所有的位置姿态构成一个Lie群,利用Lie群和Lie代数描述系统是很自然和方便的,Lie代数的本质是运动旋量。旋量理论以及空间算子代数理论的引入,使机器人运动参数的计算具有统一的简洁形式。论文将游动型介入诊疗机器人简化为管道流场环境下单个典型体的六维空间运动问题,建立了游动机器人在血流冲击下的运动学及动力学模型,对游动机器人在三维弯曲管道内沿规划路径的游动特性进行了仿真分析,为机器人结构设计和运动控制提供了依据。论文通过CFD软件计算出具体环境下的流场力,并将受力以载荷形式代入动力学模型,简化了系统的动力学模型而又不失问题的本质,在单个典型体动力学基础上,将问题拓展到更复杂拓扑结构的系统中。
     针对更一般的介入诊疗机器人系统,假设系统不但包含刚体,也包含柔性体,而且既可以是链式系统又可以是树型多体系统,本论文分析了开链式拓扑结构的多节蠕动机器人结构和运动特点,利用Huston理论的低序体阵列方法描述系统的拓扑结构,然后根据判断相邻两体是刚体或者柔体,利用空间算子代数(SOA)方法,建立了适用于链式和树形蠕动机器人系统的通用动力学模型,并进行了初步验证试验。论文进一步发展了空间算子代数理论体系,采用空间算子处理了介入诊疗机器人多体系统动力学高效率建模问题。根据系统中铰的驱动情况分别对铰链定义为主动铰和被动铰,通过判断铰链的类型分别按照两次从系统的顶端到根体的顺序、一次从根体到末端的顺序进行了系统铰接体惯量的递推、系统冗余力的递推和广义加速度和广义主动力的递推。通过上述递推过程建立了主动介入机器人系统广义递推动力学模型,实现了高效率O(n)次的计算效率,该算法可以应用于其他管道机器人或者水下机器人(包括刚性多体系统、柔性多体系统、欠驱动系统),求解反向动力学、正向动力学和混合动力学递推。利用所建立动力学模型,论文分析了多节蠕动型介入诊疗机器人。
     课题组根据仿生学原理,分别研制了主动型的游动和蠕动介入诊疗机器人,在专门构建的模拟测试平台上,对机器人驱动机理进行了试验研究,对动力学参数进行了识别,得到驱动力与流场阻力等数据。在此基础上,运用Mathematica符号软件开发了专门的仿真程序,对典型的介入诊疗任务进行了仿真研究,得到机器人相关的驱动力信息,以及关节运动信息,对本文提出的理论方法进行了验证。
Vascular interventional robot has been become a hot scientific research topic currently at home and abroad with the development of Biotechnology Engineering, MEMS and its processing technology. Human lumen is a complex pipeline system, not only in geometry but also there are biological flow field inside it. The force situation of the vascular interventional robot is very complex.
     Because vascular interventional robot will run in humen lumen that so special envorement that it must be absolute security and reliability. Under the presupposition, to integrate functional modules in the limited of size constraints as much as possible and ensure flexibility of movement, it is particularly important for designing and controlling on the base of the mechanical model. The typical operating environment, the mathematical model of the arteries and digestive tract, is built where the robot will run, and is simulated as a numerical model. Then based on this multi-body dynamics, the kinematics and dynamics theory of the interventional robot are studyed based under constraints of pipe geometry and the envorement of flow field. The paper's findings have great reference value in researching on underwater robots and pipe robot which will be operated in liquid field.
     There are many factors caused complex in analysing the dynamic problems, such as no fixed base, coupling motion of intervention robot with the motion of the liquid in humen lumen, the size limited of humen lumen, the more varies of pose, e.t. Expressing robot pose is cited the euler quaternions which solve the singularity of the numerical model well. All positions and orientations of the robot form a Lie group. Using Lie group and Lie algebra to describe multi-mechanical system is very convenient. Lie algebra is the essence of motion screw. Introduction of screw theory and spatial operator algebra theory lead that it a unified simple form in the calculation of the motion parameters. Intervention robot is simplified as a single typical six-dimensional space mobility in this paper, and it’s kinematics and dynamics model of running in the blood flow. Then robot is simulated in the three-dimensional dust running along the palnning path, that provides a basis for designing structure and controlling motion. The liquid force on robot in the specific environment is calculated by CFD software and the force is substituted in the dynamic model as the form of load. This simplifies the dynamic model and not losing the essence of the problem. This method is extended to use in the more complex topology system on the basis of single typical body dynamics.
     For more general interventional robotic systems, assuming that the system contains not only the body, also contains flexible body, and maybe either chained system and tree-type multi-body systems. This paper analyzes the structure and motion characteristics of the open-chain topology multi-section creeping robot, and uses the theory Huston lower body array method to describe the system topology. Then according to the judgment on differentiating rigid or flexible body, using space operator algebraic (SOA) method, establish a commen dynamics model of the chain and common tree creeping robot, and carry on some experiments to verify the results. The paper further develops the theoretical system of spatial operator algebras and describes the high-efficiency modeling of the general dynamics of active interventional multi-body system by use of spatial operator. Hinges are defined as active hinge and passive hinge respectively, according to driving types of hinge in the system. Responding to the types of hinge, the recursion of hinge’s inertia, general acceleration and general active force, and redundant force of the system are performed in the order that from the top of the system to the base and from the base to the top respectively. Through the three methods of recursion mentioned above, the paper has set up the general recursion dynamics modeling of the active interventional robot system and achieved high computation efficiency of O(n). This arithmetic can be applied to the recursion of backward, forward and compounded dynamics of pipe and underwater robots (excluding rigid and flexible multi-body system and drive-lack system). Using the dynamic model established before, the paper analyzes the multi-section creeping interventional robot.
     Research group have manufactured the squirm and nomadic robots, according to the bionic principle. Studying the drive mechanism of the robot, realized the recognition of the robot’s dynamic parameters on the simulated platform that has been established, and finally get the data value of the driving force and the resistance of the flow field, etc. On this basis, the paper has developed a special simulation program with symbol software of Mathematica and conducted a simulation research on the typical interventional assignment. And finally, the paper has got the driving force information related to the robots and the motion information of the joints and verified the theory and methods claimed in the paper.
引文
[1]陈柏,杨朋飞,陈笋等.模拟主动脉环境中仿生介入机器人力学性能研究[J],中国机械工程2009,20(14):1712~1716
    [2] Zhao Daxu, Chen Bai, Wu Hongtao, et al. Kinematics and Dynamics Analysis of a Bionic Interventional Micro-robot [C]// Proceeding of the 2nd International Conference on Modelling and Simulation, Liverpool:[s.n.] 2009:39-44
    [3] Arianna Menciassi, Dino Accoto, Samuele Gorini, et al. Development of a biomimetic miniature robotic crawler [J]. Auton Robot(2006)21:155–163.
    [4] Y. Haga, M. Essia. Small Diameter Active Catheter Using Shape Memory Alloy Coils [C]. Trans. IEEE of Japan, 2000, 11: 509-514.
    [5] K.Ikuta. Study of Servo Actuator Using Shape Memory Alloy[J]. Tokyo Institue of Technology: Tokyo, 1987,15(2):145-148.
    [6]张云伟.煤气管道检测机器人系统及其运动控制技术研究,[D].上海:上海交通大学,2007.
    [7]卢秀泉.石油管道检测机器人流场数值模拟及PIV试验研究,[D].长春:吉林大学,2008.
    [8] Jun Okamoto Jr. Autonomous System for Oil Pipelines Inspection [J]. Elsevier Science, Mechatronics, 1999 (9): 731-743.
    [9] Jun Okamoto Jr. Autonomous System for Oil Pipelines Inspection [J]. Elsevier Science, Mechatronics, 1999 (9): 731-743.
    [10] P.Swain , G.I. , G.Meron et al. Wireless Capsule Endoscopy of the Small-bowel. Development , Testing and First Human Trials[J]. Biomonitoring and Endoscopy Technologies, 2001. 23(4): 19-23.
    [11] http://www.smartpillcorp.com/.
    [12] http://www.rfsystemlab.com/.
    [13] H.J.Park, H.W.N., B.S.Song et al. Design of Bi-directional and Multi-channel Miniaturized Telemetry Module for Wireless Endoscopy[C]. Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine&Biolog. Madison: IEEE Press , 2002:2034-2039.
    [14]何文辉.人体胃胃肠道无创诊查系统及生物遥测胶囊磁定位技术与试验[D].上海:上海交通大学,2007.
    [15] Wang Wenxing , Yan Guozheng , Ding Guoqing. A Miniature Bidirectional RFCommunication System for Micro Gastrointestinal Robots[J]. Journal of Medical Engineering&Technology, 2003,27(4):160-163.
    [16] Jiang Pingping, Yan Guozheng. Localization of a Robotic Capsule for GI Motility Inspection with a Portable Ultrasonic System [C]. 2003 Sino-French Workshop on Sensory Evaluation and Intelligent Techniques. Shanghai: Donghua University Press, 2003:103-108.
    [17] Vertut, J. et al, Vehicles with wheels and Legs in Pipe Remote Inspection Vehicle and His Family [C]. 3rd Symposium on Theory and Practice of Robot and Manipulators, Third International CISM-IFToMM Symposium, September 1978: p476-487.
    [18]彭商贤,刘斌,龚进峰.履带式管道机器人及侧倾问题的研究[J].机器人,2000, 22(4): 247~250.
    [19] H.R.Choi, S.M.Ryew. Robotic System with Active Steering Capability for Internal Inspection of Urban Gas Pipeline [J]. Mechatronics, 2002, (12)5: 713-736.
    [20] M.Mori and S.Hirose(2001) Development of Active Cord Mechanism ACM-R3 with Agile 3D mobility [C]. Proc. IROS, Hawaii,1552–1557.
    [21] Alessandro Crespi,AndréBadertscher, AndréGuignard et al. AmphiBot I: an amphibious snake-like robot[J]. Robotics and Autonomous Systems, 2005 , (50)4: 163-175.
    [22]陈丽,工越超,马书根等.一种可重构蛇形机器人的研究[J].中国机械工程,2003,14(16): 1351~1353.
    [23] http://www.ralfkittmann.de/tubebot.php
    [24] Morimitsu T, Sakata H, Nomura Y et al. A vibrating foxtail based locomotive mechanism for hunting for blood clots [C]. 39th International Symposium on Robotics 2008, 2008, Seoul, Korea Oct 2008: 301-304.
    [25] Myoungsun Lim, Hyunjun Park, Byungkyu Kim. A Study on a vibrating bristled vehicle for small pipes [J]. Transactions of the Japan Society of Mechanical Engineers, 1987, 53(489):1022-1027.
    [26]封锡盛.从有缆遥控水下机器人到自治水下机器人[J].中国工程科学,2000,2 (12) :29~33.
    [27] LIU Tao, XU Qi-nan, WANG Hui-zheng et al. "CR-02" 6000m AUV Hull Structure System [J]. Journal of Ship Mechanics. 2002, (6)6:114-119.
    [28] Bandyopadhyay R. Trends in Biorobotic Autonomous Undersea Vehicles Promode Engineering[J]. IEEE Journal of Oceanic Engineering. 2005,30(1):109-139.
    [29] Videler JJ. Fish Swimming [M]. Chapman & Hall. 1993.
    [30] Blake RW. Fish locomotion [M]. Cambridge: Cambridge University Press, 1983.
    [31] S.Guo, K.Asaka. Development of Underwater Microrobot and New Type of Micropumps Using ICPF Actuator [C]. ICRA02 Workshop, USA, 2002:1829-1831.
    [32]梅涛,陈永,张培强等.铁磁橡胶执行器与微型泳动机器人的尺寸效应[J].光学精密工程, 2001, 9(6):523~526.
    [33]谭湘强,钟映春,杨宜民.液体中泳动微机器人的现状与分析[J].机器人, 2001, 23(5): 467~470.
    [34]陈柏,顾大强,潘双夏等.仿蝌蚪与螺旋的泳动机器人系统的设计[J].机械工程学报, 2005, 41(10):88~92.
    [35] J.Edd, S.Payen, M.Sitti, et al. Biomimetic Propulsion Mechanism for a Swimming Surgical Micro-Robot[C]. Int. Conf on Intelligent Robots and Systems, Las Vegas, USA, Oct. 2003.
    [36] B.Behkam, M.Sitti. Bacterial Flagella-Based Propulsion and On/Off Motion Control of Microscale Objects [J]. Applied Physics Letters. 2007, 90 (1): 1-3..
    [37] B.Behkam, M.Sitti. Design methodology for biomimetic propulsion of miniature swimming robots [J]. Transactions of the ASME Journal of Dynamic SystemsMeasurement and Control. 2006, 128 (1): 36-43.
    [38]崔俊文.鞭毛细菌游动机理及其模型研究[D].上海:上海交通大学,2007.
    [39] Shuxiang Guo, Qinxue Pan, Mir Behrad Khamesee. Development of a novel type of microrobot for biomedical application [J]. Microsyst Technol, 2008, 14: 307–314
    [40]刘巍.超磁致伸缩薄膜的磁机祸合特性及其在泳动机器人中的应用[D].大连:大连理工大学,2007.
    [41] Anthierens C, Libersa C, Touaibia M, et al. Micro robot s dedicated to small diameter canalization exploration [A]. IEEE/ RSJ International Conference on Intelligent Robots and Systems[C]. 2000, 1: 480-485.
    [42] KUNDONG WANG, GUOZHENG YAN, GUANYING MA. An Earthworm-Like Robotic Endoscope System for Human Intestine: Design, Analysis, and Experiment [J]. Annals of Biomedical Engineering, 2009, 37(1):210-221.
    [43] Ma Jianxu, L.X., Ma Jianhua et al. Micro-Biomic and Peristaltic Robots in a Pipe [J]. Chinese Science Bulletin, 2000, 45(11): 985-988.
    [44]贾书惠.刚体动力学[M].北京:高等教育出版社,1987
    [45] Huston, R.L. Multibody dynamics–modeling and analysis methods [J]. Applied Mechanics Review 1996, 49: 35–40.
    [46]洪嘉振.复杂多体系统计算动力学[M].一般力学(动力学、振动与控制)最新进展.北京:科学出版社,1994:114~122.
    [47] Roberson, R.E. and Wittenburg, J. A dynamical formalism for an arbitrary number of interconnected rigid bodies, with reference to the problem of satellite attitude control, Proceedings 3rd Congr. Int. Fed. Autom. Control, Butterworth, Vol. 1, Book 3, Paper 46 D, London, 1967.
    [48] Roberson, R.E. and Schwertassek, R. Dynamics of Multibody Systems [J]. Springer-Verlag, Berlin, 1988.
    [49] Kane, T.R. Scher, M.P. A dynamical explanation of the falling cat phenomena [J], International Journal on Solids Structures. 1969,5: 663–670.
    [50] Kane, T.R. and Levinson, D.A. Dynamics: Theory and Applications [M]. McGraw-Hill, New York, 1985.
    [51] Armstrong, Recursive Solution to the Equations of Motion of an N-Link Manipulator [C]. Proc. 5th World Congress on the Theory of Machines and Mechanisms, Vol. 2, 1343-1346,Montreal (Canada), (1979).
    [52] Anderson. An order-N formulation for motion simulation of general constrained multirigid-body systems [J]. Computers and Structures, 1992,43:565-572.
    [53] Huston, R.L. and Passerello, C.E. On the dynamics of a human body model [J]. Journal on Biomechanics. 1971, 4: 369–378.
    [54]李瑞涛,方湄,张文明.虚拟样机技术的概念及应用[J].机电一体化,2000(5):17~19
    [55] Rong-Shine Lin. Virtual Prototyping: Virtual Environments and the Product Design Process [J]. IIE Transactions.MAR.1998,30(3):279
    [56]张旭,毛恩荣.机械系统虚拟样机技术的研究与开发[J].中国农业大学学报,1994,4(2):94~98
    [57]刘贤喜.机械系统虚拟样机仿真软件的实用化研究, [D].北京:中国农业大学,2001
    [58] A. Jain and G. Rodriguez. An Analysis of the Kinematics and Dynamics of Underactuated Manipulators [C]. IEEE Transactions on Robotics and Automation, 1993 9(4),
    [59] H. Peiand and Y. Xu. Control of under actuated free-floating robots in space [C]. Proeeedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Part2(of’3),Victoria,Can,1998:1364一1369P
    [60]刘又午,休斯顿.多体系统动力学[M].天津:天津大学出版社, 1990.
    [61]何柏岩.柔性多体系统的广义确定性动力学模型及其仿真研究, [D],天津:天津大学,2003
    [62] J. ZNAMENáˇCEK, M. VALá?EK. An efficient implementation of the recursive approach to flexible multibody dynamics [C]. Multibody System Dynamics, 1998(2): 227–252.
    [63]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社.1996.7
    [64] Gupta VK. Dynamic analysis of multi-rigid-body systems [J]. ASME Journal of Engineering for Industry, 1996(3):886-892
    [65] Paul B Analytical dynamics of mechanisms-A computer oriented overview [J]. Mechanism and Machine Theory, 1975, 10(6):481-507
    [66] Nikravesh PE Computer-aided analysis of mechanical systems [C]. Prentice-Hall , Englewood Cliffs, (1988) New Jersey
    [67] Fuhrer C, Schwertassek R. Generation and solution of multibody system equations [C]. Int. J. Non-Linear Mechanics. 199025(2/3):127-141
    [68] Shabana AA. Dynamics of multibody systems [C]. Cambridge University Press, 2005New York.
    [69] Hooker W .W .,A Set of r Dynamical Attitude Equation for an Arbitrary n–Body Satellite Having r Rotational Degree of Freedom[C], A IAA J. 1970,8, pp 12 05 -1207.
    [70] Roberson R.E. et al, A Dynamical Formulism for an Arbitrary Number of Interconnected Rigid Bodies with Reference to the problem of Satellite Attitude Control[C], 3rd IFAC Congress,1966
    [71] Witenburg J ,Dynamics of System o f Rigid Bodies[M]. Stutgart, Te ubner,1977
    [72] Seth PN, Uicker JAJ. IMP (Integrated Mechanism Program): a computer-aided design analysis system for mechanisms and linkages[J]. ASME Journal of Engineering for Industry, 1972,94(2):454-464
    [73] Orlando N, Chance MA, Calahan DA. A sparsity oriented approach to the dynamic analysis and design of mechanical systems, Part I and II [J]. Journal of Engineering for Industry, 1977,99(3):773-784
    [74] Uicker Jr. JJ. Dynamic force analysis of spatial linkages [J]. ASME Journal of Applied Mechanics, 1967,34:418-424
    [75] Smith DA, Chance MA, Rubines AC, The automatic generation of a mechanical model for machinery [J]. ASME Journal of Engineering for Industry, 1973,95(2):629-635
    [76] Chance MA, Bayazitoglu YO. Development and application of a generalized d’alembert force for multifreedom mechanical systems [J]. ASME Journal of Engineering for Industry, 1971,93(1):317-327
    [77] A.A.Shabana. Dynamics of multibody systems [M]. John Wiley&Sons,1989
    [78] Erdman,A. Cz,Sandor,et al.Kineto-Elastodynamics-A Review of the State-of-the Art and Trends [J]. Mech.Mach.Theory,1972,7(1):19~33
    [79] Winfrey R C. Elastic Link Mechanism Dynamics,ASME [J]. Journal of Engineering for Industry,1971,93:268~272
    [80]杨国良.工业机器人动力学仿真及有限元分析. [D],武汉,华中科技大学,2007
    [81] Canavin JR and Likins PW. Floating reference frames for flexible spacecraft [J]. Spacecr Rockets (1977)14(12), 724–732
    [82] B. Jonker, A finite element dynamic analysis of spatial mechanisms with flexible links [J]. Compui. Meth. Appl. Mech. Engng 1989,76, 1740
    [83] Shabana, A. A. and Yakoub, R. Y. Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory [J]. Journal of Mechanical Design 2001,123, 606-621.
    [84] Berzeri, M. and Shabana, A. A. Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation [J]. Journal of Sound and Vibration, 2000,235(4), 539- 565.
    [85] Omar, M. A. and Shabana, A. A. A Two-Dimensional Shear Deformation Beam for Large Rotation and Deformation [J]. Journal of Sound and Vibration 243(3), 2001, 565-576.
    [86] Mikkola, A. M. and Shabana, A. A. A New Plate Element based on the Absolute Nodal Coordinate Formulation [C]. Proceedings of ASME 2001 DETC, Pittsburgh, 2001.
    [87]洪嘉振,梁敏.多刚体内碰撞数学模型与计算程序[J].力学学报.1989 21 (4)
    [88]曲广吉.柔性航天器动力学分析[M].北京:航天科技报告.1995
    [89]陆佑方.柔性多体系统动力学一一理论和应用力学的一个活跃领域[J].力学与实践.1994,2
    [90]吴洪涛,熊有伦.机械工程中的多体系统动力学问题[J].中国机械工程,2000,11(6):608~612
    [91] M. Pascal. Some Open Problems in Dynamic Analysis of Flexible Multibody Systems[J]. Multibody System Dynamics 2001,5: 315–334.
    [92] Belytschko T, Schwer L, and Klein MJ, Large displacement, transient analysis of space frames[J]. Int. J. for Numer. Methods in English, 1977 (11), 65–84.
    [93] Simo JC and Vu-Quoc L, On the dynamics in space of rods undergoing large motions: A geometrically exact approach [J]. Comput. Methods Appl. Mech. Eng. (1988) 66, 125–161.
    [94] Cardona A and Geradin M, A beam finite element non-linear theory with finite rotations [J],Int. J. Numer. Methods Eng. 1988 (26), 2403–2438.
    [95] Downer JD, Park KC, and Chiou JC. Dynamics of flexible beams for multibody systems: A computational procedure [J]. Comput. Methods Appl. Mech. Eng. 1992,96, 373–408
    [96] Agrawal OP and Shabana AA. Dynamics analysis of multibody systems using component modes [J].Comput. Struct. 1985,21(6), 1303–1312.
    [97] Canavin JR and Likins PW, Floating reference frames for flexible spacecraft [J]. Spacecr. Rockets, 1977,14(12), 724–732.
    [98] Cavin RK and Dusto AR, Hamilton’s principle: Finite element methods and flexible body dynamics [J]. AIAA J. 1977,15, 1684–1690.
    [99] Argyris JH, Kelsey S, and Kaneel H. Matrix Methods for Structural Analysis: A Precis of Recent Developments [J]. MacMillan, 1964 New York.
    [100] Belytschko T and Hsieh BJ. Non-linear transient finite element analysis with convected co-ordinates [C]. Int. J. Numer. Methods Eng. 1973, 7, 255–271.
    [101] Belytschko T, Schwer L, and Klein MJ. Large displacement, transient analysis of space frames [C]. Int. J. for Numer. Methods in English , 1977 11, 65–84.
    [102] Belytschko T and Glaum LW. Applications of higher order corotational stretch theories to nonlinear finite element analysis [C]. Comput. Struct. 1979, 10, 175–182.
    [103]蔡国平,洪嘉振.旋转运动柔性梁的假设模态方法研究[J].力学学报. 2005,37(1):48-56
    [104] Edelstein E, Rosen A. Nonlinear Dynamics of a Flexible Multirod (Multibeam) System [J]. ASME. J. DN. Sys. Measurement Control. 1998, 120,( 2),pp. 224-231
    [105] P. B. Usoro, R. Nadira and S. S. Mahil, A finite element/Lagrange approach to modelling lightweight flexible manipulators [C]. Trans. ASME J. Dyn. Sys. Meas. Control, 1986,108, 198-205
    [106] Z. Mohamed. A finite element approach to modelling a single-link flexible manipulator system [C]. MSc thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield, UK,1995.
    [107] Y. Wang, W.J. Zhang, H.M.E. Cheung. A finite element approach to dynamic modeling of flexible spatial compound bar gear systems [J]. Mechanism and Machine Theory, 2001 (36) :469-487
    [108] Omar, M. A., and Shabana, A. A. A Two-Dimensional Shear Deformable Beam for Large Rotation and Deformation Problems [J]. Journal of Soundand Vibration (2001) 243(3): 565-576.
    [109] Johannes Gerstmayr. A 3D finite element approach to flexible multibody systems [C]. Fifth World Congress on Computational Mechanics 2002,July 7–12, Vienna, Austria
    [110] E. Carrera, M. A. Serna Inverse dynamics of flexible robots [J]. Mathematics and Computers in Simulation. 1996, (41): 485-508
    [111] Kane T R, Ryan R R, Banerjee A K, etal. Dynamics of a cantilever beam attached to a moving base[J].Journal of Guidance,Control,and Dynamics,1987,10(2):139-151.
    [112] Stepanenko Y, Vukobratovic M. Dynamics of articulated open-chain active mechanisms [J]. Mathematical Biosciences, 1976,28(1-2):137-170
    [113] Luh JYS, Walker MW, Paul RPC. On-Line computational scheme for mechanical manipulators [J]. ASME Journal of Dynamic Systems, Measurement and Control. 1980,102(2):69-76
    [114] J. ZNAMENáˇCEK, M. VALá?EK. An efficient implementation of the recursive approach to flexible multibody dynamics [J]. Multibody System Dynamics, 1998(2): 227–252.
    [115] Yunn-Lin Hwang. Recursive Newton–Euler formulation for flexible dynamic manufacturing analysis of open-loop robotic systems [J]. Int J Adv Manuf Technol, 2006 (29): 598–604
    [116] Saha SK. Dynamics of serial multibody systems using the decoupled natural orthogonal complement matrices [J]. ASME Journal of Applied Mechanics, 1999.66(4):986-996
    [117] Saha SK, Schiehlen WO. Recursive kinematics and dynamics for closed loop multibody systems [J]. Int. Journal of Mechanics of Structures and Machines. 2001.29(2):143-175
    [118] Anderson KS, Critchley JH. Improved order-n performance algorithm for the simulation of constrained multi-rigid-body dynamic systems [J]. Multibody System Dynamics 2003,9(2):185-212
    [119] Jain A ,Rodriguez G. A spatial operator algebra for computation multibody dynamics [C]. International Conference on Scientific Com putation and Differential Equations ,Grado.Italy.1997
    [120]熊启家.基于空间算子代数理论的链式多体系统递推动力学研究[D].南京:南京航空航天大学,2003
    [121]方喜峰,吴洪涛,刘云平,陆宇平.基于空间算子代数理论计算多体系统动力学建模[J].机械工程学报,2008,1(45):228-234
    [122] A. Jain and G. Rodriguez. An Analysis of the Kinematics and Dynamics of Underactuated Manipulators [C]. IEEE Transactions on Robotics and Automation, Vol. 9, No. 4, August 1993
    [123] A. Sohl, E. Bobrow. A Recursive Multibody Dynamics and Sensitivity Algorithm for Branched Kinematic Chains [J]. Journal of Dynamic Systems, Measurement, and Control,2001(23):391-399
    [124]何广平,陆震,王凤翔.欠驱动柔性机器人动力学耦合奇异研究[J]..航空学报,2005(26)2:240-245
    [125]陈炜,余跃庆,张绪平,苏丽颖.欠驱动柔性机器人动力学建模与耦合[J].机械工程学报,2006(42)6:16-23
    [126]林壮,欠驱动水平机械臂滑模变结构控制研究[D].哈尔滨:哈尔滨工程大学,2007
    [127]袁兆鼎等.刚性常微分方程初值问题的数值解法[M].北京:科学出版社,1987
    [128] Claus, H. Singly-implicit Runge-Kutta Methods for Retarded and Ordinary Differential Equations [J]. Computing,1990,43 (3):209-222
    [129]齐治昌.数值分析及应用[M].哈尔滨:国防科技大学出版社,1987
    [130]孟浩龙,李著信,王菊芬等.基于流场特性的竹内检测机器人的外形优选研究[J] .后勤工程学院学报,2005 (4): 1~3.
    [131]孟浩龙,李著信,王菊芬等.管内检测机器人周围流场的三维数值计算[J].石油学报,2006(11): 1~4.
    [132] Womersley, J. R. The mathematical analysis of the arterial circulation in a state of oscillatory motion [C]. Dayton OH, 1957, Technical Report Wade-TR 56-614.
    [133] Mc Donald, D. A. Blood Flow in Arteries [C].1 st Edition. Arnold, London, 1960.
    [134]邱霖.分岔动脉血管介入治疗的数值模拟和试验研究[D].成都:四川大学,2004
    [135]王文权.模拟动脉环境下介入诊疗机器人的研究[D].南京:南京航空航天大学,2009.
    [136]于靖军,刘辛军,丁希仑,戴建生.机器人机构学的数学基础[M].北京:机械工业出版社,2008
    [137] Lung-Wen Tsai. Robot analysis: the mechanics of Serial and Parallel manipulators. John Wiley & SONS. United States of America. 1999
    [138]刘芳华.基于旋量和模态综合的高效递推多柔体系统的建模和仿真研究. [D],南京:南京航空航天大学,2009
    [139]刘延柱,洪嘉振,扬海兴.多刚体动力学[M].北京:高等教育出版社1989.
    [140]休斯敦RL,刘又午.多体系统动力学(下)[ M].天津:天津大学出版社,1991:51~80
    [141] K.S.Fu, R.C.Gonzalez, C.S.G.Lee, Robotics: Control, Sensing, Vision, and Intelligence [M]. New York, McGraw-Hill Book Company, 1987
    [142]柳兆荣.心血管流体力学[M].上海:复旦大学出版社, 1986.
    [143]袁华,岑人经,吴效明等.肺癌介入治疗中药液灌注问题的模拟研究[J].试验力学, 2001, 16(4):396~401.
    [144]陈君楷.心血管血流动力学[M].成都:四川教育出版社, 1990
    [145] Atsushi F.. Behavior Based Fuzzy Control System for A Mobile Robot with Environment Recognition by Sensory Motor Coordination[C]. 1999 IEEE International Fuzzy Systems Conf-erence Proceedings, 1999.
    [146] H.Bersin. The Immune Recruitment Mechanism: A Selective Evolutionary strategy[C]. Proceed-ings of the Fourth International Conference on Genetic Algorithms, 1991.
    [147] H.Grqersen, J.L.Emeiy, and A.D.Mcculloch. Historv-Dependent Mechanical Behavior of Guinea-Pig Small Intestine[J]. Annals of Biomechanical Engineering, 1998,26:1-9.
    [148]徐振耀等译.生物医学工程乎册[M].天津科技翻译出版公司, 1993.
    [149]何斌.医用微型机器人动力学建模及其行为智能控制研究[D].浙江大学, 2001.
    [150] I.A.Bertuzz. Analysis of Peristaltic Reflex[J]. Bio.Cyber. 1979, 35: 205-212.
    [151] Jain, G. Rodriguez. Recursive Flexible Multibody System Dynamics using Spatial Operators [J]. Journal of Guidance, Control and Dynamics, 1992(15): 1453-1466.
    [152] Shabana A A.Dynamic analysis of large scale inertia~variant flexible systems.[PhD dissertation].the University of Iowa. l 982.
    [153]徐建安.水下机器人动力学模型辨识与广义预测控制技术研究[D].哈尔滨:哈尔滨工程大学,2006.
    [154]田宇.水下机器人智能运动控制技术研究(硕士论文)[D].哈尔滨:哈尔滨工程大学,2007.
    [155]朱怡.水下潜器水动力模型简化及参数辨识研究(硕士论文)[D].哈尔滨:哈尔滨工程大学,2007.
    [156]何漫丽.水下自航行器水动力学特性数值计算与试验研究(博士论文)[D].天津:天津大学,2005.
    [157]边宇枢,高志慧,贠超.6自由度水下机器人动力学分析与运动控制[J].机械工程学报:2007, 43(7) :87-92.
    [158] Zhao Si-de, Yuh J. Experimental study on advanced underwater robot control[J]: IEEE Transactions on Robotics, 2005, 21(4): 695-703.
    [159]李天森.鱼雷操纵性[M].北京:国防工业出版社,1999.7
    [160]施生达.潜艇操纵性[M].北京:国防工业出版社,1995
    [161] Prestero, T. Development of a six-degree of freedom simulation model for the REMUS autonomous underwater vehicle [C]. MITS/IEEE Oceans 2001. An Ocean Odyssey.Conference Proceedings, 2001, vol.l. 450-455
    [162]刘云平.航天器多体系统姿态动力学与控制的研究[D].南京:南京航空航天大学, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700