管内移动机器人示踪定位技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管内移动机器人示踪定位技术是一种在管道外部确定机器人于管内所处位置的技术,现已成为管道无损检测和管内作业等技术领域发展与工程应用的必要条件。由于金属管道及其埋藏环境的屏蔽作用,使得常规的电磁技术在管内移动机器人示踪定位技术中无法应用。因此,如何实现管内移动机器人的无线、可靠、快速甚至全程示踪定位已经成为提高管内移动机器人工作性能和实用价值的重要课题之一。本文结合国家“863”计划项目“海底管道内爬行器及其检测技术”与“基于超长波的管道机器人示踪定位技术”,针对管内移动机器人的示踪定位理论与系统实现问题进行了深入的研究。
     本文提出了管内移动机器人示踪定位系统的总体设计方案,同时分析了示踪定位系统实际工程应用中的工艺流程和要求,详细描述了管内发射系统与管外传感器接收系统的具体构成和性能指标。
     针对金属管壁及其埋藏环境对常规电磁信号的屏蔽问题,本文提出了应用极低频电磁场作为管道内外信息传达的媒介,解决了示踪定位技术的瓶颈问题。从Maxwell电磁理论出发,建立了金属管道环境下极低频电磁场分布的数学模型,通过数值仿真分析了管道及埋藏环境的几何尺寸和电磁参数对管外空间极低频电磁场分布特性的影响,并确定了最佳的发射频率。为了便于示踪定位算法的理论分析与工程应用,本文提出了应用等效磁偶极子模型来描述管道环境下的磁场分布,通过对发射器线圈结构的优化设计,有效降低了模型误差的影响。通过实物实验对极低频电磁场在金属管道环境下的适用性进行了验证。
     示踪是指在管道外部粗略地获取管内移动机器人的方位,精度要求较低。本文提出了两种解决方案:(1)单轴激磁与单轴检测方式,(2)三轴激磁与三轴检测方式。前者通过归纳各类管道环境下极低频电磁场的分布规律,定性分析管内移动机器人的位置,估算精度较低,单次示踪过程耗时较长;后者是一种定量计算的示踪方法,通过对三轴发射向量和三轴传感器输出向量分别进行正交旋转变换,实现对发射器与传感器相对位置关系的定量求解;该示踪算法采用传感器输出信号“能量”作为参考输入,较好地解决了管内移动机器人动态示踪和相对位置较远时传感器输出信噪比较低的问题。将上述两种示踪方法分别进行实验验证,结果表明:前者在可视管线、管道分布已知或分布未知但机器人运行速度较低情况下具有较好的示踪效果;而后者适用于各类管内移动机器人的示踪过程,位置估算误差较小,具有较好的抗扰性能,满足一般管道工程需求。
     由于极低频电磁场在金属管道环境下的传播距离有限,为了提高管内移动机器人示踪定位技术的实用价值,本文提出了全程示踪定位的概念。针对管内移动机器人检测到管壁缺陷或机器人出现故障的静态定位问题,提出了基于传感器阵的定位方法,一方面提高了极低频电磁场的探测范围,另一方面通过融合多个传感器的信息有效提高了定位精度。根据传感器轴向和数目不同,给出了基于矩阵变换的线性定位算法和基于最优原理的非线性定位算法。理论分析表明:基于最优原理的非线性定位算法需要传感器数目较少、算法简单且便于工程实现。分析了传感器运动感应噪声产生的原因,并提出了相应的方法来减弱噪声对定位精度的影响。在管道平台上进行管内机器人的静态定位实验,实验结果表明所设计的定位算法和定位系统均满足管道示踪定位工程的需求。
The tracking and locating of in-pipe mobile robot is a technology to detect the position of robot by measuring outside the pipeline. This technology decides the further developments and practical applications of pipeline nondestructive tests and in-pipe operations, etc. As the normal electromagnetic methods can not be applied in pipeline engineering, because of the intense shielding effects of metallic pipe wall and buried pipeline environment. So, the wireless, reliable, fast, even the global tracking and locating technology is one of the key technologies to improve the system performance and practical application value of in-pipe mobile robot. Based on the projects“Seabed in-pipe mobile robot and inspection technology”and“Tracking and locating technology of pipeline robot based on ultra-long electromagnetic wave”, this thesis studies the tracking and locating theory and system applications of in-pipe mobile robot.
     The thesis presents the completed design methods of the tracking and locating system of the in-pipe mobile robot, and analyzes the working process and requirements of the system. The specific structure and performance of the in-pipe emitter system and the outside sensor system are described in detail.
     In order to solve the shielding problem by metallic pipe wall and buried pipeline environment, which is a great bottleneck for the application of tracking and locating technology, the extreme low frequency (ELF) magnetic field is applied to realize the communication between inside and outside of pipeline. Based on the Maxwell electromagnetic theory, the analytical propagation model of the ELF magnetic field in the buried pipeline environment is presented. The thesis studies the affects of the geometric sizes and electromagnetic parameters of the pipeline environment on the propagation character of the ELF magnetic field and the optimum emitting frequency. In order to simply the analysis of the tracking and locating algorithm, the thesis presents an equivalent magnetic dipole model to approximately describe the propagation of the ELF magnetic field. The imitation error is reduced to minimum by the structural optimum design of the emitting coil. The actual propagation performance of the ELF magnetic field is tested by various experiments, and the results show that the ELF magnetic field is practicable in the tracking and locating technology of the in-pipe mobile robot.
     Tracking is roughly estimating the position of in-pipe mobile robot with low accuracy. There are two tracking methods are presented in the thesis, i.e. (1) single axis emitting and point measure, (2) three axes emitting and point measure. The first method can only estimate the rough position of the in-pipe robot by concluding the propagation character of ELF magnetic field in various pipeline environments. The estimation precision of position is low and this method wastes time a lot. The second method is based on the orthogonal rotations of the emitting vectors and the receiving vectors. The relative position and orientation between emitter and sensor are calculated respectively. This tracking algorithm adopts the energy of the sensor’s output, which is helpful for the dynamic tracking of robot. It also solves the problem of low sensor to noise ratio (SNR) when the relative distance between emitter and sensor is too long. The two methods are verified by field tests. It is concluded that the first tracking method is suitable for the visible pipeline, the specific distribution pipeline, or unknown distribution but the moving speed of robot is low enough. With little estimation error, the second method is verified practicable for tracking of in-pipe mobile robot, and satisfies the requirements of pipeline engineering.
     As the propagation distance of ELF magnetic field is limited, the thesis presents a global tracking and locating concept in order to improve the practical application value of the tracking and locating technology. The static locating algorithm, which is applied when defects on pipe wall are inspected or there is something wrong with the robot, is presented based on the sensor array. The sensor array is help to improve the detection area of ELF magnetic field and the accuracy of the locating algorithm. According to the number of axis and sensor, linear and nonlinear algorithms are presented, respectively. The first algorithm is based on the matrix transformation method and the second one is based on the optimum theory. With theoretical analysis, it is shown that the second method is simple and more suitable for practical application, and requires fewer sensors. The principle of motion inductive noise of sensor is analyzed and some methods have been presented to reduce the affects. The static locating algorithms have been verified by experiments. It is concluded that the locating algorithms and the locating system satisfy the requirements of pipeline engineering.
引文
1 G. S. Hubbard. Humans and Robots: Hand in Grip. Acta Astronautica. 2005, 57(2): 649~660
    2 A. A. Carvalhoa, J. M. A. Rebelloa, L. V. S. Sagrilob, et al. MFL Signals and Artificial Neural Networks Applied to Detection and Classification of Pipe Weld Defects. NDT&E International. 2006, 39(8): 661~667
    3 R. Murayama, S. Makiyama, M. Kodama, et al. Development of an Ultrasonic Inspection Robot Using an Electromagnetic Acoustic Transducer for a Lamb Wave. Ultrasonics. 2004, 42(1): 825~829
    4 M. Muramatsu, N. Namiki, R. Koyama, et al. Autonomous Mobile Robot in Pipe for Piping Operations. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan, 2000: 2166~2170
    5 A. Ahrary, Y. Kawamura, M. Ishikawa. A Laser Scanner for Landmark Detection with the Sewer Inspection Robot KANTARO. Proceedings of the IEEE/SMC International Conference on System of Systems Engineering, Los Angeles, USA, 2006: 310~315
    6 Y. W. Zhang, G. Z. Yan. In-pipe Inspection Robot with Active Pipe Diameter Adaptability and Automatic Tractive Force Adjusting. Mechanism and Machine Theory. 2007, 42(12): 1618~1631
    7 A. A. Nassiraei, Y. Kawamura, A. Ahrary, et al. Concept and Design of a Fully Autonomous Sewer Pipe Inspection Mobile Robot KANTARO. IEEE International Conference on Robotics and Automation, Roma, Italy, 2007: 136~143
    8 C. P. Lu , H. P. Huang, J. L. Yan, et al. Development of a Pipe Inspection Robot. The 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON), Taipei, China, 2007: 626~631
    9 J. Y. Choi, H. Lim, B. Kim. Semi-Automatic Pipeline Inspection Robot Systems. SICE-ICASE International Joint Conference, Busan, Korea, 2006: 2266~2269
    10 H. Lim, J. Y. Choi, B. Kim. Development of Semi-Automatic Inspection System for Indoor Pipeline. Proceedings of the IEEE International Conference on Mechatronics and Automation, Harbin, China, 2007: 3640~3645
    11 H. R. Choi, S. M. Ryew. Robotic System with Active Steering Capability forInternal Inspection of Urban Gas Pipelines. Mechatronics. 2002, 12(5): 713~736
    12 O. Harutoshi, W. Kosuke, H. Katsumi, et al. Wireless Radio Communication System for a Pipe Inspection Robot. International Conference on Control, Automation and Systems, Seoul, Korea, 2007: 2616~2619
    13王忠巍,曹其新,栾楠等.海底管道检测机器人智能控制器的研制.高技术通讯. 2008, 18(2): 142~146
    14 D. F. Sebastiano, M. Mirko, T. Bernardo, et al. Shielding Effectiveness Measurements for Ferromagnetic Shields. IEEE Transactions on Instrumentation and Measurement. 2009, 58(1): 115~121
    15 A. Shaari, S. G. Millard, J. H. Bungey. Modeling the Propagation of A Radar Signal Through Concrete as A Low Pass Filter. NDT&E International. 2004, 37(3): 237~242
    16赵永辉,吴健生,万明浩.不同地下介质条件下探地雷达的探测深度问题分析.电波科学学报. 2003, 18(2): 220~224
    17 X. B. Han, S. Wang, T. Fang, et al. Propagation Character of Electromagnetic Wave of the Different Transmitter Position in Mine Tunnel. International Conference on Networks Security, Wireless Communications and Trusted Computing, Wuhan, China, 2009: 530~533
    18 J. P. Sun, L. F. Cheng. Equivalent Analysis Method of Electromagnetic Waves Propagation in Arched Tunnel. Applied Mathematics and Computation. 2006, 178 (2): 332~337
    19 A. H. Saba, M. Yuichi, J. V. Walter, et al. Very-Low-Frequency Electromagnetic Field Detector with Data Acquisition. IEEE Transactions on Instrumentation and Measurement. 2009, 58(1): 129~140
    20 B. Torgny. Present and Future Robot Control Development: An Industrial Perspective. Annual Reviews in Control. 2007, 31(1): 69~79
    21 Z. W. Wang, Q. X. Cao, N. Luan, et al. Development of New Pipeline Maintenance System for Repairing Early Built Offshore Oil Pipelines. IEEE Internation Conference on Industrial Technology, Chengdu, China, 2008: 1~6
    22甘小明,徐滨士,董世运等.管道机器人的发展现状.机器人技术与应用. 2003, (6): 5~10
    23 A. Kuwada, K. Tsujino, K. Suzumori, et al. Intelligent Actuators Realizing Snake-like Small Robot for Pipe Inspection. International Symposium on Micro-NanoMechatronics and Human Science, Okayama, Japan, 2006: 1~6
    24 A. Brunete, E. Gambao, J. E. Torres, et al. A 2 DoF Servomotor-based Module for Pipe Inspection Modular Micro-robots. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006: 1329~1334
    25 Z. L. Wang, H. Gu. A Bristle-Based Pipeline Robot for Ill-Constraint Pipes. IEEE/ASME Transactions on Mechatronics. 2008, 13(3): 383~392
    26 H. J. Chen, J. Y. Li, X. H. Zhang. Application of Visual Servoing to an X-Ray Based Welding Inspection Robot. Internation Conference on Control and Automation, Budapest, Hungary, 2005: 977~982
    27 A. Jostein, T. Edd. Midline TIE-INS & Repairs on Live Oil & Gas Pipelines Utilizing Remotely Operated Intelligent Piggable Isolation Tools. Pigging Products and Services Association Report, 2004
    28杨理践.管道漏磁在线检测技术.沈阳工业大学学报. 2004, 27(10): 522~525
    29 H. M. Qi, X. H. Zhang, H. J. Chen, et al. Tracing and Localization System for Pipeline Robot. Mechatronics. 2009, 19(1): 76~84
    30 Z. Hu, E. Appleton. Dynamic Characteristics of a Novel Self-Drive Pipeline Pig. IEEE Transactions on Robotics. 2005, 21(5): 781~789
    31徐小云,颜国正,闫小雪.油气管道检测机器人.上海交通大学学报. 2003, 37(11): 1653~1656
    32 S. G. Roh, H. R. Choi. Differential Drive In-pipe Robot for Moving Inside Urban Gas Pipelines. IEEE Transactions on Robotics. 2005, 21(1): 1~17
    33 S. Fujiwara, R. Kanehara, T. Okada, et al. An Articulated Multi-vehicle Robot for Inspection and Testing of Pipeline Interiors. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, 1993: 509~516
    34 P. Li, S. G. Ma, B. Li, et al. Development of an Adaptive Mobile Robot for In-pipe Inspection Task. Proceedings of the IEEE International Conference on Mechatronics and Automation, Harbin, China, 2007: 3622~3627
    35 T. Yukawa, M. Suzuki, Y. Satoh, et al. Design of Magnetic Wheels in Pipe Inspection Robot. IEEE International Conference on Systems, Man, and Cybernetics, Taipei, China, 2006: 235~240
    36 F. Tache, W. Fischer, R. Moser, et al. Compact Magnetic Wheeled Robot With High Mobility for Inspecting Complex Shaped Pipe Structures. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, SanDiego, USA, 2007: 261~266
    37邓宗全,张晓华,董连海等.野外大口径管道焊缝X射线检测机器人.哈尔滨工业大学学报. 1997, 29(1): 47~48
    38姜生元,邓宗全,李斌.内置动力源管内X射线探伤机器人的研制.机器人. 2001, 23(3): 211~216
    39 Z. Q. Deng, F. P. Xu, X. H. Zhang, et al. The Development of X-Ray Inspection Real Time Imaging Pipeline Robot. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China, 2004: 4846~4850
    40 X. H. Zhang, J. Y. Li, H. J. Chen. Visual Feature Recognition of an X-Ray Based Inspection Pipelne Robot. Internation Conference on Control and Automation, Budapest, Hungary, 2005: 966~970
    41邓宗全,陈军,姜生元等.六独立轮驱动管内检测牵引机器人.机械工程学报. 2005, 41(9): 67~72
    42 L. Spacek, C. Burbridge. Instantaneous Robot Self-Localization and Motion Estimation with Omnidirectional Vision. Robotics and Autonomous Systems. 2007, 55(9): 667~674
    43雷小军,付庄,曹其新等.海底管道检测机器人自主缺陷定位的模糊控制研究.机器人. 2005, 27(3): 252~255
    44张永顺,郭锐,刘煜等.管内游动微型机器人的在线定位方法.哈尔滨工业大学学报. 2004, 36(10): 1382~1385
    45 H. L. Du, H. Liu. Dielectric Sensor for Detecting Capsules Moving Through Pipelines. IEEE/ASME Transactions on Mechatronics. 2000, 5(4): 429~436
    46 T. Bai, J. Gu, G. Cheng, et al. A New Landmark Framework for Mobile Robot Localization and Asynchronous Sensor Fusion. Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, Kobe, Japan, 2003: 1451~1456
    47 D. Krys, H. Najjaran. Development of Visual Simultaneous Localization and Mapping (VSLAM) for a Pipe Inspection Robot. Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, Jacksonville, USA, 2007: 344~349
    48 H. J. Chen, X. H. Zhang, J. Y. Li. Ultra Low Frequency Electromagnetic Wave Localization and Application to Pipeline Robot. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006: 1201~1205
    49李军远.基于超低频电磁波的管道机器人示踪定位技术研究.哈尔滨工业大学博士学位论文. 2006: 24~32,42~79
    50 Z. Zhou, J. H. Cui, S. L. Zhou. Efficient Localization for Large Scale Underwater Sensor Networks. Ad Hoc Networks. 2010, 8(3): 267~279
    51 C. Hu, M. Q. Meng, M. Mandal, et al. 3-Axis Magnetic Sensor Array System for Tracking Magnet’s Position and Orientation. Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006: 5304~5308
    52 C. Hu, M. Q. Meng, M. Mandal. The Calibration of 3-Axis Magnetic Sensor Array System for Tracking Wireless Capsule Endoscope. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006: 162~167
    53 H. Gazzah, S. Marcos. Directive Antenna Arrays for 3D Source Localization. IEEE Workshop on Signal Processing Advances in Wireless Communications, Rome, Italy, 2003: 619~623
    54 R. C. Luo, W. L. Hsu, O. Chen, et al. Localization Based on Magnetic and RSS Data Fusion with Covariance Intersection for Mobile Sensor Network. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, ETH Zurich, Switzerland, 2007: 1~6
    55吴知非,吴敏生.一种可用于管道爬行器的静磁场型定位系统.测控技术. 2001, 20(4): 1~5
    56 W. H. He, G. Z. Yan, X. D. Guo, et al. Researches on Magnetic Localization for Detecting Capsule in Gastrointestinal Tract. Journal of Shanghai Jiaotong University(Science). 2007, 12(4): 520~524
    57 T. Nara1, S. Suzuki, S. Andol. A Closed-Form Formula for Magnetic Dipole Localization by Measurement of Its Magnetic Field and Spatial Gradients. IEEE Transactions on Magnetics. 2006, 42(10): 3291~3293
    58 V. Schlageter, P. A. Besse, R. S. Popovic, et al. Tracking System with Five Degrees of Freedom Using 2D-Array of Hall Sensors and a Permanent Magnet. Sensors and Actuators A: Physical. 2001, 92(1): 37~42
    59 W. N. Huang, P. S. Chen, M. P. Chen, et al. A Novel Design of the High-Precision Magnetic Locator with Three-Dimension Measurement Capability Applying Dynamically Sensing Mechanism. Journal of Magnetism and Magnetic Materials. 2006, 304(1): 381~385
    60 X. D. Wu, W. S. Hou, C. L. Peng, et al. Wearable Magnetic Locating and Tracking System for MEMS Medical Capsule. Sensors and Actuators A: Physical. 2008, 141(2) : 432~439
    61 R. G. Yang, T. Y. Wong. Electromagnetic Fields and Waves. Higher Education Publication, 2006: 170~195
    62赵国泽,陆建勋.利用人工源超低频电磁波检测地震的试验与分析.中国工程科学. 2003, 5(10): 27~32
    63 A. C. Fraser, P. R. Bannister. Reception of ELF Signals at Antipodal Distance. Radio Sciences. 1998, 33(1): 83~88
    64 A. K. Saraev, M. I. Pertel, V. E. Parfentev, et al. Experimental Study of the Electromagnetic Field from a VLF Radio Set for the Purposes of Monitoring Seismic Activity in the North Caueasus. Physics of the Solid Earth. 1999, 35(2): 101~108
    65 J. J. Simpson, R. P. Heikes, A. Taflove. FDTD Modeling of A Novel ELF Radar for Major Oil Deposits Using A Three-Dimensional Geodesic Grid of the Earth Ionosphere Waveguide. IEEE Transactions on Antennas and Propagation. 2006, 54(6): 1734~1741
    66 J. J. Simpson, A. Taflove. ELF Radar System Proposed for Localized D-Region Ionospheric Anomalies. IEEE Geoscience and Remote Sensing Letters. 2006,
    3(4): 500~503
    67 U. Oguz, L. Gurel. Frequency Responses of Ground-Penetrating Radars Operating Over Highly Lossy Grounds. IEEE Transaction on Geoscience and Remote Sensing. 2002, 40(6): 1385~1394
    68潘威炎.长波超长波极长波传播.电子科技大学出版社, 2004: 46~110
    69程柏青,王爱东.过套管电阻率测井技术在吐哈油田的应用.国外测井技术. 2003, 18(1): 40~45
    70粟建军,孟凡顺.套管井井间电阻率测井的原理及数值计算.青岛海洋大学学报:自然科学版. 2003, 33(2): 287~292
    71刘迪仁,徐建华.套管井中低频电流源的场及其特性.江汉石油学院学报. 1998, 20(2): 43~47
    72 T. Xu, W. S. Luo, H. B. Lu. Design of Underground Sonde of a Directional Drilling Locator System. Sensors and Actuators A: Physical. 2005, 119(2): 427~432
    73 R. Yona, N. Mohammad. Navigation Systems for Horizontal DirectionalDrilling-Current Status and Potential for Development. 7th International Conference on Integrated Navigation Systems, Saint Petersburg, Russia, 2000: 21~27
    74 J. E. Mercer. Locating Systems for Horizontal Directional Drilling Part 1. No-Dig Engineering. 1998, 4(5): 2~4
    75 J. E. Mercer. Locating Systems for Horizontal Directional Drilling Part 2. No-Dig Engineering. 1999, 5(1): 6~11
    76 J. E. Mercer. Underground Locating Using a Locating Signal Transmitter Configured with a Single Antenna. United States Patent, US 6232780B1, 2001
    77 E. N. Allouche, S. T. Ariaratnam. Horizontal Directional Drilling: Profile of an Emerging Industry. Journal of Construction Engineering and Measurement. 2000, 126(1): 68~76
    78 H. S. Baik, D. M. Abraham, S. Gokhale. A Decision Support System for Horizontal Directional Drilling. Tunneling and Underground Space Technology. 2003, 18(1): 99~109
    79 P. K. Vong, D. Rodger, A. Marshall. Modeling an Electromagnetic Telemetry System for Signal Transmission in Oil Fields. IEEE Transactions on Magnetics. 2005, 41(5): 2008~2011
    80张辛耘,王敬农,郭彦军.随钻测井技术进展和发展趋势.测井技术. 2006, 30(1): 10~15
    81王长清,祝西里,陈国华,丁柱. Maxwell方程用于电磁脉冲在损耗介质中的传播问题.电波科学学报. 1999, 14(1): 97~101
    82闫玉波,葛德彪.脉冲源激励下地下目标的电磁散射分析.电子学报. 2002, 30(3): 325~327
    83 W. A. Michael, C. D. Andrew. Fast Approximate EM Induction Modeling of Metallic and UXO Targets Using a Permeable Prism. Journal of Applied Geophysics. 2007, 61(3): 235~242
    84 R. C. Ioan. New Model for the Computation of Quasi-Stationary Fields Due to Arbitrary Distributions of Magnetic Dipoles. IEEE Transactions on Magnetics. 2000, 36(4): 1990~1995
    85 V. Darko, B. Vedran, S. Boris. Analytical Modelling in Low-Frequency Electromagnetic Measurements of Steel Casing Properties. NDT&E International. 2007, 40(2): 103~111
    86 G. Y. Valery. Computing and Simulation of Time-Dependent ElectromagneticFields in Homogeneous Anisotropic Materials. International Journal of Engineering Science. 2008, 46(5): 411~426
    87卢新城,龚沈光,周俊等.海水中极低频电偶极子电磁场的解析解.电波科学学报. 2004, 19(3): 290~295
    88 J. Tabrikian, R. Shavit, D. Rahamim. An Efficient Vector Sensor Configuration for Source Localization. IEEE Signal Processing Letters. 2004, 11(8): 690~693
    89 C. Hu, T. Ma, M. Q. Meng. Sensor Arrangement Optimization of Magnetic Localization and Orientation System. Proceedings of IEEE International Conference on Integration Technology, Shenzhen, China, 2007: 311~315
    90郭旭东,颜国正,何文辉.交变励磁三维遥测定位方法研究.西安交通大学学报. 2007, 41(6): 717~721
    91王兰炜,赵家骝,王子影等.相关检测在甚低频电磁信号检测中的应用.西北地震学报. 2004, 26(4): 339~342,346
    92 W. Yuan, J. Liu, H. B. Zhou. An Improved KNN Method and Its Application to Tumor Diagnosis. Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, China, 2004: 2836~2841
    93 R. Alberto, E. Ivan, D. Leonello, et al. Adaptive K-NN for the Detection of Air Pollutants with a Sensor Array. IEEE Sensors Journal. 2004, 4(2): 248~256
    94李明奇,田太心.数学物理方程.电子科技大学出版社, 2006: 46~77,176~199
    95吴旭东,侯文生,郑小林,彭承琳.磁偶极子的定位模型及实验验证.仪器仪表学报. 2008, 29(12): 326~329
    96唐劲飞,龚沈光,王金根.基于磁偶极子模型的目标定位和参数估计.电子学报. 2002, 30(4): 614~616
    97 E. Paperno, I. Sasada, E. Leonovich. A New Method for Magnetic Position and Orientation Tracking. IEEE Transactions on Magnetics. 2001, 34(7): 1938~1941
    98 A. Sheinker, N. Salomonski, B. Ginzburg, et al. Remote Sensing of a Magnetic Target Utilizing Population Based Incremental Learning. Sensors and Actuators A: Physical. 2008, 143(2): 215~223
    99 H. R. Frederick, B. B. Ernest, O. S. Terry, et al. Magnetic Position and Orientation Tracking System. IEEE Transactions on Aerospace and Electronic Systems. 1979, 15(5): 709~718
    100 V. K. Volodymyr. A Survey of Electromagnetic Position Tracker Calibration Techniques. Virtual Reality. 2000, (5): 169~182
    101 B. Yang, J. Scheuing. A Theoretical Analysis of 2D Sensor Arrays for TDOA Based Localization. IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006: 4~8
    102 Y. Y. Jung, D. Y. Lim, Y. J. Ryoo, et al. Position Sensing System for Magnet Based Autonomous Vehicle and Robot Using 1-Dimensional Magnetic Field Sensor Array. International Joint Conference of SICE-ICASE, Busan, Korea, 2006: 187~192
    103 S. Hashi, M. Toyoda, S. Yabukami, et al. Wireless Magnetic Motion Capture System. IEEE Transactions on Magnetics. 2006, 42(10): 3279~3281
    104 S. Yabukami, H. Kikuchi, M. Yamaguchi, et al. Motion Capture System of Magnetic Markers Using Three-Axial Magnetic Field Sensor. IEEE Transactions on Magnetics. 2000, 36(5): 3646~3648
    105 B. G. Ferguson, K. W. Lo, R. A. Thuraisingham. Sensor Position Estimation and Source Ranging in A Shallow Water Environment. IEEE Journal of Oceanic Engineering. 2005, 30(2): 327~337
    106 P. G. Donato, J. Urena, M. Mazo, et al. Electromagnetic Sensor Array for Train Wheel Detection. Proceedings of Sensor Array and Multichannel Signal Processing, Barcelona, Spain, 2004: 206~210
    107 M. S. Munkholm. Motion Induced Noise from Vibration of A Moving TEM Detector Coil: Characterization and Suppression. Journal of Applied Geophysics. 1997, 37(1): 21~29
    108 A. Itai, H. Yasukawa, I. Takumi, et al. Background Noise Estimation Using Outer Product Expansion for ELF Electromagnetic Wave Signal. International Symposium on Intelligent Signal Processing and Communication Systems, Kanazawa, Japan, 2009: 131~134
    109 M. Burrows. Motion Induced Noise in Electrode Pair Extremely Low Frequency (ELF) Receiving Antennas. IEEE Transactions on Communications. 1974, 22(4): 540~542
    110谢慧,高俊,柳超等.超低频拖曳全向接收天线运动感应噪声研究.电波科学学报. 2007, 22(5): 861~866
    111杨路刚,程瑾. ELF磁场拖曳天线的运动感应噪声分析.舰船电子工程. 2006, 26(2): 151~153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700