长输液体管道泄漏监测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长输管道作为一种重要的运输手段,早已在我国和世界工业中广泛应用。但由于种种原因,管道泄漏事故时有发生。为了减小管道泄漏造成的经济损失,以及对环境造成的严重污染,有必要对管道泄漏监测技术加以研究。已有的监测方法,或价格昂贵,或维修困难,或影响正常运行,针对长输管线来讲,都是不理想的。本文研究的重点是根据管道进出口处流量和压强的特征识别管道泄漏并确定泄漏点的位置。
     为了从理论上指导泄漏监测方法的建立,本文用特征线法计算了管道泄漏时的控制方程。通过对输水管道和输油管道的泄漏数值计算发现,管道泄漏时管道上下游水力参数的综合变化规律不同于阀门启闭引起的水力参数的变化规律,这一规律的发现为泄漏识别方法的提出提供了依据。
     依据管道泄漏时上下游水力参数具有独特变化规律的事实,本文提出了两种泄漏识别方法。一种方法是基于新息理论变点检测的管道泄漏识别方法。文中将基于多元假设的序列似然比检测方法与新息理论结合推导出基于新息理论的变点检测方法,利用BP神经网络非线性时间序列预测方法建立了管道进出口处水力参数的新息模型,然后利用本文提出的变点检测方法监测经新息模型产生的新息序列实现管道泄漏在线识别。另一种方法是基于半模糊聚类的长输管道泄漏识别方法。文中的半模糊聚类算法是通过将陈守煜的模糊聚类算法中的隶属度阈值化以后得到的,并利用该半模糊聚类算法将管道进出口处的水力参数看作指标特征值进行聚类,根据聚类结果判别管道是否发生泄漏。通过对实验输水管道以及实际输油管道的泄漏识别得到这两种方法的漏报警率为3.4%左右。
     本文给出了两种泄漏点定位方法。一种是基于BP神经网络预测原理的压力梯度法。该方法采用BP神经网络预测摩阻系数,利用压力梯度法求得泄漏点的位置。另一种是由逆瞬态法和压力梯度法迭代求解泄漏点位置的方法。该方法将泄漏点前后的摩阻系数以及泄漏流量系数看作优化控制变量、水击方程的数值计算结果与测量值之差的绝对值作为控制目标,利用遗传算法优选泄漏点前后的摩阻系数,与压力梯度法结合不断迭代求解泄漏点的位置。通过输水管道的泄漏实验得到这两种方法漏点定位的平均误差分别为12%和4%左右。
     本文编制了泄漏监测系统软件。软件包括界面程序、泄漏识别和泄漏点定位程序以及数据库。并将该软件安装到平湖油田的海底输油管线上进行了现场测试。
     为了验证本文所做的具体工作,设计了长48.775m、管径53mm的输水管道,实验在大连理工大学的水力学实验室里进行。通过实验验证了管道泄漏以及阀门启闭工况下管道上下游流量和压强的变化规律。并利用管道泄漏监测系统软件分别识别了阀门启闭工况以及泄漏工况。
Long-distance pipeline, one of the most important transportation means, has been widely utilized around the world. However, leak in pipeline often occurs owing to different reasons. To reduce the economic losses and environmental destruction, it is necessary to study the leak detection methods. Traditional methods are not suitable for the long-distance pipeline due to their expensive price, difficult maintenance and influence on normal running, etc. That is the motivation of this thesis. The research in this thesis emphasizes on the leak identification and the leak point location according to the characteristics of the flow and the pressure at inlet and outlet of the pipeline.
     In this thesis, the method of characteristics is used to calculate the governing equations including the leak. It is noticed that the variation of the hydraulic parameters under the leak situation is different from those caused by opening and closing the valve at inlet and outlet. This finding provides the foundation to develop the leak identification methods in theory.
     According to the change law of hydraulic parameters at inlet and outlet of the pipeline, two methods for leak identification have been presented. One is a new abrupt change method, which is based on innovation theory. This new method is deduced by combining the extended sequential probability test and the innovation theory. The innovation model of the hydraulic parameters is established by prediction method of nonlinear time series based on BP neural network. Thus, the on-line leak identification can be fulfilled by monitoring the innovation series given by the innovation model. The other is the semi-fuzzy clustering method. This method is obtained through limiting the membership degree of Chen's fuzzy clustering method. This method is used to classify the hydraulic parameters at inlet and outlet of the pipeline and to detect the leak in pipeline. The probability of missing alarm of these two methods is 3.4% through the leak identification of experiments and actual tests.
     Two methods for locating leak point have been developeded. One is a pressure grade method based on forcasting theory of BP neural network. The other is iterative method based on the inverse transient method and pressure gradient method. In this technique, decision variables are friction factors and objective function minimizes the difference of water heads between caculated valves by waterhammer equations and measured valves at measured sites. The mean location error of two methods is respectively 12% and 4% based on experimental tests.
     Software for leak detection system, composed of interface program, leak monitoring program and leak point location program, was developed. The software has been installed to the oil pipeline in Pinghu oil field.
     To verify the developed methods, a water pipe with a length of 48.775m and a diameter of 53mm has been set up in the hydraulics laboratory of Dalian University of Technology. The change law of the hydraulic parameters at inlet and outlet has been validated under the situation of leak and valve opening and closing. The software for leak detection system is also used to identify the situation of leak and valve opening and closing respectively in the experimental pipeline.
引文
[1]梅云新.中国管道运输的发展与建设.交通运输系统工程与信息,2005,5(2):108-115.
    [2]中国主要管道分布情况.中国石化,2004,7:8-9.
    [3]俞树荣,马欣,刘展,梁瑞.在役长输管道不同时期可靠性安全评价.兰州理工大学学报,2005,31(4):65-67.
    [4]冯耀荣,王新虎,赵冬岩.油气输送管失效事故的调查与分析.中国海上油气,1999,11(5):11-14.
    [5]靳世久.国家自然科学基金资助项目”热油长输管道泄漏检测与定位技术研究”结硕果.中国科学基金,2005,第6期:359-360.
    [6]许文兵.平湖油气田海底输油管线临时修复方法.中国海洋平台2003,18(2):37-40.
    [7]曹学军,郑玉平,许文兵.平湖油气田海上工程项目管理.中国海洋平台,2000,15(3):32-36.
    [8]顾宗平.东海平湖油气田的勘探与开发--从发现到建成投产的全面回顾.中国海洋平台,1999,14(4):1-6.
    [9]陈积懋.管道无损检测与评价技术.石油化工设备技术,1997,18(1):59-63.
    [10]Black, P. A review of pipeline leak detection technology. Pipeline Systems,1992,287-297.
    [11]Furness R. A., Reet J. D. Pipe line leak detection techniques. E. W. McAllister ed. Pipe Line Rules of Thumb Handbook. Houston, Texas:Gulf Publishing Company,1998:476-484.
    [12]陈华波,涂亚庆.输油管道泄漏检测方法综述.管道技术与设备,2000,1:38-41.
    [13]翟矍.液体输送管道泄漏检测技术的现状与研究方向.石油机械,2005,33(3):55-58.
    [14]De Read J.R. Comparison between ultrasonic and magnetic flux pigs for pipeline inspection. Pipe & Pipeline,1987,16(12):7-15.
    [15]Fuchs H. V.,Shaw S,Schupp G.Leak Detection and Location in Pipeline by Acoustic Correlation Techniques. Proceedings International Conference on Noise Control Engineering.1983,2:1191-1194.
    [16]Rocha S. M. Acoustic monitoring of pipeline leaks. ISA Calgary'89 Symposium. Calgary, Alberta, Canada,1989:283-290.
    [17]Fuchs H. V.,Riehle R. Ten years of experience with leak detection by acoustic signal analysis. Applied acoustics,1991,31(1):1-19.
    [18]Klein W. R. Acoustic leak detection. American Society of Mechanical Engineers, Petroleum Division (Publication) PD,1993,55:57-61.
    [19]Sharp D. B., Campbell D. M. Leak detection in pipes using acoustic pulse reflectometry. Acta Acustics, 1997,83(3):560-566.
    [20]Seaford H. Acoustic leak detection through advanced signal-processing technology. Noise and Vibration Worldwide,1994,25(5):17-18.
    [21]Lee M.R.,Lee J.H. Acoustics emission technique for pipeline leak detection. Key Engineering Materials,2000,183(II):887-892.
    [22]Barbagelata A., Barbagelata L. Acoustic leak detection for underwater oil and gas pipelines. Sea Technology,2002,43(11):39-44.
    [23]Silva R. A., Buiatti C. M. Cruz S. L. and Pereira J. A. F. R. Pressure wave behaviour and leak detection in pipelines. Computers & Chemical Engineering,1996,20(Suppl):S491-S496.
    [24]Brunone B. Transient test-based technique for leak detection in outfall pipes. Journal of Water Resources Planning and Management, ASCE,1999,125(5):302-306.
    [25]Covas, D., and Romas, H. Leakage detection in single pipeline using pressure wave behaviour. Water Industry System:modelling and optimization application, Baldock, Hertfordshire, England,1999:287-299.
    [26]Muggleton J.M. et al. Wave Number Prediction of Waves in Buried Pipes for Water Leak Detection. Journal of Sound and Vibration,2003,249(5):939-954.
    [27]靳世久.原油管道泄漏检测与定位.仪器仪表学报,1997,,18(4):343-347.
    [28]靳世久,王立宁,李健等.原油管道漏点定位技术.石油学报,1998,19(3):93-97.
    [29]唐家秀.管道系统泄漏检测神经网络与模式识别方法,核科学与工程,1999,18(3):220-227.
    [30]唐家秀.供水管网泄漏检测定位方法及仪器,水力学报,1997,No.9,19-26.
    [31]Pudar R. S., Liggett J. A. Leaks in pipe networks. Journal of Hydraulic Engineering, ASCE,1992, 118(7):1031-1046.
    [32]Liggett J. A., Chen L. C. Inverse transient analysis in pipe network. Journal of Hydraulic Engineering, ASCE,1994,120(8):934-955.
    [33]Liou C. P. Mass imbalance error of waterhammer equations and leak detection. Journal of Fluids Engineering, ASME,1994,116:103-109.
    [34]Liou C. P. Pipeline leak detection by impulse response extraction. Journal of Fluids Engineering, ASME,1998,120:833-838.
    [35]Liou C. P., and Tian, J. Leak detection-transient flow simulation approaches. Journal of Energy Resources Technology, ASME,1995,117:243-248.
    [36]Vitkovsky J., Simpson A. R. and Lambert M. F. Leak detection and calibration using transients and genetic algorithms. Journal of Water Resources Planning and Management, ASCE,2000,126(4):262-265.
    [37]Vitkovsky J., Simpson A. R., and Lambert M. F. Minimization algorithms and experimental inverse transient leak detection. EWRI Conference, U.S.,2002.
    [38]Vitkovsky J., Simpson A. R., and Lambert M. F. Leak detection and calibration of water distribution systems using transients and genetic algorithms. Water Distribution Systems Symposium, Division of Water Resources Planning and Management, ASCE, Tempe, Arizona, USA.,1999.
    [39]张来斌,王朝晖等.输油管道故障诊断中的实时模型法.油气储运,2003,22(9):52-55.
    [40]Abhulimen K.E. Susu A.A. Liquid pipeline leak detection system:Model development and numerical simulation. Chemical Engineering Journal,2004,97(1):47-67.
    [41]Mears, M. N. Major pipeline installs system to pinpoint leak size, location. Oil & Gas Journal, Apr, 1988:37-43.
    [42]Griebenow G., and Mears M. Leak detection implementation:modeling and tuning methods. Jornal of Energy Resources Technology, ASME,1989,111:66-71.
    [43]Schwendeman T. Detecting underground piping leaks. Civil Engineering,1987,8:56-58.
    [44]Hough J. E. Leak testing of pipeline uses pressure and acoustic velocity. Oil and Gas Journal,1988, 86(47):35-41.
    [45]Williams J. A., Kozak S., and Rodenbaugh T. J. Leak location methods for HV underground cables. IEEE Transactions on Power Apparatus and Systems,1983, PAS-102(7):2029-2036.
    [46]Paquin F., Babineau D., Brissette F., and Leconte R. Development of a methodology for locating leaks in water lines. Canadian Journal of Civil Engineering,2000,27(1):151-159.
    [47]Zhang J. Statistical leak detection in gas and liquid pipelines. Pipe & Pipelines International,1993, (7-8):26-29.
    [48]Zhang J. Designing a cost-effective and reliable pipeline leak detection system. Pipeline & Gas Journal, 1997,1-2:20-26.
    [49]Zhang J. Statistical pipeline leak detection for all operating conditions. Pipeline & Gas Journal,2001, 228(2):42-45.
    [50]Xiao Jian Wang, Martin F.Lambert, Angus R. Simpson, M.ASCE, James A. Liggett, John P. Vitkovsky, Leak detection in pipelines using the damping of fluid transients, Journal of Hydraulic Engineering,2002, Vol.128, No.7,697-711.
    [51]Mpesha W., Gassman S. L., and Chaudhry M. H. Leak detection in pipes by frequency response method. Journal of Hydraulic Engineering, ASCE,2001,127(2):134-147.
    [52]Mpesha W., Chaudhry M. H., and Gassman S. L. Leak detection in pipes by frequency response method using a step excitation. Journal of Hydraulic Research, IAHR,2002,40(1):55-62.
    [53]杨开林,郭宗周,汪勋等.热力管网泄漏检测数学模型.水力学报,1996,5:50-56.
    [54]唐家秀.供水管网泄漏检测定位方法及仪器.水力学报,1997,9:19-26
    [55]Chaudhry M. H. Applied Hydraulic Transients. New York:Van Nostrand Reinhold Company,1986.
    [56]Wylie E.Benjamin and Steeeter V. L. Fluid Transients in Systems. Englewood Cliffs, New Jersey, USA:Prentice-Hall,Inc.1993,1-463.
    [57]Mclnnis D.,and Karney B. Transients in distribution networks:field tests and demand models. J.Hydraul.Eng.,1995,121(3):218-231.
    [58]Wiggert D.C. Unsteady flows in lines with distributed leakage. J.Hydraul.Div.,Am.Soc.Civ.Eng.,1968,94(HY1):143-162.
    [59]Wang X.J., Lambert M. F.,Simpson A. R.,et. Leak Detection in Pipeline using the Damping of Fluid Transients. Journal of Hydraulic Engineering,2002,128(7):697-711.
    [60]何永森,刘邵英.机械管内流体数值预测.北京:国防工业出版社,1999,1-274.
    [61]李鉴初,杨景芳.“水力学教程”.高等教育出版社,1995.
    [62]苏尔皇.管道动态分析及液流数值计算方法.哈尔滨:哈尔滨工业大学出版社,1985,1-215.
    [63]王学芳,叶宏开,汤荣铭.“工业管道中的水锤”.科学出版社,1995.
    [64]Abraham Wald. Sequential Analysis. New York:J. Wiley & sons inc.,1947,1-212.
    [65]P. Armitage. Sequential analysis with more than two alternative hypotheses and its relation to discriminant function analysis. J. Roy. Statis. Soc.,1950, B(12):137-144.
    [66]T. T. Chien, M. B. Adams. A sequential failure detection technique and its application. IEEE Trans, on Automatic Control,1977,AC-22(5):750-757.
    [67]Michele Basseville, Igor V. Nikiforov. Detection of Abrupt Changes:Theory and Application. Englewood Cliffs, N.J.:Prentice-Hall,1993,1-528.
    [68]Simon Haykin著,郑宝玉等译.自适应滤波器原理.北京:电子工业出版社,2003,1-731.
    [69]靳蕃.神经计算智能基础原理-方法.成都:西南交通大学出版社.2000.
    [70]吴今培,段方勇,基于神经网络的非线性时间序列预测方法研究.系统工程,1997,15(5):61-64.
    [71]阎平凡,张长水.人工神经网络与模拟进化计算.北京:清华大学出版社,2000.
    [72]北川源四郎著,姜兴起等译.现代时间序列分析方法及其实用计算机程序.大连:大连海事大学出版社,1996.
    [73]Dunn J.C. A graph theoretic analysis of pattern classification via Tamara's fuzzy relation.IEEE Trans.SMC,1974,4(3):310-318.
    [74]陈守煜.模糊识别、决策与聚类理论模型.模糊系统与数学,1991,9(2):87-95.
    [75]陈守煜.工程模糊集理论与应用.北京:国防工业出版社,1998.
    [76]Kamel M. S, Selim S. Z. A thresholded fuzzy c-means algorithm for semi-fuzzy approach. Pattern Recognition,1991,24(9):825-833.
    [77]Selim S. Z, Ismail M. A. Soft clustering of multidimensional data:a semi-fuzzy approach. Pattern Recognition,1984,17(5):559-568.
    [78]Bergant A.,Simpson A.R.,Vitkovsky. Development in unsteady pipe flow friction modelling.Journal of Hydraulic Research,2001,39(3):249-257.
    [79]Brunone B.,Golia U.M. and Greco M. Effectes of two-dimensionality on pipe transients modeling. Journal of Hydraulic engingeering,1995,121(12):906-912.
    [80]Pezzinga G. Evaluation of unsteady flow resistances by quasi-2D or ID models. Journal of Hydraulic Engineering,2000,126(10):778-785.
    [81]Zielke W. Frequency-dependent friction in transient pipe flow. Journal of basic engineering,ASME, 1968,90:109-115.
    [82]Ghidaoui M.S.,Mansour S. Efficient treatment of the Vardy-Brown unsteady shear in pipe transients. Journal of Hydraulic Engineering,2002,128(1):102-112.
    [83]金忠青,周志芳.工程水力学反问题.南京:河海大学出版社
    [84]Simpson A., and Goldberg D. E. Pipeline optimisation via genetic algorithms:from theory to practice. 2nd International Conference on Water Pipeline Systems, Edingburgh, Scotland,1994:309-320.
    [85]Simpson, A., Vitkovsky, J., and Lambert, M. Transients for calibration of pipe roughnesses using genetic algorithms.8th International Conference on Pressure Surges, The Hague, Netherlands,2000.
    [86]王小平,曹立明.遗传算法-理论、应用与软件实现.西安:西安交通大学出版社,2002.
    [87]周荣敏,雷延峰.基于遗传算法的雨水管道系统优化设计.郑州大学学报,2003,24(4):59-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700