地裂缝作用下桥梁与房屋基础灾变机理模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地裂缝作为一种特殊的城市地质灾害,广泛的分布在汾渭盆地上,特别是上世纪八十年代改革开放以来,随着人类活动的加剧,对地下水的过量开采,地裂缝的活动也变得活跃起来,地裂缝所经之处的建筑物无一幸免地遭到破坏。由于地裂缝活动对建筑物破坏的不可避免性和长期累积性,地裂缝对建筑物的破坏已经引起了学术界和工程界广大专家学者的高度关注,并取得了丰富的研究成果。本文以汾渭盆地为研究背景,以国家自然科学基金重点项目(40534021)汾渭盆地地裂缝成因机理与大陆动力学、国家自然科学基金面上项目(40772183)地裂缝活动环境下的地层——地铁隧道相互作用研究和国土资源大调查项目(1212010641403)汾渭地区地裂缝地面沉降综合研究为依托,采用现场调查、大型物理模拟试验及数值分析相结合的方法,对地裂缝造成各种建筑物的破坏模式、破坏过程等进行了分析,并在此基础上提出了预警方法和防治措施。本文主要研究工作和成果如下:
     (1)通过现场调查的方法,总结归纳了地裂缝活动环境下各种建筑物的破坏特征,包括道路、桥梁、地下管道和房屋等。
     (2)通过大型物理模型试验,揭示了不同结构形式的桥梁与地裂缝在不同位置相交时,随地裂缝活动时的应力应变规律及变形破坏机制,为地裂缝地区修建桥梁提供了参考。
     (3)通过数值模拟分析,揭示了正断层、逆断层及平移断层等不同形式断层形成的地裂缝对桥梁的应力变化规律及破坏模式。指出由于地裂缝形成的原因不同,对桥梁的作用不同,因而造成了不同的破坏模式,设计时应区别对待,这样才能采取更加合理的防治措施。
     (4)通过大型物理模拟试验和数值分析,揭示了各种建筑物的基础形式在地裂缝活动环境下的响应。指出桩筏基础的桩虽然对土体起到了加固作用,但同时也对筏板产生了拉力,使得筏板在与桩接触的部位发生拉张破坏,对抵抗地裂缝活动的作用并不显著,反而起到了不利的影响;通过对筏板基础的应力应变曲线分析得出了筏板基础在地裂缝环境影响下的受力模式;通过对同一基础与地裂缝在不同位置相交得出地裂缝相交位置对基础破坏过程的影响;通过对不同基础形式的对比得出地裂缝影响范围内应采取整体性好的基础形式,避免采取条基等整体性差的基础。
     (5)通过对基础模型破坏过程和破坏现象的分析,指出虽然不同基础表现出不同的塑性变形能力,但最终无一幸免全部遭到破坏,进一步验证了地裂缝对建筑物破坏的不可避免性。
     (6)通过对同一基础形式不同刚度和强度的对比说明,单纯依靠增加基础的强度和刚度来抵抗地裂缝对建筑物的破坏是不经济的,效果也是不明显的。
     (7)在前期调查、物理试验及数值分析的基础上指出了桥梁、房屋、道路、地下管道等各种建(构)筑物在地裂缝活动环境下破坏的力学模式。
     (8)根据地裂缝对建筑物的破坏模式,提出了在地裂缝环境影响下的两种预警方法,根据预警信号做好处理措施。
     (9)通过对地裂缝活动环境下各种建筑物破坏模式的研究,提出了建筑物抵抗地裂缝应从两方面做起:即从结构上采取应对措施和对地基进行处理。对地裂缝带上修建建筑物提供了参考和指导。
Since the1980s, the reform and opening up policy was making the national economy developed rapidly. However, with the development of economy is human activity intensifies, which has caused the occurrence of various geological hazards. Ground fissures, as a special kind of urban geologic hazard, wide distribution in Fenwei basin, the place of buildings none escape by luck to destruction. Due to the inevitable and long-term cumulative of the ground fissures activity, it lead to the building's destruction has caused high attention of the academic and engineering scholars. Taking Fenwei basin as research background, with the national natural science foundation in key projects (40534021) Fenwei basin formation mechanism and ground fissures continental dynamics、national natural science foundation surface projects (40772183) ground fissures activities under the environment of strata--metro tunnel interaction and land resources survey projects (1212010641403) Fenwei district ground fissures subsidence comprehensive study to rely on. Adopting combining methods of field survey、large physical simulation experiment and numerical analysis. Analyze failure mode and process of various buildings which caused by the ground fissures and propose the warning methods and control measures in this foundation. The mainly research work and results are as follows:
     (1) Through field investigation method, and summarize the destruction characteristics of various buildings under the environment of the ground fissures activities. Including roads、 bridges、underground pipes and houses, and base on the historical activity characteristic of ground fissures, point out that the ground fissures of Fenwei basin are still at active period in the future.
     (2) Through large physical model test, it reveals that the different structure forms of bridge and ground fissures in different locations intersect anywhere the crack activities of stress-strain regularity of deformation and failure mechanism, which provide the reference of building bridges scientific in fissures areas.
     (3) Through numerical simulation, it reveals that the normal faults, thrust faults and fault translation faults different forms of ground fissures formed to bridge the stress variation rules and failure modes, which points out the reasons of the formation of crack is different from the bridge has different effect, thus caused different failure modes. Therefore, when the design should first make clear the type of ground fissures, such ability to take a more reasonable measures of prevention.
     (4) Through large physical simulation experiment and numerical analysis, this paper discusses the various building foundation forms in the ground fissures activities under the environment of response, which points out the pile raft foundation of pile soil played the reinforcement although role, but still be upward plate tilt, this experiment occurred to resist ground fissures activities role is not significant; through the tube raft foundation of stress-strain curve analysis obtained tube raft foundation in ground fissures in the environmental impact of stress pattern; based on the same basis and ground fissures in different locations that ground fissures intersection intersect place for basic failure process influence; according to the different foundation forms contrast that ground fissures influenced range should adopt integrity good foundation forms, avoid to take the integrity of poor foundation base, etc.
     (5) Through to the basic model failure process and destroy the phenomenon, the paper suggests that although the different basic showed different plastic deformation ability, but eventually none escape by luck all destroyed, further verified ground fissures of buildings damage inevitable sex.
     (6) Through the same base form different stiffness and strength of illuminates, relying exclusively on increase based the intensity and rigidity to resist ground fissures in the building's demolition without economic, the effect is not obvious.
     (7) In the investigation, based on the analysis of the houses, roads, Bridges, underground pipelines, etc. physics experiment and numerical pointed out various kinds of structures and buildings objects in the ground fissures activity environment destruction of mechanics model.
     (8) Based on building the failure mode of the cracks in the ground fissures, it puts forward the environmental impact of two kinds of warning methods. Therefore, according to the early warning signals we can do processing measures.
     (9) Through the ground fissures activities under the environment of various buildings failure mode, it puts forward the research building resistance ground fissures from two aspects:namely starts from the structure and measures of foundation for processing. It provides a good reference and guidance of constructing building in fissures areas.
引文
[1]李永善,等编著.西安地裂及渭河盆地活动断层研究[M].地震出版社.1992
    [2]张家明.西安地裂缝研究.西北大学出版社[M].1990
    [3]李永善.西安地裂缝[M].地震出版社.1986
    [4]彭建兵,等著.渭河盆地活动断裂与地质灾害[M].西北大学出版社.1992
    [5]王景明,等著.地裂缝及其灾害的理论与应用[M].西安:陕西科学技术出版社.2000
    [6]门玉明,彭建兵,李寻昌.山西清徐地裂缝灾害现状及类型分析[J].工程地质学报.2007,15(4):443-457
    [7]卢全中,彭建兵,范文等.陕西三原双槐树村地裂缝的发育特征[J].工程地质学报.2007,15(4):458-462
    [8]王景明,王春梅,刘科.地裂缝及其灾害研究的新进展[J].地球科学进展.2001,16(3):303-313
    [9]门玉明,石玉玲.西安地裂缝研究中的若干重要科学问题.地球科学与环境学报,2008(2):172-176
    [10]陈志新,袁志伟,彭建兵等.渭河盆地地裂缝发育特征[J].工程地质学报.2007,15(4):441-447
    [11]宋彦辉,彭建兵,卢全中等.山西地堑一类特殊的剪切—挤压形地裂缝[J].工程地质学报.2007,15(4):448-452
    [12]耿大玉,李忠生.中美两国的地裂缝灾害[J],地震学报,2000(4):433-441
    [13]易学发.西安市地面不均匀沉降及地裂缝成因的讨论[J].地震.1984,(6):50-54
    [14]王卫东,苏刚,易学发.西安地裂缝的数值模拟研究[J].灾害学.1998,13(3):33-37
    [15]赵其华,王兰生.构造重力扩晨机制的地质力学模拟研究.工程地质学报,1995(3):21-27
    [16]刘国昌.西安的地裂缝[A].刘国昌工程地质文集[C].陕西科学技术出版社,1992:259-271
    [17]晏同珍.西安地面沉降及地裂缝阶段预测[J].现代地质,1990,4(3):101-109
    [18]冯希杰.西安地裂缝活动成灾评估[J].西安地质学院学报.1990,12(4):44-48
    [19]陕西省地矿局,中国地质大学.西安地裂缝活动数学模型研究[R].1994.9
    [20]徐光黎.西安市地裂缝的时空预测预报[J].西北地震学报,1992,14(4):75-81
    [21]李新生.对西安地裂缝成因机制的几点新看法[J].西安地质学院学报,1994,16(2):28-35
    [22]李新生,闫文中,李同录等.西安地裂缝活动趋势分析[J].工程地质学报,2001,9(1):39-44
    [23]西安地裂缝场地勘查与工程设计规程[S].DBJ24-6-88,1988
    [24]西安地裂缝场地勘查与工程设计规程[S].DBJ61-6-2006,2006
    [25]索传郿,王德潜,刘祖植.西安地裂缝地面沉降与防治对策[J].第四纪研究,2005,25(1):23-28
    [26]Pratt W.E., Jonhson D.W., Local subsidence of the Goose Creek oil field[J]. Journal of Geology.34; 7, Pages:557-590; 1926.
    [27]姜振泉,武强,隋旺华.临汾地裂缝的成因及发育环境研究[M].中国矿业大学出版社.1999
    [28]Jachens, R.C., Holzer, T.L., Differential compaction mechanism for earth fissures near Casa Grande, Arizona. Geological Society of America Bulletin.93; 10, Pages:998-1012; 1982.
    [29]武强,陈佩佩.地裂缝灾害研究现状与展望[J].中国地质灾害与防治学报2003,14(1):22-27
    [30]Leonard, R.J., An earth fissure in southern Arizona[J], Journal of Geology.37; 8, Pages:765-774; 1929.
    [31]Carpenter, M.C., Earth-fissure movements associated with fluctuations in groundwater level, south central Arizona,1980-1984, U.S.[A]., International Geological Congress Abstracts Congres Geologique Internationale Resumes.28, Vol.1; Pages:1.243; 1989.
    [32]Feth, J.H., Structural reconnaissance of the Red Rock Quadrangle, Arizona, U.S.[R]. Geological Society of America Bulletin.60; 12, Part 2, Pages:1887; 1949.
    [33]Schumann, H.H., and Poland, J.F., Land subsidence, earth fissures, and ground-water withdrawal in south-central Arizona, U.S.A.[A]., International Association of Scientific Hydrology Association Internationale d'Hydrologie Scientifique International Union of Geodesy and Geophysics Union de Geodesie et de Geophysique Internationale Publication [Louvain].1; 88, Pages:295-302; 1971
    [34]Lofgren, B.E.LandsubsidenceduetotheaPPlicationofwater.GeologiealsoeietyofAmeriean, ReviewsinEngineeringGeologyZ,271-303.; 1969
    [35]Lofgren,B.E., Hydraulic stresses cause ground movement and fissures, Picacho, Arizona. Abstracts with Programs Geological Society of America.10; 3, Pages:113; 1978.
    [36]Lofgren,B.E., Earth cracks caused by horizontal stresses[J], Eos Transactions American Geophysical Union.65; 45, Pages:882-883; 1984.
    [37]Holzer, T.L二GroundfailureinareasofsubsideneeduetogroundwaterdeelineintheUnitedStates[A] Proe.ZndInt.Syn1P.OnLandSubsidenee[C], Anaheim, California, IAHS—AISHPubl.121:423-433. 1976.
    [38]Bouwer, H.LandsubsidenceanderackingduetogroundwaterdePletion.GroundWater,15(2): 358-364.1977
    [39]Holzer, T.L二Groundfailureinducedbygroundwaterwithdrawalfromuneonsolidatedsediments[J].Ge —ologiealSoeietyofAmerieaReviewsinEngineeringGeology,6:67-105.1984.
    [40]Holzer, T.L., Gabryseh, R.K.EffeetifWater—LevelReeoveriesonFaultCreeP, Houston, Texas[J]. GroundWater.25(4):392-397.1987.
    [41]Bell, J.W., Priee, J.G., and Miffiin, M.D., Subsidenee—indueed fissuring along Preexisting faults in Las Vegas Valley, Nevada:Proeeedings, AssoeiationofEngineeringGeologists,35thAnllualMeeting, LosAllgeles,66-75.1990.
    [42]Bell, J.W., Price, J.G., and Mifflin, M.D., Subsidence-induced fissuring along pre-existing faults in Las Vegas Valley, Nevada. Annual Meeting Association of Engineering Geologists.35; Pages:66-75; 1992.
    [43]E.Rojas Arzate J. Arroyo M., A method to predict the group fissuring and faulting caused by regional groundwater decline[j]. Engineering Geology.65; 4, Pages:245-260; 2002.
    [44]]Laike Marian Asfaw.Environmental hazard from fissures in the Main EthioPian Rift.Joumal of African Earth Scienees,1998,27(3-4):481-490
    [45]Ayalew L. Yamagishi H. Reik G., Ground cracks in Ethiopian Rift Valley; facts and uncertainties [J]. Engineering Geology.75; 3-4, Pages:309-324; 2004.
    [46]Williams F.M., Williams M.A.J. Aumento F.,Tensional fissures and crustal extension rates in the northern part of the Main Ethiopian Rift[J]. Journal of African Earth Sciences.38; 2, Pages:183-197; 2004.
    [47]谢广林.地裂缝[M],地震出版社,1988
    [48]王景明,马广达.河北平原地裂缝及其危害[J].水土保持学报,1990,4(4):61~68.
    [49]王景明,倪玉兰.河北平原地震带地裂缝与地震活动[J].唐山工程技术学院学报,1995,4,71~78.
    [50]赵文强,刘金峰,王景明.石家庄邢台地区地裂缝形成条件分析[J].河北地质学院学报,1995,184(2):172~176.
    [51]郝俊杰.河北省平原地区地裂缝的成因分析[J].河北地质矿产信息,2000,3,8~9.
    [52]李俊,刘金峰,莫多闻.河北平原地裂缝的分布规律及成因初探[J].水土保持研究,2003,100(3):62~65.
    [53]李世雄,李守定,郜洪强.河北平原地裂缝分布特征及成因机制研究[J].工程地质学报,2006,14(2):178-183.
    [54]刘科,王景明.河北平原构造特征、地裂缝分布及成因机制[J].南水北调与水利科技,2005,3(6):38~42.
    [55]孙强,杨继红,秦四清等.河北平原地裂缝产生的微观机理研究[J].工程地质学报,2008,16(02):201-205.
    [56]刘科.河北平原地区地震地裂缝活动的相关性分析[J].华北地震科学,2008,26(4):45-50.
    [57]陈永康,陈锁忠.苏锡常地区地裂缝分形的初步研究[J]江苏地质,1999,23(3):176-179
    [58]陈锁忠,陶芸,潘莹.苏锡常地区地下水超采引发的环境地质问题及其对策J.南京师大学报(自然科学版,2002,25(2):67-72
    [59]伍洲云,余勤,张云.苏锡常地区地裂缝形成过程[J].水文地质工程地质,2003.1:(67-72).
    [60]于军,王晓梅,苏小四,余勤.苏锡常地区地裂缝地质灾害形成机理分析[J].吉林大学学报(地球科学版),2004,34(2):237-241.
    [61]汪名鹏.苏锡常地区主要地质灾害及防治措施[J].中国地质灾害与防治学报.2009,20(1):60-60.
    [62]王光亚,施斌,王晓梅等.江阴南部地面沉降及地裂缝研究[J].水文地质工程地质,2009.2:117-122.
    [63]夏法,黄玉昆.广东的地质灾害与地质环境[J].自然灾害学报,1995,4(3):83-91.
    [64]徐起浩.雷州半岛地裂缝及其构造蠕变成因[J].华南地震,2008,28(1):54-66.
    [65]徐起浩.港仔地裂缝——雷州半岛西部一条纵贯晚全新世砂堤地裂缝的发现[J].第四纪研究,2008,28(4):712-720.
    [66]刘玉海,陈志新,倪万魁等.大同城市地质研究(M1.西安:西安地图出版社,1995.
    [67]姜振泉,王晓波,张京.山西断陷带地裂缝的成因及其发育条件[J].中国矿业大学学报,1997,26(3):74-78.
    [68]董东林,武强,姜振泉,等.析临汾地裂缝之地质成因[J].中国矿业大学学报,2002,31(1)34—38.
    [69]陈佩佩,武强,张守仁等.山西榆次地裂缝几何形态研究[J].西北地质,2003,36(1):100-104.
    [70]王宏军,郑秀清,刘瑾等.山西省祁县地裂缝的成因初探[J].太原理工大学学报,2005,36(1):82—84.
    [71]负慧星,张永波.山西省太谷县地裂缝的成因分析[J].山西农业大学学报(自然科学版),2008,28(3):362-365.
    [72]吴在宝等.西安地面沉降与地裂缝的关系[J].西安地质学院学报,1986,(4):118~128.
    [73]钟龙辉.论西安地裂缝的地质成因和发育规律[J].勘察科学技术,1986,(5):27-31.
    [74]王景明.渭河地震带地裂与地震活动的周期性[J].地震学报,1985,7(2):190~201.
    [75]丁国瑜.活动构造,21世纪初科学发展趋势[M].北京:科学出版社,1996,267~270.
    [76]王兰生,李天斌,赵其华.浅生时效构造与人类工程[M].北京:地质出版社,1994.
    [77]Peng J B, Sun P, Li X An. Ground fissure:the major geological and environmental problem in the development of Xi'an city, China. Environmental Science and Technology, American Science Press, 2006:469-474
    [78]董东林,武强,孙桂敏,等.临汾地裂缝灾害与地下水开采相关关系[J].中国矿业大学学报,1999,28(1):90—93
    [79]李新生.西安地裂缝环境灾害研究及防治[J].岩土工程界,1999,2:16-18.
    [80]彭建兵,陈立伟,黄强兵等.地裂缝破裂扩展的大型物理模拟试验研究[J].地球物理学报,2008,51(6):1826-1834.
    [81]汪丽.地表水与地裂缝活动关系的现场试验研究[D].长安大学硕士学位论文.2006.
    [82]王淼.城市地面荷载对地裂缝活动影响研究[D].长安大学硕士学位论文.2007.
    [83]石玉玲,门玉明等.西安城区地裂缝破裂扩展的数值模拟[J].水文地质工程地质,2008,6:56-60.
    [84]石玉玲,门玉明,彭建兵等.逆断层地裂缝在黄土中破裂扩展的数值模拟[J].煤田地质与勘探,2009,37(5):47-50.
    [85]刘传正.环境工程地质导论[M].北京:地质出版社,1995
    [86]卢积堂.河南省地裂缝,减灾与发展[M}.北京:地震出版社,1995
    [87]卞菊梅,冯希杰,张芝霞.西安地裂缝灾害现状及防治[J].陕西环境,1999,6(2):6-8.
    [88]燕建龙,文君,盛云鸥等.浅谈西安地裂缝对建筑物的危害及防治对策[J].岩土工程界,2006,9(8):77-80.
    [89]陈志新.地裂缝成灾机理及防御对策[J].西安工程学院学报,2002,24(2):17—20,25.
    [90]谈恒文.山东五莲池地裂缝灾害及防治对策[J].山东地质,2001,17(2):53—5
    [91]高中和,竺清良,季幼庭等.江苏省地裂缝的分布特征、成因类型及防治对策研究[J].地震学刊,1997,(1):1—10.
    [92]周洋洋.西安地裂缝影响区混凝土框架性能分析[D].长安大学硕士论文.2009.
    [93]吴珍汉,叶培盛,吴中海等.青藏铁路沿线断裂活动的灾害效应[J].现代地质,2003,17(1):1-7.
    [94]吴珍汉,胡道功,吴中海等.青藏铁路沿线构造裂缝的地质特征及工程危害[J].水文地质工程地质,2003,6:15-21.
    [95]吴珍汉,吴中海,胡道功等.青藏高原北部风火山活动断裂系及工程危害性研究[J].地质科技情报,2003,22(1):1-6.
    [96]吴珍汉,胡道功,吴中海等.青藏铁路沿线的地裂缝及工程影响[J].现代地质,2005,19(2):165-175.
    [97]王启耀,蒋臻蔚,彭建兵.全新活动断裂和地裂缝对公路工程的影响及对策[J].公路,2006,(2)104 —108.
    [98]张宗棠.路基通过地裂缝工程措施研究[J].西铁科技,2006,S:111-113.
    [99]周保,彭建兵,张骏等.青海省日月山断裂对公路工程的致灾机理研究[J].地球科学与环境学报.2010,32(1):106-111.
    [100]毛应生,柳丽英,王德信等.西安市地裂对市政构筑物的破坏机理与对策的探讨[J].城市道桥与防洪,2002,(2):1-7.
    [101]王舜.地裂缝变形对路桥结构的作用及其处理措施研究[J].四川水力发电,2008,27S(3):42-45.
    [102]石玉玲,门玉明等.西安市地裂缝对城市立交的破坏机理及防治措施[J].地球科学与环境学报,2009,31(1):89-93.
    [103]石玉玲,门玉明等.西安市地裂缝对长安路立交桥致灾机理调查研究[J].中国地质灾害与防治学报,2009,20(2):65-69.
    [104]N·M·Newmark and W.J·Hail, pipeline "design, to resist large fault displacement[A]·Proc.U·s.nat of Earthquake Eng.[C].1975.
    [105]Kennedy, P.R., Chou, A.W.&Willwamson R.A.1997.Fault Movement effects on Buried Oil Pipeline[J]Journal of theTransportation Engineering Division ASCE617-633.
    [106]Nelson I. Weidlinger,P, Dynamic seismic analysis of long segmented life.Trans.ASMEJ.Pressure Vessel Techool.101,1979,10-20
    [107]T.D.O'RoUrke, M.JO Rourke, Pipeline response to Permanent ground deformation a bench mark case,lifeline earthquake Engineering proceedings of the Fourth U S.Conference,San Francisco,California,1995,8:288-295.
    [108]B.J.Lee and T.Ariman,Buckling of buried pipeline crossing a seismieally active fault,Seimic Performance of Pipelines and storage tanks, PVP-vol.98-4, ASME,1985.
    [109]Ai-Wen Liu,Shiro Takada and Yu-Xian Hu,A shell model with an equivalent boundary for Buried pipelines under the fauit movement,13th world Conference on Earthquake Engineering, Vancouver, B.C., Canada, August 1-6,2004, Paper No.613.
    [110]侯忠良.地下管线抗震[M].北京,学术书刊出版社,1990.
    [111]陶勇寅,柳广乐.管道在地震作用下的位移内力分析[J],油气储运,1994,13(5).
    [112]张素灵等,地震断层作用对地下输油(气)管道破坏的分析[J],地震地质,2001,23(3):432-438.
    [113]戚蓝,马斌等,断层错位影响下输水管道结构分析[J].水利水电技术,2001,32(12):47-48.
    [114]刘嘉斌,马跟良,苏岗等.燃气管道穿越地裂缝的处理[J].煤气与热力,2002,22(3):224-227.
    [115]马广超.西安地裂缝对地下排水管道的破坏及防治[J].灾害学,2005,20(3):108-111.
    [116]汪颖.燃气管道穿越地裂缝处理方法探讨[J].上海煤气,2009,1:16-18.
    [117]邹蓉.地裂缝对地下管道的影响研究[D].长安大学硕士学位论文,2009.
    [118]黄强兵,彭建兵,范文等.西安地铁二号线沿线地裂缝未来位错量估算及工程分级[J].工程地质学报,2007,15(4):469-474.
    [119]彭建兵,陈立伟,黄强兵,等.地裂缝破裂扩展的大型物理模拟试验研究[J].地球物理学报,2008,51(6):1826-1834.
    [120]范文,邓龙胜,彭建兵等.地铁隧道穿越地裂缝带的物理模型试验研究[J].岩石力学与工程学报,2008,27(9):1917-1923.
    [121]黄强兵,彭建兵,门玉明,等.地裂缝对地铁明挖整体式衬砌隧道影响机制的模型试验研究[J].岩石力学与工程学报,2008,27(11):2324-2331.
    [122]黄强兵,彭建兵,阎金凯等.地裂缝活动对土体应力与变形影响的试验研究[J].岩土力学,2009,30(4):903-908.
    [123]黄强兵.地裂缝对地铁隧道的影响机制及病害控制研究[D].长安大学博士学位论文,2009.
    [124]黄强兵,彭建兵,石玉玲等.地裂缝活动对地铁区间隧道地层应力与位移影响的试验研究[J].岩土工程学报,2009,31(10):1525-1532.
    [125]黄强兵、彭建兵,樊红卫等.西安地裂缝对地铁隧道的危害及防治措施研究[J].岩土工程学报,2009,31(5):781-788.
    [126]黄强兵、彭建兵等.地铁隧道斜交穿越地裂缝带的纵向设防长度[J].铁道学报,2010,32(1):73-78.
    [127]邓亚虹,彭建兵,范文等.地裂缝活动环境下盾构隧道双层衬砌性状分析[J].岩石力学与工程学报,2008,27(增2):3561-3867.
    [128]胡志平,彭建兵,黄强兵等.地铁盾构隧道30°斜穿地裂缝的物理模拟试验[J].长安大学学报(自然科学版),2009,29(4):63-68.
    [129]胡志平,彭建兵,王启耀.盾构隧道60°斜穿地裂缝的变形破坏机制试验研究[J].岩石力学与工程学报,2010,19(1):176-183.
    [130]彭建兵,胡志平,门玉明等.马蹄形隧道40°斜穿地裂缝的变形破坏机制试验研究[J].岩石力学与工程学报,2009,18(11):2258-2265.
    [131]胡志平,王启耀,黄强兵等.地裂缝活动下分段式马蹄形隧道特殊变形缝的三维变形特征试验研究[J].岩石力学与工程学报,2009,28(12):2475-2481.
    [132]杨育僧,杨俊.西安地铁二号线区间隧道通过地裂缝带方案探讨[J].都市快轨交通,2006, 19(3):67-69.
    [133]樊红卫.西安地铁一号线通过地裂缝对策研究[C].中国交通运输协会城市轨道交通专业委员会首届中青年专家论文集,北京:兵器工业出版社,2002.
    [134]倪士浩.西安地铁2号线穿越地裂缝段的限界设计[J].城市轨道交通研究.2008,4:63-67.
    [135]严涛,王玲,余盼晴等.西安地裂缝与地铁设计[J].地铁勘察设计.2008(增):73-75.
    [136]王俊.西安地铁区间结构小角度穿越地裂缝有限元计算与分析[J].铁道建筑技术,2009,9:4549.
    [137]李团社.西安地铁穿越地裂缝带线路与轨道工程方案研究[J].铁道工程学报.2009,135(12):81-85.
    [138]雷永生.西安地铁2号线通过地裂缝的结构及防水设计[J].岩土力学,2009,30(增2):277-282.
    [139]李德寅,王邦媚,林亚超等.结构模型实验[M].北京:科学出版社,1996.
    [140]崔广心.相似理论与模型试验[M].徐州:中国矿业大学出版社,1990.
    [141]陈兴华等编.脆性材料结构模型试验[M].北京:水利电力出版社,1984.
    [142]袁文忠.相似理论与静力学模型[M].成都:西南交通大学出版社,1998.
    [143]杨俊杰.相似理论与结构模型试验[M].武汉:武汉理工大学出版社,2005.
    [144]章关永.桥梁结构试验[M].北京.人民交通出版社,2003.
    [145]陈立伟.地裂缝扩展机理研究[D].长安大学博士论文,2007.
    [146]周明华,王晓,毕佳等.土木工程结构试验与检测[M].南京:东南大学出版社,2002.
    [147]王娴明.建筑结构试验[M].北京:清华大学出版社,1988.
    [148][日]梅材魁等著,林亚超等译.结构试验和结构设计[M].北京:人民交通出版社,1980.
    [149]姚谦峰,陈平.土木工程结构试验[M].北京:中国建筑工业出版社,2001.
    [150]吴刚,安琳,吕志涛.碳纤维布用于钢筋混凝土梁抗弯加固的实验研究[J].建筑结构.2000,30(7):3-7.
    [151]Singh, R.,Sheorey, P.R.,Singh, D.P.Stability of the parting between coal pillar workings in level contiguous seams[J]. International Journal of Rock Mechanics and Mining Sciences 1997.39; 1, Pages:9-39; 2002.
    [152]油新华,李晓.国外离心模型试验技术在边坡工程中的应用现状与展望[J].工程地质学报,2000,8(4):442-445.
    [153]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [154]Itasca Consulting Group,inc.FLAC-2D(Version 4.0) User's manual.
    [155]Itasca Consulting Group,inc.FLAC-2D(Version2.1) User's manual.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700