深井充填管道磨损机理及可靠性评价体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国浅部资源的日益消耗,矿产资源趋于向深部开发,在这种趋势下将使胶结充填采矿法在深井开采的矿山中所占有的比例明显增加。然而,胶结充填采矿法用于深井开采不同于浅井开采,其在充填体系方面必须要重点解决的技术问题是:固液两相流管道输送特性、管道磨损机理和充填系统可靠性三个方面。结合国内外深井矿山实践经验,深井胶结充填采矿法多采用充填料浆管道自流输送技术,且在充填系统方面遇到的主要技术难题之一就是充填管道磨损问题,特别是垂直钻孔内的管道是整个充填系统的咽喉要道,一经破坏,轻则堵塞钻孔,重则使整条钻孔报废,严重影响矿山的正常生产,并且会发生严重的安全事故。目前,国内外对石油、天然气等输送管道磨损问题研究得较多,但其破坏形式与充填管道的磨损有本质的区别,前者主要是腐蚀破坏,而后者主要是极为复杂的冲击磨损破坏。国内外相关学者对深井充填钻孔内管道磨损问题还仅处于经验摸索阶段,严重缺乏理论基础。因此,对深井开采管道磨损机理的研究应是深井充填系统建设和设计亟需解决的重大问题。
     本文通过分析目前常用的充填材料对深井开采的适用性及充填料浆配比选择确定了深井开采可选择的充填材料类型,并通过对深井充填管道输送性能的研究,提出了几种适合深井开采的充填系统输送工艺,同时在研究两相流自流输送性能后确定了自流输送系统是深井开采的最佳选择,针对管道自流输送状态下充填料浆的运动形式分析确定了深井充填管道磨损的主要研究方向,即充填钻孔内竖直管道的磨损机理研究。
     针对深井管道自流输送的特点,结合我国率先进行深井开采的金川矿区实际充填工艺情况,通过现场调研的方式了解了充填钻孔内竖直管道磨损的基本形式和位置,利用动量与能量的原理解释了管道磨损的机理,并通过动量与能量的原理对管径、粒级组成、体积浓度和充填倍线等影响因素与管道磨损程度进行了定量分析。
     基于管道磨损的机理,阐述总结并提出了深井降低管道磨损的具体措施,为将来我国大规模深井开采提供了可靠的技术研究方向。
     利用事故树分析原则和失效概率原则对深井充填管道系统的可靠性进行了综合评价体系研究。研究中发现充填系统出现事故的主要因素包括:管道磨损、突发故障的损坏和制浆的质量差;另外不合理负坡段、充填倍线和操作管理人员的疏忽,也是导致系统发生故障的重要原因。
     通常情况,深井充填管道系统可靠性随着事故因素的水平等级和可接受的失效概率的提高而提高。求得的各等级权重矩阵中对应的隶属函数值,就是该系统的可接受失效概率,并通过矿山长期生产积累的事故统计参数计算出事故发生的概率与可接受失效概率对比确定深井充填管道系统的可靠性。
     本文的内容基本概括了深井充填中可能遇到的主要技术问题,并提出了解决这些问题的技术途径和有待进一步深入研究的课题。
With China's growing consumption of shallow resources, mineral resources tend to develop deep. In this trend, the rate of cemented fill method in deep mining was significantly increased.However, the cement fill method for deep mining is different from the shallow mining, the technical problem of filling system, which is needed to focus on resolving is:the solid-liquid two-phase flow characteristics of pipeline transportation, pipelines and filling system reliability wear mechanism. As domestic and international mining experience, deep fill mining method most to used gravity conveyor technology, and in the filling system encountered major technical problem is wear and tear on pipes to affect on production and safety,especially within the pipe in vertical drills. At present, the study of pipeline's wear is more in oil and natural gas, but its damage in the form is essential different, the damage of former is mainly corrosion damage, while the latter is a highly complex major impact wear damage.Domestic and foreign scholars studied on this kind of wear problem had only in the experience exploratory stage, and serious lack of theoretical basis.Therefore, the research on wear mechanism of deep mining pipeline should be the major problems needed to solve in deep filling system construction and design.
     This paper analyzes the applicability of filling deep for the most commonly used filling material and the ratio of these material. It could confirm the type of filling material to select in deep mining. And from researching on pipe's transport performance, it could made several filling systems. At the same time, it confimed the best choice for deep mining is gravity delivery system by study of transport properties of two-phase. At last it confimed the main research on pipeline filling in deep mine was the wear mechanism of the vertical pipe.
     With the characteristics of gravity flow transportation and combine the actual filling process conditions in Jinchuan mine it can be known the basic form and position of the vertical pipes by the field research. And using the principles of momentum and energy to explain the mechanism of wear of the pipeline. At the same time, it was quantitative analysisd the Impact degree with diameter, grain size composition, volume density and filling factor times.
     Based on the mechanism of wear and tear in pipes, made a deep set summarized and specific measures to reduce pipe wear and tear for the future of China's large-scale deep mining technology and provided a reliable direction.of research.
     Using fault tree analysis principles and the principles of probability of failure to study the reliability of deep mine filled pipeline system and conducted a comprehensive evaluation system. Study found that sudden failure of pipeline wear and damage, leading to filling the pulp quality was one of the major factor in system failure, and the system's times the filling line, unreasonable negative slope segment and operations management oversight, were also the important reason to lead to the system failling.
     In general, the higher the level of accident factors, the higher the system reliability. The system could calculate the acceptable failure probability after the transformation by obtained the weight of each grade of membership function matrix corresponding value. And through calculated the probability of accident by the mine accidents statistical parameters which was accumuled of long-term production.At last it could determine the reliability of deep filling piping system By comparing.
     This article summarized the major technical problems in deep filling, and proposed the technical approach to solve these problems and needs further study aspects.
引文
[1]古德生.地下金属矿采矿科学技术的发展趋势[J].黄金,2004,25(1):18-22.
    [2]王新民,肖卫国,张钦礼.深井矿山充填理论与技术[M].长沙:中南大学出版社,2005.
    [3]霍米亚科夫B H.国外矿山充填经验[M].长沙:长沙矿山研究院泽印,1992,5.
    [4]刘同有.充填采矿技术与应用[M].北京:冶金工业出版社,2001.
    [5]李金武,盛勇,李卫.油田注水管道腐蚀磨损交互作用的试验研究[J].石油钻探技术,2005,33(6):62-65.
    [6]马忠云,陈慧雁.气力输灰系统中磨损件的磨损失效机理分析及延寿技术研究[J].电力建设,2008,29(2):80-82.
    [7]古德生,李夕兵,等.现代金属矿床开采科学技术[M].北京:冶金工业出版社,2006.
    [8]Singer D A, Mosier D L. A review of regional mineral resource assessment methods[J]. Economic Geology,1981, v.76, p.1006-1015.
    [9]刘同有,周成浦.我国充填采矿技术新进展[J].中国矿业,1995,4(5):25~29.
    [10]王新民,卢央泽,张钦礼.煤矸石似膏体胶结充填采场数值模拟优化研究[J].地下空间与工程学报,2008,4(2):346-350.
    [11]ZHANG Qin-li, WANG Xin-min, Performance study of cemented coal gangue backfill [J] Journal of Central South University of Technology,2007,14(2):216-219.
    [12]Steward, N.R. Spearing, A.J.S. Wear of backfill pipelines in South Arican gold mines [C]National Conference Publication-Institution of Engineers. Australia:IE Aust, 1992:115-121.
    [13]徐东升.深井充填管道输送系统减压技术探讨[J].矿业快报,2007,2:25-28.
    [14]冯巨恩.金属矿深井充填系统的安全评价与失效控制方法研究[D].长沙:中南大学,2005.
    [15]周成浦.流态混凝土与全尾砂膏体充填料[J].有色矿山,1996,6:1~3.
    [16]D CAUPERS, BYRNE M. Flow loop testing of different Paste Mixtures at Nerves Corvo Mine [C]. Proceeding of the Sixth International Symposium on Mining with Backfill Brisbane,Australia,14-16, April 1998,87-97.
    [17]王新民,张钦礼.煤矸石充填特性与似膏体制备输送综合技术研究[R].长沙:中南大学,2005.
    [18]WANG X M, LI J X. Rheological properties of tailing paste slurry [J]. Journal of central South University of Technology,2004. Vol.11(1).pp75-80.
    [19]BarenblattG E.On montion of sediment particals in a turbulem flow[J]. App.Math.Mech.1953,17(3):243-252.
    [20]Asakura K,Tozawa Y Nakaja I,et al.Numerical calculateon of velocity and concentration distributions and pressure loss of a solid-liquid flow[C].Proc 1st ASME-JSME Fluid-Solid Flow,FED.1991:45-51.
    [21]Monji H,Oesrterle B,Matsui G Eulerian-lagrangian simulation of nearly equal density solid-liquid two-phase flow in a horizontal pipe[C].The 3rd Intemation conference on Material Handling & International Conference On Freight Pipeline, Shanghai, 1999:146-150.
    [22]秦洪波,白晓宁,胡寿根等.固液两相流流动的数值模拟方法及其在管道输送中的应用[A].第七届全国工业与环境流体力学会议论文集[C].大连,2001:49-53.
    [23]孟令杰.增压流化床煤水混合物输送特性研究[D].东南大学,1996.
    [24]胡志伟,李勤凌,苗永淼.三维强弯管内湍流场的数值分析[J].西安交通大学学报,1998,432(1):49-53
    [25]徐自力,屠珊,杜秀杰.弯曲圆管中矿浆湍流场的三维数值模拟及分析[J].西安交通大学学报.2000,34(5):46-49
    [26]刘天宝,刘正英.扩散管内液固两相流的研究[A].中国力学学会第二届全国工业流体力学学术会议论文集[C].镇江,1991:170-177.
    [27]魏家进,胡春波,姜培正.密相固液两相流湍流K-ε-T模型及其在管道两相流中的应用[J].应用数学和力学,2000,21(5):468-476.
    [28]Newitt D M, Richardson J F, Abbott M, et al. Hydraulic conveying of solids inhorizontalpipesTrans[J]. lust. Chem. Engrs.1955,33(2):93-113.
    [29]Turian R M, YuanT F. Flowofslurries in pipelines[J]. AIChE Journal,1977,23(3)232-243.
    [30]Wasp E J, Keuny J P, Gandhi B L. Solid-liqid flow slurry pipeline transportation. Clausal:Trans TechPublications,1977.
    [31]费祥俊.浆体与粒状物料输送水力学[M].北京:清华大学出版社,1994.
    [32]Thomas D G Transport characteristics of suspendsions part Ⅵ, minimumtransport velocity for large particle size suspensions in round horizontal pipes[J]. AIChE Journal, 1962,8(3):373-378.
    [33]Durand R Hydmlie transport of coal and solid materials in pipes[M]. LondonColloq. ofNatl. Coal Board,1952:39-52.
    [34]Graf W H, Robinson M, Yuccl O. The critical deposit velocity for solid-liquid mixture. [M] Proc. Hydrommsport.1970.
    [35]刘可任.充填理论基础[M].北京,冶金工业出版社,1982.
    [36]Wasp E J. Cross-country coal pipeline hydraulics[J]. Pipeline News,1963,35(6):20-28.
    [37]WaspE J. Hetero-homopeneous solid-liquid flow in the turbulent regime[C]. ASCE Int. Symposium on solid-liquid flow. Univ of Pennsylvania,1968,8.
    [38]孙勇.充填钻孔使用寿命的影响因素及其延长措施[J].采矿技术,2006,6(3):207-208.
    [39]肖卫国.充填管道磨损若干问题的探讨[J].金川科技,2004(2):69-74.
    [40]孙业志,吴爱祥,黎剑华.高浓度浆体管道输送的振动减阻[J].矿冶工程,2001,21(4):4-8.
    [41]王佩勋.矿山充填管道磨损经验分析[J].有色矿山,1998(1):14-17.
    [42]陆延孝,郑鹏洲.可靠性分析与设计[M].北京:国防工业出版社,1995.
    [43]王明凯.基于功能角色模型的自动故障模式影响分析及其实现[D].长沙:国防科学技术大学,2002.
    [44]Palumbo D. Automating Failure Modes and Effects Analysis[A]. Annual Reliability and Maintainability Symposium[C],1994:304-309.
    [45]Kamhieh C H, Cutts D E, Purves R B. Failure Modes and Effects Analysis Automation[A]. Conference on Artificial Intelligence for Space Alications. 1988:169-176.
    [46]T.A. Montgomery,D.R. Pugh, S.T. Leedham. S.R. Twitcher. FMEA Automation for the Complete Design Process[A]. Reliability and Maintainability Symposium, Annual Proceedings[C]. International Symposium onProduct Quality and Integrity,1996:30-36.
    [47]D.J. Russomanno, R.D. Bonnell, J.B. Bowles. A Blackboard Model of an Expert System for Failure Mode and Effects Analysis [A]. Annual Reliability and Maintainability Symposium,1992:483-490.
    [48]章国栋,陆延孝,屠庆慈等.系统可靠性与维修性的分析与设计[M].北京:航空航天大学出版社,1990.
    [49]Houg S Y A Sensitivity study of PWR primary cooling piping leak failure using pmbabilistic fracRlre mechanics[J]. Advances in Probabilistie.1984,133-152.
    [50]聂国华等.用概率断裂力学方法预测管状接头的疲劳寿命[J].应用数学和力学,1994,15(11):963-969.
    [51]周剑秋.含缺陷压力管线可靠性评定工程方法[D].南京:南京化工大学,1998.
    [521包涵龄,向衍荪,吴宗之等.易燃易爆有毒重大危险源辩识技术的研究[M].北京:(原)劳动部科技办公室,1995.
    [53]Jones D G Dawson S J. Reliability ofcorroded pipeline[A]. ASME OMAE 13th Int. Conf. Off. Mech. Arctic Engr. Houston.1994,5:299-306.
    [54]Orisamolu I&Liu Q, Chemuka M w. Prohabilistic residual strength assessment ofcorroded pipelines[A].5th Int.Soc.Off.&Polar Eng.Conf.Hague,Neth,1995,4:21-26.
    [55]左尚志,钟群鹏,武淮生等.含平面缺陷的压力管道在静载下的可靠性指标[J].机械强度,2000,22(1):57-59.
    [56]Kaufmann A. Introduction to the fuzzy subsets[M].NewYork:Academic Press,1975.
    [57]Blocldey D I. The nature of slructural design and safety[M]. NewYork, John Wiley&Sons.1980.
    [58]Brown C B. The merging of fuzzy and crisp information[J]. Journal of the Engineering Mechanics Division, ASCE,1980,106(Ⅰ):123-133.
    [59]Ayyub B M. Lal K L. Stmctural reliability assessment with ambiguity and Vagueness in failure[J] Naval Engineers Journal,1992,104(3):21-35.
    [60]Dhingra K A. Optimal apportionment of reliability and redundancy in series systems under multiple objectives[J]. IEEE Transactions on Reliability,1992,41(4):576-682.
    [61]Viertl R On statistical inference for non-precise data[J].Environmetrics, 1997,(8):541-568.
    [62]马佩周.新型充填材料及工艺研究[M].金川有色金属公司,1994.
    [63]李坚利.水泥工艺学[M].武汉理工大学出版社,武汉,1999.
    [64]马悦红.粉煤灰特性及综合利用[J].西北电力技术,2004,(03):45-48.
    [65]乔江.粉煤灰在道路工程中的应用和推广[J].同煤科技,1997,(04):19-20.
    [66]霍继文.粉煤灰的特性分析及其利用[J].内蒙古电力技术,1999,(04):30-36.
    [67]张林,贺成.攀钢发电厂粉煤灰的利用[J].工业安全与环保,2001,(07):41-43.
    [68]孔文俊.粉煤灰资源化途径探讨[J].大自然探索,1995,(01):47-48.
    [69]陈淼松.粉煤灰的综合利用[J].辽宁化工,1995,(04):22-26.
    [70]肖军,张君杰.关于粉煤灰的综合利用[J].山西建材,1996,(03):68-70.
    [71]王安萍.粉煤灰论文简讯[J].粉煤灰,1999,(06):58-59.
    [72]赵丽华,赵中一.粉煤灰资源化的现状[J].环境污染治理技术与设备,2002,(04):76-79.
    [73]赛汉胡尔,姚婕.粉煤灰的处理与综合利用[J].内蒙古环境保护,2004,(04):21-23.
    [74]肖卫国.粉煤灰在充填料浆中的作用机理[A].第三届全国青年采矿学术会议论文集,1992.
    [75]肖卫国.脱泥尾砂胶结充填室内试验[R].金川有色金属公司,1993.
    [76]M. K. Matthews充填于环境控制的关系[R].南非矿业协会研究中心,中国矿业协会采矿专业委员会,中国有色金属学会采矿学术委员会,金川有色金属公司,长沙矿山研究院,1998.
    [77]肖卫国.金川公司二矿区膏体泵送充填料浆性能的监测[R].金川有色金属公司,1993.
    [78]陈长杰,蔡嗣经.金川二矿膏体泵送充填系统可靠性研究[J].金属矿山,2002,(1):8-9.
    [79]黄恒,刘晓明,倪彬.深井开采充填体抗压强度试验研究[J].采矿技术,2010,10(3):13-14.
    [80]邓代强,姚中亮,唐绍辉等.粒度组成对胶结充填体力学性能的影响[J].矿业研究与开发,2010,30(4):1-3.
    [81]惠林,贺茂坤.浅谈充填体质量与充填工艺的关系[J].中国矿山工程,2010,5(39):17-19.
    [82]冉竟强.关于对充填体作用的研究[J].黄金,1985,(01):11-15.
    [83]王志方.充填体表面的破坏与改善途径[J].化工矿物与加工,1986,(03):34-36.
    [84]邓代强,姚中亮,唐绍辉.单轴拉伸条件下充填体的力学性能研究[J].地下空间与工程学报,2007,(01):78-80.
    [85]曹庆林,程成.充填体在岩爆控制中的作用[J].采矿技术,1995,(28):44-45.
    [86]王志方.充填体的强度[J].化工矿物与加工,1996,(03):33-37.
    [87]姚中亮,乔雨.南非深部硬岩金矿胶结充填性能研究[J].采矿技术,1996,(15):22-25.
    [88]王正辉.充填体的质量与控制[J].采矿技术,2001,(03):28-30.
    [89]王劫.尾砂胶结充填体力学作用机理与应用[J].中国有色金属学报,1998,(02):78-82.
    [90]杨宝贵,孙恒虎,庄百宏.高水固结充填体的自立[J].有色金属,2000,(02):10-14.
    [91]P.G. Vanderwalt.金矿集团的井筒充填料浆输送立管[J].南非约翰内斯堡南非金矿有限公司,中国矿业协会采矿专业委员会,中国有色金属学会采矿学术委员会,金川有色金属公司,长沙矿山研究院,1998.
    [92]I.C.R. Gilchrist充填料管道输送设计中流体参数的预测[J].南非矿业协会研究中心,中国矿业协会采矿专业委员会,中国有色金属学会采矿学术委员会,金川有色金属公司,长沙矿山研究院,1998.
    [93]罗伯特·库克.深井水力充填系统[J].世界采矿快报,1999,(01):101-115.
    [94]J Lange.(?)低含水量充填料的制备[J].德国普鲁萨格金属股份公司格伦德矿,中国矿业协会采矿专业委员会,中国有色金属学会采矿学术委员会,金川有色金属公司,长沙矿山研究院,1998.
    [95]R currie南非一金矿的充填系统设计与充填作业[J].南非vaal Reefs勘探采矿公司,中国矿业协会采矿专业委员会,中国有色金属学会采矿学术委员会,金川有色金属公司,长沙矿山研究院,1998.
    [96]C.G. Verkerk自流输送料浆充填系统设计步骤[J].阿扎尼亚首府比勒陀利亚大学现代工程有限公司实验室,中国矿业协会采矿专业委员会,中国有色197中南大学硕士学位论文参考文献金属学会采矿学术委员会,金川有色金属公司,长沙矿山研究院,2000.
    [97]C Esmit, E Legg分级尾砂在水平分层充填采矿法中的应用[J].德兰士瓦东部联合矿山股份有限公司采矿部,中国矿业协会采矿专业委员会,中国有色金属学会采矿学术委员会,金川有色金属公司,长沙矿山研究院,1998.
    [98]A.J. Wilkens, J Wolvaardt.脱水尾砂充填系统在O·F-S金矿深部开采中的应用 [J].P·O·BOX2, Welkon 9460,中国矿业协会采矿专业委员会,中国有色金属学会采矿学术委员会,金川有色金属公司,长沙矿山研究院,1998.
    [99]王少周.混凝土外加剂的原理及应用[M].中国建筑工业出版社,1989.
    [100]刘同有.充填采矿技术与应用[M].冶金工业出版社,1998.
    [101]刘同有.中国镍钴矿山现代化开采技术[M].冶金工业出版社,1996.
    [102]肖卫国等.金川公司机械化采矿盘曲生产现状的调查[R].金川有色金属公司,1999.
    [103]Steward N R, Spearing A J S. Effect of particle sharpness of the wear of backfill pipelines [J].J. S. Afr. Inst. Min. Metall,1993,93(5):129-134.
    [104]LI Lei, USUI Hiromoto, SUZUKI Hiroshi. Study of pipeline transportation of dense fly ash-water slurry[J]. Coal Preparation,2002,22, (2):65-80.
    [105]郑晶晶,张钦礼,王新民等.基于BP神经网络的充填钻孔使用寿命预测[J].湘潭师范学院学报(自然科学版),2008,30(4):40-44.
    [106]金川集团有限公司.龙首矿充填系统调查与评估报告[R]金川,金川公司,2006,11.
    [107]中南大学.金川公司充填钻孔调查与分析报告[R].长沙,中南大学,2007,03.
    [108]王新民,潘长甲,徐东升.变径满管流系统垂直管道最大安全高度的确定[J].矿业研究与开发,2006,26(B11):71-74.
    [109]胡萌.高浓度充填工艺技术在安庆铜矿的试验与应用[J].矿业快报,2006(4):28-30.
    [110]王洪江,吴爱祥,姚振巩等.深井充填低压满管流输送技术研究[J].矿业研究与开发,2004(z1):229-233.
    [111]COOKE R. Modeling of the flow of highly concentrated backfill slurries in MINE FILL'93[J]. Johannesburg SAIMM,1993:223-228.
    [112]PATERSON A J C, COOKE R. Design of hydraulic backfill distribution system -lesson from case Studies Proceeding of the Sixth International Symposium on Mining with Backfdl Brisbane[A].minefill' 1998[C].Australia,1998.
    [113]钱学森,许国志,王寿云.组织管理的技术系统工程[M].上海:上海科技教育出版社,2001.
    [114]汪应洛.系统工程理论、方法与应用[M].北京:高等教育出版社,2002.
    [115]苗东升.系统科学精要[M].北京:中国人民大学出版社,2000.
    [116]Nelson Wayne. Accelerated testing, statistical models, test plan, and date analysis[M]. New York,John Wiley&Sons,1990.
    [117]FreudenthalA. Safety ofstructures[J]. Tram,ASCE,1974,100(7):125-140.
    [118]Ellingwood B, Oalambos T V Probability-based criteria for structural design[J]. Structural safety,1982,1(1):15-26.
    [119]Wong F S. Uncertainties in dynamic soil-structure interaction[J]. J.Engng. Mech. Div,ASCE,1984,110(9):308-324.
    [120]Busher C G, Bourgoud V A. Fastand efficient response surface approach for structural reliability problems[J]. Strutural Safety,1990,13(7):57-66.
    [121]RajashekharM&EllingwoodBR. Anewlookatthe response surfaceapproach for reliability analysis[J]. Structural Safety,1993,13(12):205-220.
    [122]赵廷弟.通用故障诊断专家系统开发工具[J].北京航空航天大学学报,1998,21(3):358-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700