X65管线厚板控冷过程的相变效应研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今,在石油、天然气的输送中,管道运输因具有经济性、安全性、连续性等明显优势而获得广泛应用。由于高强韧性的X65管线厚板是现今乃至今后较长一段时间内长输管道建设的主体材料,因此,其生产工艺已成为相关领域内最具活力的一个研究热点。控制冷却是X65管线厚板常见的热处理工艺,目前普遍采用的控制冷却工艺常为三段式控冷,即管线厚板要先后经历“无水空冷”、“层流水的连续冷却”和“出水空冷”三个阶段方完成控冷过程。由于X65管线厚板控冷时因上下表面的不对称控冷会在板厚方向产生不对称分布的高值残余应力,进而形成严重的横向翘曲,受到板宽较窄的限制,残余应力和横向翘曲难以用矫直方式彻底消除,这不仅严重影响了该产品的板型质量,同时由于长输管道常处于低温、高压、易腐蚀等极端恶劣环境,较高的残余应力还为X65管线在后续使用时诱发应力腐蚀开裂埋下安全隐患。因此,研究并有效控制X65管线厚板控冷时产生的残余应力,对提高该产品的板型质量、延长使用寿命,将具有十分重要的意义。
     鉴于X65管线厚板控冷过程的高温、连续等特性,将生产中断进行现场实验研究,成本过高;以及受到板厚的限制,X射线衍射、中子散射等传统检测手段又无法对板内的温度、应力和应变进行连续而整体的分析;且目前也没有相对成熟的理论可对控冷过程进行直接计算;因此,本研究采用基于有限元的数值模拟方法对X65管线厚板的控冷过程进行研究。
     尽管此前的材料科学工作者对同类问题进行了大量有益的尝试,但他们常将控冷过程中由相变引起的相变潜热、相变膨胀、TRIP效应(TRIP-Transformation Induced Plasticity)等相变效应予以一定程度的简化甚至忽略。因此,他们研究时使用的模型并不完全适用于X65管线厚板控冷过程。本研究首先确定了X65管线厚板控冷时由奥氏体A-针状铁素体F相变诱发的相变潜热、相变膨胀和TRIP效应等相变效应的影响,进而通过理论研究明确了用于描述各相变效应的理论模型,并通过开发USDFLD、HETVAL、UEXPAN和TRIP子程序拓展了ABAQUS软件分析相变效应的功能;接着开发了考虑上述相变效应的2个有限元模型,并进行15组模拟实验初步明确了模拟控冷时考虑相变效应的必要性;接着用根据X65管线厚板实际的控冷工艺开发的热力耦合有限元模型,具体研究并明确了相变潜热、相变膨胀和TRIP效应等相变效应对控冷的影响和机制;最后通过将参照的与实际的控冷工艺的模拟结果进行比较分析,确定了实际使用的不对称控冷工艺对控冷的影响,进而提出优化的控冷工艺,并评估了优化工艺减小残余应力的效果;主要结论如下:
     (1)开发的热力耦合有限元模型因考虑了X65管线厚板控冷时涉及的弹塑性变形、热膨胀、传导、对流、辐射和相变效应(包括相变潜热、相变膨胀(?)TRIP效应)等目前所知的所有相关物理影响因素,可用于研究X65管线厚板的控冷过程。
     (2)相变效应对X65管线厚板的控冷具有重要影响,模拟时必须考虑。
     相变潜热使相变期间的板温升高52.7℃、使中部和下表面的温降分别减缓50%、25%,使控冷结束的板温升高44℃。
     相变膨胀通过产生(723MPa,-479MPa)的组织应力影响板厚方向的应力,该应力甚至可逆转中部和下表面附近的应力状态,而相变潜热主要通过小幅减小应力峰值、TRIP效应主要通过迁移压应力峰分别影响板厚方向的应力。
     相变膨胀和相变潜热通过产生均值为正的总体应变以减小板厚方向的负总体应变,而TRIP效应则相反,但均使总体应变趋于均匀。
     (3)实际生产使用的不对称控冷工艺是产生高值残余应力的重要原因,而优化的控冷工艺可显著降低残余应力。
     实际生产使用的不对称控冷工艺使X65管线厚板形成了不对称分布的温度、应力、应变,进而在板厚方向产生峰值为(350MPa、-272MPa)的残余应力,而优化的对称控冷工艺使厚板中部的压应力峰值和下表面的拉应力峰值分别减小114MPa、116MPa)。
Today, pipeline transportation is widely available due to its economic, security, continuity and other obvious advantages in the oil and gas transportation. X65pipeline heavy plate with favorable mechanical properties is the main long-distance pipeline material in now and future, the pipeline manufacturing process is becoming a hot research area in industrial field. Controlled-Cooling is a common heat treatment technology during X65pipeline heavy plate production. The technology is composed of three stages:Air Cooling without water, Laminar Cooling, Air Cooling. Serious transverse warping is a normally phenomenon during the plate manufacturing process due to asymmetrical high residual stresses distribution via thickness direction of plate during asymmetrical Controlled Cooling of the plate on top and bottom surfaces. It should be noted that the residual stress is difficult to eliminate by straightening method due to insufficient width of plate. This phenomenon seriously affects quality of plate shape, but also limits the subsequent utilization because of crack-formation induced by stress corrosion when long-distance pipeline is used in extreme environments, e.g. low temperature, high pressure, corrosive circumstance, and so on. Therefore, it is very important to study and control the residual stresses during Controlled Cooling of X65pipeline heavy plate for improving the quality of shape and lifetime of the pipeline.
     Because Controlled Cooling of X65pipeline heavy plate is a continuous process in high temperature, it is not worthy of interrupting the process to do experimental study, and experimental techniques such as X-ray or neutron diffraction methods give only a rough idea about the temperature, stresses and strain distribution in the plate, and generally do not allow scanning the entire plate. Up to now, there is also no effective theory can calculate and optimize the process. Therefore, a numerical simulation method based on finite element method (FEM) is carried out to investigate the Controlled Cooling of X65pipeline heavy plate in this study.
     Although others researchers obtained some valuable experiences, they often simplified or ignored the phase transformation effect during Controlled Cooling, which included latent heat, transformation dilation, TRIP effect (TRIP-Transformation Induced Plasticity). The models used in those studies don't fit well with the Controlled Cooling of X65pipeline heavy plate. Firstly, effect of Austenite-Ferrite phase transformation during Controlled Cooling of X65pipeline heavy plate, such as latent heat, transformation dilation, and TRIP effect, is confirmed in this study. The theoretic models related to effect of phase transformation are built with a base on theoretic study. The functions of ABAQUS, which used to describe effect of phase transformation, are developed by coding the subrotines, including USDFLD, HETVAL, UEXPAN and TRIP. Secondly, two finite element models related with above phase transformation are established. It is found that the effect of the phase transformation is necessary for simulation of Controlled Cooling through15sets of simulation experiments by using the two models. A thermo-mechanical coupled FEM model based on the actual Controlled Cooling technology of X65pipeline heavy plate is established. The influence and mechanism of effect of phase transformation on X65pipeline heavy plate, such as latent heat, transformation dilation, and TRIP effect, are studied and confirmed. Finally, the effect of the actual asymmetric Controlled Cooling technology on residual stresses of X65pipeline heavy plate is detailed discussed by comparing to the result from ones of reference. Consequently, an optimizing Controlled Cooling technology is proposed. The reduction of residual stress in the plate is estimated through optimizing Controlled Cooling technology. In this study, the following conclusions are obtained:
     (1) All relevant physical phenomena so far, such as elastoplastic deformation, thermal expansion, conduction, convection, radiation and effect on phase transformation, including latent heat, transformation dilation, TRIP effect, are considered in the developed thermo-mechanical coupled FEM model. The model is suitable to the Controlled Cooling of X65pipeline heavy plate.
     (2) The influence of transformation effect on Controlled Cooling of X65pipeline heavy plate is important, and it must be considered in the simulation.
     Latent heat enhances about52.7℃during phase transformation and the cooling speed of inner part delays50%, and25%slow for the plate bottom surface, which also increases the temperature of plate44℃finally.
     The structural stresses from transformation dilation with peak value,723MPa and-479MPa, affect strongly residual stresses along thickness direction of plate, and the stresses status near the inner and bottom surface can even be reversed by the stresses. The stresses along thickness direction of plate are decreased slightly by latent heat and the stresses are changed by shifting compressive stress peak by TRIP effect.
     Because transformation dilation and latent heat produce positive total strain, they reduce the negative total strain along thickness direction of plate, however, TRIP effect works on the contrary. All of them make the total strain to be more even.
     (3) During plate industrial manufacturing, high residual stress within the plate mainly depends on the actual asymmetrical Controlled Cooling parameters. The optimizing Controlled Cooling technology in this study can reduce residual stress significantly.
     The asymmetrical distribution of temperature, stresses, and strain are caused during the actual asymmetrical Controlled Cooling of X65pipeline heavy plate. Therefore, high residual stresses,350MPa and-272MPa are generated. Compressive peak stress of inner and tensile peak stress of bottom surface are decreased114MPa and116MPa respectively by the optimized technology.
引文
[1]尚明.走出能源困局[J].中国投资,2005,(12):28-29.
    [2]张炎(译),伍浩松(校).美国预测全球能源需求将持续增长[J].国外核新闻,2010,(6):7.
    [3]壳牌发布能源远景报告[J].国外测井技术,2008,23(6):73-73.
    [4]国外估计2025年中国一次能源需求量将占全球25%[J].能源与环境,2009,(2):65-65.
    [5]能源供求预测[J].中国船检,2010,(6):75.
    [6]张抗.我国21世纪初的天然气工业--扬帆乘风济沧海[J].当代石油石化,2001,9(2):14-18.
    [7]高育红.最经济的运输方式-管道运输[J].交通与运输,2009,25(4):53-54.
    [8]赵秀娟.能源国脉-国脉纵横[J].中国石油企业,2009,(5):44-49.
    [9]众多天然气管道已进入规划[J].辽宁化工,2010,(3):314-314.
    [10]潘家华.全球能源变换及管线钢的发展趋势[J].焊管,2008,31(1):9-11.
    [11]戚爱华.我国油气管道运输发展现状及问题分析[J].国际石油经济,2009,(12):57-59,84.
    [12]石油石化业VS钢铁行业,正在形成的战略联盟[EB/OL].中国钢铁新闻报,2006-09-07. http://bbs.csteelnews.com/bbs_topic.do?forumID=11&postID=3320.
    [13]郑瑞,李铁军.我国管线钢的生产与发展[J].重型机械科技,2003,(4):47-51.
    [14]徐勇,凌平,邓澄等.管线钢品种开发与生产技术[J].钢铁钒钛,1992,13(4):55-64.
    [15]高惠临,董玉华,周好斌.管线钢的发展趋势与展望[J].焊管,1999,22(3):4-8.
    [16]张庆国.管线钢的发展趋势及生产工艺评述[J].河北冶金,2003,(5):12-17.
    [17]姜敏,支玉明,刘卫东等.我国管线钢的研发现状和发展趋势[J].上海金属,2009,31(6):42-46.
    [18]高惠临.管线钢控制轧制与控制冷却技术的应用和进展[J].焊管,1995,18(3):7-11.
    [19]高惠临.管线钢的控轧控冷技术及其研究进展[J].焊管,2010,33(3):10-17.
    [20]李树庆,潘贻芳.管线钢的研发过程及方向[J].天津冶金,2006,(1):6-10.
    [21]陶常印.控制轧制和控制冷却工艺的研究[J].鞍钢技术,1997,(9):17-20.
    [22]李虎兴,郑琳.热轧管线钢控制轧制规程的热模拟试验研究[J].武汉冶金科技 大学学报,1996,19(1):25-28.
    [23]陈贻宏,温阿清.高韧性热轧管线用钢的控轧控冷工艺[J].轧钢,1996,(3):11-15.
    [24]陈贻宏,郑琳.高韧性管线用钢试轧工艺的研究[J].钢铁,1996,31(12):26-30.
    [25]F. Rivalin, A. Pineau, M. Di Fant, J. Besson. Ductile tearing of pipeline-steel wide plates I. Dynamic and quasi-static experiments [J]. Engineering Fracture Mechanics,2001,68:329-345.
    [26]Zhao Mingchun, Yang Ke, Shan Yiying. The effects of thermo-mechanical control process on microstructures and mechanical properties of a commercial pipeline steel [J]. Mater. Sci. Eng., A,2002,15:14-20.
    [27]P. Korczak. Modeling of steel microstructure evolution during thermo -mechanical rolling of plate for conveying pipes[J]. J.Mater. Process. Technol,2004, 153-154:432-435.
    [28]冯光宏,吴浩方.高韧性管线钢的控制轧制工艺研究[J].河南冶金,2005,13(1):8-10.
    [29]Xiao Furen, Liao Bo, Shan Yi-Yin, et al.Challenge of mechanical properties of an acicular ferrite pipeline steel[J]. Mater. Sci. Eng., A,2006,431:41-52.
    [30]Wang Wei, Shan Yiyin, Yang Ke.Study of high strength pipeline steels with different microstructures [J]. Mater. Sci. Eng., A,2009,502:38-44.
    [31]翁宇庆.超细晶钢-钢的组织强化理论与控制技术[M],冶金工业出版社,2003.
    [32]Kong Junhan, Zhen Lin. Influence of Mo Content on Microstructure and Mechanical Properties of High Strength Pipeline Steel[J]. Mater. Des.,2003, (25):723-728.
    [33]D.G. Stalheim. The Use of High Temperature Processing Steel for High Strength Oil and Gas Transmission Pipeline Applications[J]. Iron & Steel,2005, (4):699-704.
    [34]兰亮云,邱春林,赵德文.高钢级管线钢的常规TMCP工艺与HTP工艺[J].轧钢,2009,5:39-42.
    [35]Sun Jiquan, Dai Hui, Yong-chun Zhang.Research on mathematical model of thermal deformation resistance of X80 pipeline steel[J]. Mater. Des.,2011, 32:1612-1616.
    [36]Zhong Yong, Shan Yiyin, Xiao Furen, et al. Effect of toughness on low cycle fatigue behavior of pipeline steels[J]. Mater. Lett.,2005,59:1780-1784.
    [37]S.S. Nayak, R.D.K. Misraa, J. Hartmannb, et al. Microstructure and properties of low manganese and niobium containing HIC pipeline steel[J]. Mater. Sci. Eng., A, 2008,494:456-463.
    [38]Zhang Jiming, Sun Weihua, Sun Hao. Mechanical Properties and Microstructure of X120 Grade High Strength Pipeline Steel [J]. Journal of Iron and Steel Research International,2010,17(10):63-67.
    [39]S. Shanmugam, N.K. Ramisetti, R.D.K. Misra, et al. Microstructure and high strength-toughness combination of a new 700 MPa Nb-microalloyed pipeline steel[J]. Mater. Sci. Eng., A,2008,478:26-37.
    [40]Niu Tao, Kang Yonglin, Gu Hongwei, et al. Precipitation Behavior and Its Strengthening Effect of X100 Pipeline Steel [J]. Journal of Iron and Steel Research International,2010,17(11):73-78.
    [41]Liu Qingyou, Sun Xinjun, Jia Shujun, et al. Austenitization Behaviors of X80 Pipeline Steel With High Nb and Trace Ti Treatment[J]. Journal of Iron and Steel Research International,2009,16(6):58-62.
    [42]Liu Yuyan, Bao Xirong, Chen Lin, et al. Rare Earth microalloied elements' influence on the organization and capability of X65 pipeline steel [J]. Journal of Rare Earths,2010,28:497-500.
    [43]Qiao Guiying, Xiao Furen, Zhang Xiaobing, et al. Effects of contents of Nb and C on hot deformation behaviors of high Nb X80 pipeline steels[J]. Trans. Nonferrous Met. Soc. China,2009,19:1395-1399.
    [44]J. Calvo, I.H. Jung, A.M. Elwazri, et al. Influence of the chemical composition on transformation behaviour of low carbon microalloyed steels[J]. Mater. Sci. Eng.,A, 2009,520:90-96.
    [45]S.H. Hashemi. Strength-hardness statistical correlation in API X65 steel[J]. Mater. Sci. Eng., A,2011,528:1648-1655.
    [46]Colum M. Holtam, David P. Baxter, Ian A.Ashcroft, et al. Effect of crack depth on fatigue crack growth rates for a C-Mn pipeline steel in a sour environment [J]. Int. J. Fatigue,2010,32:288-296.
    [47]Yoon Seok Choi, Srdjan Nesic. Corrosion behavior of carbon steel in supercritical co2-water environments[J]. Corrosion,2009, (3):22-26.
    [48]G.A. Zhang, Y.F. Cheng. Localized corrosion of carbon steel in a CO2-saturated oilfield formation water[J]. Electrochim. Acta,2011,56:1676-1685.
    [49]Piang Liang, Cuiwei Du, Xiaogang Li, et al. Effect of hydrogen on the stress corrosion cracking behavior of X80 pipeline steel in Ku'erle soil simulated solution[J]. International Journal of Minerals, Metallurgy and Materials,2009, 16:407-413.
    [50]Zhang Liang, Li Xiaogang, Du Cuiwei. Effect of Environmental Factors on Electrochemical Behavior of X70 Pipeline Steel in Simulated Soil Solution[J]. Journal of Iron and Steel Research International,2009,16(6):52-57.
    [51]X. Tang, Y.F. Cheng. Micro-electrochemical characterization of the effect of applied stress on local anodic dissolution behavior of pipeline steel under near-neutral pH condition[J]. Electrochim. Acta,2009,54:1499-1505.
    [52]G.A. Zhang, Y. F.Cheng. Micro-electrochemical characterization and Mott-Schottky analysis of corrosion of welded X70 pipeline steel in carbonate bicarbonate solution[J]. Electrochim. Acta,2009,55:316-324.
    [53]K.M. Song. Predicting the mechanisms and crack growth rates of pipelines undergoing stress corrosion cracking at high pH[J]. Corros. Sci.,2009, 51:2657-2674.
    [54]Ping Liang, Xiaogang Li, Cuiwei Du, et al. Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution[J]. Mater. Des.,2009, 30:1712-1717.
    [55]B.T. Lu, F. Song, M. Gao, M. Elboujdaini. Crack growth prediction for underground high pressure gas lines exposed to concentrated carbonate-bicarbonate solution with high pH[J]. Engineering Fracture Mechanics, 2011,78(7):1452-1465.
    [56]X. Tang, Y.F. Cheng. Localized dissolution electrochemistry at surface irregularities of pipeline steel[J]. Appl. Surf. Sci.,2008,254:5199-5205.
    [57]C.F. Dong, Z.Y. Liu, X.G. Li, et al. Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking[J]. Int. J. Hydrogen Energy,2009,34:9879-9884.
    [58]C.F. Dong, X.G Li, Z.Y. Liu, et al. Hydrogen-induced cracking and healing behaviour of X70 steel[J]. J. Alloys Compd.,2009,484:966-972.
    [59]T.Y. Jin, Z.Y. Liu, Y.F. Cheng. Effect of non-metallic inclusions on hydrogen-induced cracking of API5L X100 steel[J]. Int. J. Hydrogen Energy,2010, 35:8014-8021.
    [60]M.J. Hadianfard. Failure in a high pressure feeding line of an oil refinery due to hydrogen effect[J]. Engineering Failure Analysis,2010,17:873-881.
    [61]M. Suresh Kumar, M. Sujata, M.A. Venkataswamy, et al. Failure analysis of a stainless steel pipeline[J]. Engineering Failure Analysis,2008,15:497-504.
    [62]Mingchun Zhao, Ming Liu, Andrej Atrens, et al. Effect of applied stress and microstructure on sulfide stress cracking resistance of pipeline steels subject to hydrogen sulfide[J]. Mater. Sci. Eng., A,2008,478:43-47.
    [63]Bianca de C. Pinheiro, son P. Pasqualino. Fatigue analysis of damaged steel pipelines under cyclic internal pressure[J]. Int. J. Fatigue,2009,31:962-973.
    [64]P.A. Eikrem, Z.L. Zhang, E.(?)stby, et al. Numerical study on the effect of prestrain history on ductile fracture resistance by using the complete Gurson model [J]. Engineering Fracture Mechanics,2008,75:4568-4582.
    [65]B. Tanguy, T.T. Luu, G. Perrin, et al. Plastic and damage behaviour of a high strength X100 pipeline steel Experiments and modelling[J]. International Journal of Pressure Vessels and Piping,2008,85:322-335.
    [66]Hao Yu. Influences of microstructure and texture on crack propagation path of X70 acicular ferrite pipeline steel [J]. Journal of University of Science and Technology Beijing,2008,15:683-687.
    [67]C.F. Dong, A.Q. Fu, X.G. Li, et al. Localized EIS characterization of corrosion of steel at coating defect under cathodic protection [J]. Electrochim. Acta,2008, 54:628-633.
    [68]A.I.M. Ismail, A.M. Eishamy. Engineering behaviour of soil materials on the corrosion of mild steel[J]. Applied Clay Science,2009,42:356-362.
    [69]张亮,李晓刚,杜翠薇.管线钢应力腐蚀机理的研究现状[J].装备环境工程,2007,4(6):1-6.
    [70]National Energy Board. Public inquiry concerning stress corrosion cracking on Canadian oil and gas pipelines. NEB Report MH-2-95, Canda,1996.
    [71]J.A. Beavers, Brent, Harle mechanisms of high-pH and near-neutral-pH SCC of underground pipelines [J]. Journal of Offshore Mechanicsand Arctic Engineering, 2001,8:147-151.
    [72]R.N. Parkins. Factors Influencing Stress Corrosion Crack Growth Kinetics[J]. Corrosion,1987,43(3):130-139.
    [73]J.A. Beavers, T.K. Christman, R.N. Parkins. Efrect of Surface Condition on the Stress Corosion Cracking of Linepipe steel[J]. Mater. Performance,1988, 27(4):22-26.
    [74]R.N. Parkins. Mechanistic Aspects of Intergranular Stress Corosion Cracking of Ferritic Steels [J].Corrosion,1996,52(5):363-374.
    [75]C.A. Smith, Tschofen J. Proc 7th International Conference on Sintering, February 2000.
    [76]H.L. Li, K.W. Gao, L.J. Qiao, et al. Strength Effect in Stress Corosion Cracking of High-strength Steel in Aqueous Solution[J]. Corosion,2001,57(4):295-299.
    [77]R. Chu, W. Chen, S.H. Wang, et al. Microstrueture dependence of stress corrosion cracking initiation in X-65 pipeline steel exposed to a near-neutral pH soil environment[J]. Corrosion,2004,60(3):275-282.
    [78]Liu Xiaodong, GS. Frankel. Effects of compressive stress on localized corrosion in AA2024-T3[J]. Corros. Scl.,2006,48(10):3309-3329.
    [79]Hiroshi Yoshida. Analysis of flatness of hot rolled steel strip after cooling[J]. Transactions ISIJ,1984,24:212-220.
    [80]Hiroshi Yoshida. Analysis of Residual Stress in Hot Rolled Hbeams[J]. Transactions ISIJ,1984,24:401-407.
    [81]Hiroshi Yoshida. Reduction of Residual Stress in Hot Rolled H-beams[J]. Transactions ISIJ,1984,24:471-477.
    [82]Hiroshi Yoshida, Takanori Tamari, Takayuki Ito. An Analysis of Temperature, Thermal Stress and Shape Defect during Accelerated Cooling in Steel Plates[J]. ISIJ,1997,83:121-126.
    [83]I.I. Boyadjiev, P.F. Thomson, Y.C. Lam. Prediction of the deflection and residual stress in controlled cooling of hot-rolled steel beams including load and arbitrary support Part Ⅱ. Experimental validation and application[J]. J. Mater. Process. Technol,2004,147:268-275.
    [84]I.I. Boyadjiev, P.F. Thomson, Y.C. Lam. Prediction of the deflection and residual stress in controlled cooling of hot-rolled steel beams including load and arbitrary support Part Ⅰ. Computational model[J]. J. Mater. Process. Technol,2004, 147:370-376.
    [85]Zhongqing Zhou, YeeCheong Lam, P.F. Thomson, et al. Numerical Analysis of the Flatness of Thin, Rolled Steel Strip on the Runout Table[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2007,221:241-254.
    [86]Xiaodong Wang, Quan Yang, Anrui He. Calculation of thermal stress affecting strip flatness change during run-out table cooling in hot steel strip rolling[J]. J. Mater. Process. Technol,2008,207:130-146.
    [87]周娜,王丙兴,吴迪,等.中厚板控冷过程的温度-应力耦合计算与翘曲分析[J].东北大学学报(自然科学版),2007,28(12):1717-1720.
    [88]苏艳萍,杨荃,何安瑞,等.热轧带钢层流冷却过程中的热力耦合求解[J].重型机械,2007,4:30-34.
    [89]F.D. Fischer, M. Berveiller, K. Tanaka, et al. Continuum mechanical aspects of phase transformations in solids[J]. Applied Mechanics,1994,64:54-85.
    [90]R. Mahnken, A. Schneidt, T. Antretter. Macro modelling and homogenization for transformation induced plasticity of a low-alloy steel [J]. Int. J. Plasticity,2009, 25:183-204.
    [91]G.W. Greenwood, R.H. Johnson. The deformation of metals under small stresses during phase transformations [J]. Proc. R. Soc. London, Ser. A,1965, 283(1394):403-422.
    [92]C.L. Magee, H.W. Paxton. Transformation Kinetics, Microplasticity and Ageing of Martensite in Fe-31-Ni [D]. Carnegie Inst. Tech., Pittsburgh, PA,1966.
    [93]O.C. Zienkiewicz, Y.K. Cheung. The Finite Element Method in Structural and Continuum Mechanics, London:McGraw-Hill 1967.
    [94]O.C. Zienkiewicz. The finite element methods, from intuition to generality[J].
    Applied Mechanics Reviews,1970,23:249-256.
    [95]R. Courant. Variational methods for the solution of problems of equilibrium and vibrations[J]. Bulletin of American Mathematical Society,1943,49:1-23.
    [96]M.J. Turner, R.W. Clough, H.C. Martin, et al. Stiffness and deflection analysis of complex structures[J]. Journal of Aeronautical Sciences,1956,23:805-824.
    [97]R.W. Clough. Thoughts about the origin of the finite element method[J]. Computers & Structures,2001,79:2029-2030.
    [98]R.W. Clough. Early history of the finite element method from the view point of a pioneer[J]. International Journal for Numerical Methods in Engineering,2004, 60:283-287.
    [99]胡海昌.论弹性体力学与受范性体力学中的一般变分原理[J].物理学报,1954,10(3):259.
    [100]钱伟长.变分法及有限元[M],科学出版社,1980.
    [101]曾攀.有限元分析基础教程[M],清华大学出版社,2008.
    [102]David Roylance.Finite Element Analysis[M],剑桥麻省理工学院材料科学与工程系,2001.
    [103]王勖成,邵敏.有限元法基本原理和数值方法[M],清华大学出版社,1997.
    [104]李人宪.有限元基础[M],国防工业出版社,2002.
    [105]O.C.监凯维奇,尹泽勇译.有限元法(上册)[M],科技出版社,1985.
    [106]H.D. Hibbitt. ABAQUS/EPGEN-A general purpose finite element code with emphasis on nonlinear applications [J]. Nucl. Eng. Des.,1984,77:271-297.
    [107]梁明刚.非线性有限元软件ABAQUS[J].产品聚焦,2006,(8):109-110.
    [108]孟超,宋芳.有限元分析软件的比较和展望[J].焦作大学学报,2008,(1):85-86.
    [109]徐秉业,刘信.应用弹塑性力学[M],清华大学出版社,1995.
    [110]戴锅生,传热学(第二版)[M],高等教育出版社,1991.
    [11 1]杨世铭,陶文铨.传热学(第四版)[M],高等教育出版社,2006.
    [112]彭海红,栾玉武,黄伟,等.X65管线钢连续冷却相变行为的研究[J].宽厚板,2007,13(1):36-38.
    [113]张红梅,许云波,刘振宇,等.控制冷却对管线钢X65组织细化与性能的影响[J].东北大学学报(自然科学版),2007,28(3):349-377.
    [114]宋海武,齐长发,艾星辉,等.控轧控冷工艺参数对X65管线钢显微组织的影响[J].特殊钢,2009,30(3):55-57.
    [115]赵展鹏,安守勇,候东华.高韧性X65管线钢板的开发与生产[J].中国冶金,2009,19(8):11-14.
    [116]徐洲,赵连城.金属固态相变原理[M],科学出版社,2004.
    [117]刘宗昌,刘永长,袁泽喜.固态相变[M],机械工业出版社,2010.
    [118]F.D. Fischer, G. Reisner, E. Werner, et al. A new view on transformation induced plasticity (TRIP) [J]. Int. J. Plast,2000,16 (7-8):723-748.
    [119]D. Zhang, T. Antretter, E.Parteder. A Model for Steel Plates Accounting for the Mechanics of Phase Transformations [J]. Proceedings of 3rd International Conference on Simulation and Modelling of Metallurgical Processes in Steelmaking, SteelSim 2009, Leoben (2009).
    [120]T. Antretter, D.F. Zhang, E. Parteder. Modelling Transformation Induced Plasticity-an Application to Heavy Steel Plates[J]. Steel Research International,2010,81(8): 675-680.
    [121]张德丰,陆建生,宋鹏,等.X65管线厚板控制冷却的建模与应用[J].东北大学学报自然科学版(增刊),2010,31(S2):160-164.
    [122]J.B. Leblond, J. Devaux, J.C. Devaux. Mathematical modelling of transformation plasticity in steels-Ⅰ. Case of ideal-plastic phases[J]. Int. J. Plasticity,1989, 5:551-572.
    [123]J.B. Leblond, J. Devaux, J.C. Devaux. Mathematical modeling of transformation plasticity in steels-Ⅱ. Coupling with strain hardening phenomena[J]. Int. J. Plasticity,1989,5:573-591.
    [124]M.S. Wechsler, D.S. Lieberman, T.A. Read. On the theory of the formation of martensite[J]. J. Metals,1953,197:1503-1515.
    [125]F.D. Fischer, S.M. Schlogl. The influence of material anisotropy on transformation induced plasticity in steel subject to martensitic transformation[J]. Mech. Mater., 1995,21:1-23.
    [126]F.D. Fischer, G. Reisner. A criterion for the martensitic transformation of a microregion in an elastic-plastic material[J]. Acta Mater,1998,46(6):2095-2102.
    [127]F.D. Fischer. Transformation-induced plasticity revised, an updated formulation [J]. Int. J. Solids Structures,1998,35(18):2209-2227.
    [128]ABAQUS, Inc. Abaqus Theory Manual[M], America:ABAQUS, Inc. and Dassault Systemes,2007.
    [129]G. Besserdich. Untersuchungen zur Eigenspannungs und Verzugsausbildung beim Abschrecken von Zylindern aus den stahlen 42CrMo 4 und Ck45 unter Berucksichtigung der Umwandlungsplastizitat[D]. Dissertation, University of Karlsruhe,1993.
    [130]R. G Stringfellow, D. M. Parks and G B. Olson. A constitutive model for Transformation Plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels[J]. Acta Metall.,1992,40(7):1703-1716.
    [131]M. Avrami. Kinetics of phase change. Ⅲ:Granulation, Phase Change an Microstructures[J]. J. Chem. Phys.,1941,9:177-184.
    [132]D.P. Koistinen, R.E. Marburger. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metall.,1959,7(1):59-60.
    [133]C. Ouchi. Development of Steel Plate by Intensive Use of TMCP and Direct Quenching Process[J]. ISIJ Int.,2001,41 (6):542-553.
    [134]Y. Ren, S. Zhang, S. Wang, et al. Experimental study on 830 MPa grade pipeline steel containing chromium[J]. Int. J. Miner.,2009,16 (3):273-277.
    [135]W. Yan, L. Zhu, W. Sha, et al. Change of tensile behavior of a high- strength low-alloy steel with tempering temperature [J]. Mater. Sci. Eng. A,2009, 517:369-374.
    [136]Ming-Chun Zhao, Toshihiro Hanamura, Hai Qiu, et al. Lath boundary thin-film martensite in acicular ferrite ultralow carbon pipeline steels[J]. Mater. Sci. Eng. A, 2005,395:327-332.
    [137]Y.T. Zhao, C.J. Shang, S.W. Yang, et al. The metastable austenite transformation in Mo-Nb-Cu-B low carbon steel[J]. Mater. Sci. Eng. A,2006,433:169-174.
    [138]陈银莉,余伟,苏岚,等.热轧带钢层流冷却过程中残余应力分析[J].材料热处理学报,2010,31(6):155-160.
    [139]王杰,王绍禄,宋绪珂,等.改善X65管线钢板平直度工艺实践[J].宽厚板,2008,14(4):12-13.
    [140]Z.Q. Zhou, P.F. Thomson, Y.C. Lam, et al. Numerical analysis of residual stress in hot-rolled steel plate on the run-out table[J]. J. Mater. Process. Technol.,2003, 132:184-197.
    [141]S. Serajzadeh. Modelling of temperature history and phase transformations during cooling of steel[J]. J. Mater. Process. Technol.,2004,146:311-317.
    [142]陈瑛.中厚板矫直技术的发展[J].宽厚板,2002,8(6):1-5.
    [1431李强.中厚板的热矫直[J].科技创新导报,2008,24:76-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700