天然气储运关键技术研究及技术经济分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在发展低碳经济的时代背景下,天然气备受推崇,正逐渐成为未来世界一次能源的主力军。考虑到大量用气的中心城市和工业企业距气源较远,需要将气源点的天然气安全、稳定和连续地输送给用户。鉴于天然气储运中的遇到的诸多问题阻碍新型储运技术发展的现状,本文重点研究新型储运关键问题,并在此基础上建立常用与新型五种储运方式的技术经济分析模型,该模型对于推动天然气储运技术的发展具有重要的意义。
     本文首先研究了天然气常用储运技术,包括天然气管道(PNG)储运、压缩天然气(CNG)储运和液化天然气(LNG)储运等储运技术,介绍了其各自的应用背景及其工艺流程,并运用技术经济分析静态折旧法,从起始站建设费用、运输成本以及终点站折旧及运行费用等方面,折算成单位体积的天然气运输成本进行了技术经济分析。
     以石油焦为原料,KOH为活化剂,重点研究了用于吸附储运(ANG)的高表面活性炭的制备工艺中预活化单元、活化单元以及产品精制单元,并采用KOH分步加热预活化法来实现活化比的降低,优化了工艺参数,所生产的比表面积为2565m~2/g,在这种状态下孔容为1.354cc/g,孔径为2.112nm,满足应用要求。在考虑储存容器的要求的基础上,通过存储容器的工作参数,材质的选用及尺寸计算、储存容器的内部结构设计等步骤,设计的储存容器设定为容积为45m~3,储罐长10000mm,直径为2400mm。
     探讨了天然气水合物储运(NGH)技术中合物生成的工艺条件,通过正交实验法得到的水合物形成工艺参数如下:初始温度为3℃,初始压力为5MPa,液相体积为500mL,搅拌速度为120r/min、15g十二烷基硫酸钠和5g烷基多苷配成混合添加剂,其中TBAB的摩尔分数为0.293%,该工艺储气量最大可达190m~3/m~3。
     针对天然气气源点和用气点往往相隔一定距离的实际情况,考虑三种常用天然气储运和两种天然气新型储运方式的起始站、运输距离和终点站的具体费用,应用静态分析方法,计算单位体积的天然气运输成本,建立了五种天然气储运技术经济模型。该模型能快捷的比较出不同初始压力(0-5MPa)、不同运输路程(0-1500Km)和五种储运方式的单位体积天然气的储运成本,具有重要的工程现实意义。
     本文针对五种储运方式,提出了多种节能措施:(1)LNG冷能利用工艺开发;(2)高压天然气压力能利用;(3)利用水合物分离天然气中CO_2的工艺研究。
     在上述研究结果的基础上,按照单位天然气所花费费用为基准,分别按照起始站点建设成本、运输成本以及终点站建设成本计算各自的费用,将单位体积的天然气运输成本建立了储运技术的经济分析模型,通过Jav和C++语言程序设计,编写了天然气储运技术经济模型软件。该软件可根据起始压力、运输距离得出在起始压力小于5MPa,距离小于1500km内的最优储运方式,该系统可在window系统下进行操作。该模型是一个综合性的比较成本分析软件,特别对偏远地区天然气的储运问题的解决具有重要的借鉴作用。
Natural gas is highly respected and gradually becoming drive force of world primaryenergy for the development of a low-carbon economy in future. With gas supply individualsinclude urban centres and industry enterprise is far from gas source, storage and transportationtechnology is used for safety, stable and continuous transmission to the user. However, due tothe new storage and transportation technology in the existence of a lot of technical problemsand challenges, key issues of new storage and transportation are study in this paper, and thenthe model of technical and economic analysis on five storage and transportation types areestablished. The model is very meaningful for the promotion of the development of naturalgas storage and transportation technology.
     Natural gas storage and transportation technology can be divided into populartechnology and new technology. Popular storage and transportation technology includingpipe(PNG), compression(CNG), liquefied natural gas(LNG) were study, and applicationbackground and technology flow was summarized, and then technical economy analysisbased on static method including the starting point of the construction costs, transportationcosts, as well as the terminus of depreciation and running costs was made.
     Petroleum coke as raw materials, KOH as an activating agent, focusing on thepre-activation unit activation unit and upgrading unit in the preparation process of the surfaceof activated carbon for the adsorption storage and transportation (ANG) in this paper. TheKOH the step heating preactivated method to achieve the reduction of the activation ratio, tooptimize the process parameters, the production ratio of surface area to2565m~2/g, porevolume in this state as1.354cc/g, a pore size of2.112nm, which meet applicationrequirements. Investigated the basis of the requirements of the storage container, through theworking parameters, the selection of materials and dimensions of the storage vessel, the stepof storing the internal structure of the container design, the design of the storage container isset to a volume of45m3tank length10000mm, diameter2400mm for ANG storage andtransformation.
     The process conditions of natural gas hydrate(NGH) was study. Through the orthogonalexperiments of hydrate formation, process parameters are as follows: initial temperature is3℃, initial pressure is5Mpa, stirring speed is120r/min, mixed additives included15gsodium dodecyl sulfate and5g alkyl, of which the quality of the TBAB concentration was0.293%, the largest gas storage technology can be up to190m~3/m~3.
     As for the fact of a certain distance between gas extraction point and consumer, considering the concrete expense on start site, transportation distance and the terminal,storage and transportation techno-economic model was established based on storage andtransportation costs per unit of volume. The model can quickly compare different storage andtransportation costs based on initial pressure(0-5Mpa), the different transportdistance(0-1500Km) and the cost of terimal, have an important engineering practicalsignificance.
     Variety of energy-saving measures have been study, include:(1) LNG cold energyutilization technology,(2) taking advantage of the high-pressure gas pressure,(3) hydrateseparation process of CO_2in natural gas.
     Techno-economic analysis model of the storage technology was established, which isbased on storage and transportation costs per unit of volume and accroding to the sum ofexpense on start site, transportation and the terminal. The modeling software of natural gasstorage and transportation techno-economic was devolped by Jav and C++programminglanguage. Which can obtain the optimum scheme based on the initial pressure(≤5Mpa), thetransport distance (≤1500km), and can operate freely under the window system. The model isa comprehensive comparative cost analysis software and is a good reference, especially forthe solution to the problem of storage and transportation of natural gas in remote areas.
引文
[1] Pun-Lee Lam. The growth of Japan’s LNG industry: Lessons for China and Hong Kong[J].Energy Policy,2000,28(5):327-333
    [2] Thomas S., Dawe R. A. Review Of Ways to Transport Natural Gas Energy from CountriesWhich do not Need the Gas for Domestic Use[J]. Energy,2003,28(13):1461-1477
    [3]华贲.利用海外LNG资源的战略思考[J].天然气工业,2005,25(5):124-126
    [4]李红梅.深圳LNG接受终端到增城市不同输配方式的技术经济分析[D].上海:上海海事大学,2004
    [5]崔朝阳,沈建东,刘芙蓉.天然气水合物(NGH)储运天然气技术与常规储运技术的对比分析[J].科学技术与工程,2004,4(11):1671-1851
    [6]孔昭瑞.天然气非常规储运技术及其发展前景[J].油气储运,2003,22(7):1-4
    [7]梁月玖,等.基于天然气水合物的新型储运技术[J].石油规划设计,2011,5:26-29
    [8]李丹,敬加强,白林,等.天然气储运技术研究[J].管道技术与设备,2009,1:4-6
    [9]樊栓狮.天然气水合物储存与运输技术[M].北京:化学工业出版社,2005
    [10]张琳,李长俊,陈宁,等.天然气储运技术[J].油气储运,2006,25(6):1-4
    [11]宋汉成,焦文玲,胡燚,王秀全.基于水合物技术的天然气储运[J].煤气与热力,2006,26(12):4-7
    [12] Gudmundsson J. S. Method for Production of Gas Hydrate for Transportation andStorage[P]. US: Patent,5536893,1996-07-16
    [13]蓝少健,邹华生,黄朝辉,等.吸附天然气(ANG)储存技术吸附剂研究进展[J].广东化工,2006,33(162):40-43
    [14]李娜,刘坤,路平.浅谈我国LNG卫星站的发展[J].化学工程与装备,2011,1:159-160
    [15]阎光灿.世界长输天然气管道综述[J].天然气与石油,2000,18(3):10-20
    [16]姚莉,于磊.国内外天然气储运技术的发展动态[J].油气储运,2005,24(4):7-11
    [17]钱成文.国外油气管道技术发展新动态[J].石化管道,2002,25(1):16-17
    [18]罗富绪.21世纪将投入应用的管道新技术[J].油气储运,2001,20(11):55-57
    [19]陈永武.“西气东输”展现中国管道工业辉煌[J].天然气工业,2003,23(4):1-4
    [20]苗承武.天然气管道输送的经济性[J].石油规划设计,1999,10(2):1-3
    [21]李玉星,等.管道内天然气水合物形成的判断方法[J].天然气工业,1999,19(2):99-l03
    [22]徐烈,李兆慈,张洁,等.我国液化天然气(LNG)的陆地储存与运输[J].天然气工业,2002,22(3):89-91
    [23]刘建辉,杨宏军,徐文东,樊栓狮.小型移动式天然气供应装置及应用系统[J].天然气工业,2010,30(7):58-61
    [24] Enge J. J., Turko J. W. Gaseous hydrocarbon fuel storage system and power plant forvehicles[P]. US: Patent,4523548A,1983-04-13
    [25]陈进富,陆绍信.吸附法储存天然气汽车燃料技术的研究[J].天然气工业,1999,19(4):82-84
    [26]陈庆文,陈庆敏,郑艳彬.天然气吸附储存技术[J].油气地面工程,2001,20(4):18-19
    [27]李兴存,陈进富,徐文东,等.富纳米孔炭吸附剂储存天然气用于汽车燃料的进展[J].现代化工,2002,2(4):14-17
    [28] Sun Jian, Rood M. J. Natural gas storage with activated carbon from abituminous coal[J].Gas Sep Purif,1996,10(2):91-96
    [29] Pandolfo A. G., Amini A. M., Killingley J. S. Activated carbon prepared from shells ofdifferent coconut varieties[J]. Carbon,1994,32(5):1011-1028
    [30] Matranga K.R., Myers A.L., Glandt E. D. Storage of nature gas by adsorption onactivated carbon[J]. Chem Eng Sci,1991,47(7):1569-1573
    [31]廖志敏,蒋洪.吸附天然气技术及其应用[J].油气储运,2005,24(4):19-22
    [32]李兴存,单敏,刘晓君,等.吸附天然气技术[J].河南化工,2003,(5):1-3
    [33]张文玲,李海国,王胜杰,等.水合物储运天然气技术的研究进展[J].天然气工业,2000,20(3):95-98
    [34] Kvenvolden K. A. A review of methane in nature gas hydrates[J]. Organic Geochemistry,1995,23(11/12):997-1008
    [35] Max M. O., Lowrie A. Oceanic methane hydrate: A frontier gas resource[J]. Journal ofPetroleum Geology,1996,19(1):41-56
    [36] Xu Wenshi, Yu Xinghe, Liu Nina, et al. The development perapective and enviromrentalproblems of natural gas hydrates[J]. Natural Gas Geoscience,2005,16(5):680-683
    [37]展静,吴青柏,杨玉忠.冰点以下甲烷水合物分解实验对天然气储运的影响[J].天然气地球科学,2012,23(2):348-352
    [38] Gudmundsson J. S., Parlaktuna M., Khokhar A. A. Storing Natural Gas as FrozenHydrate[C]. SPE Production and Facilities,1994:69-73
    [39] Gudmundsson J. S., Andesson V., Levik O., et al. Hydrate technology for capturingstranded gas, gas hydrate, challenges for the future[J]. Annals of the New York Academyof Sciences,2000,9(12):403-410
    [40] Gudmundsson J. S., Borrehaug A. Frozen Hydrate for Transport of Natural Gas[C].2ndInternational Conference on Natural Gas Hydrates. Toulouse: CEDEX.1996:415-422
    [41] Shirota H., Aya I., Namie S., et al. Measurement of Methane Hydrate Dissociatation[C].Proceedings of the Fourth International Conference on Gas Hydrates, Japan: Yokohama.2002:972-977
    [42] Gudmundsson J. S. Method for Production of Gas Hydrate for Transportation andStorage[P]. US:5536893.1996-07-16
    [43]李其京.天然气水合物生产工艺研究现状[J].辽宁化工,2008,36(4):249-252
    [44] Wang Yingmei, Wu Qingbai, Zhang Peng, et al. Experimental study on the isobaricdecomposition of methane hydrate[J]. Natural Gas Geoscience,2009,37(2):244-248
    [45]王树立.技术经济分析的基本原理及方法应用于设备改造设计全过程的初步探讨[J].黑龙江交通科技,2006,(8):115-117
    [46]刘岸浩.工程技术经济分析中应注意到的几个可比性问题[J].黑龙江水利科技,2010,38(6):51-52
    [47]薛玉林.价值工程理论及技术经济分析法在设计中应用一例[J].煤矿设计,1989,(4):42-47
    [48]马凤成,路洁.技术经济分析法在大庆油田岩心管理工作中的应用[J].地质科技管理,1998,(6):40-44
    [49]吴光裕,郑小英.模糊技术经济分析法应用于烟气脱硫方案的优选[J].电站系统工程,2002,1(18):47-49,62
    [50]沙海俊.高速铁路无碴轨道的技术经济性[J].山西建筑,2010,36(29):261-262
    [51]李政.化工建设项目中环境工程的技术经济评价因素[J].石油与化工设备,2010,13(2):60-62
    [52]陈超.循环流化床锅炉煤泥输送系统技术经济性分析[J].热电技术,2011,2:13-16
    [53]刘向明,龙建.核电站汽机房降标高布置技术经济分析[J].吉林电力,2011,39(1):5-7
    [54]邵以华,周莹.水煤浆制醋酸工艺及技术经济分析[J].化学工程,2011,39(7):98-102
    [55]张艳红,林闽,修强,等.乌鲁木齐盈科广场污水源热泵系统技术经济分析[J].太阳能,2012,(11):44-48
    [56]戴民钰,王前.滨海电厂水电联产的技术经济分析[J].机械工程师,2012,(6):166-168
    [57]陈德平.两类技术经济分析方法经济评价准则的比较[J].南昌大学学报:工科版,1998,20(2):86-93
    [58]黄文馨.技术经济分析方法的比较[J].技术经济,2000,(5):58-59
    [59] Gudmundsson J. S., Mork M. Stranded gas to hydrate for storage and transport[J].International Gas Research Conference,Amsterdam,2001,11:5-8
    [60] Gudmundsson J. S., Andersson V., Durgut I, et al. NGH on FPSO-slurry process and costestimate[J]. SPE Annual Technical Conference, Houston, USA, Patent,1999,10:3-6
    [61]王雪梅.天然气运输研究.石油工业技术监督[J],石油工业技术监督,2005,(5):41-44
    [62]孙波浪.浅谈天然气储运技术及应用发展[J].石油和化工设备,2011,6(14):32-33
    [63]王志昌.输气管道工程[M].北京:石油工业出版社,1997:1-23
    [64] Thomas S., Dawe R. A. Review of ways to transport natural gas energy from countrieswhich do not need the gas for domestic use[J], Energy,2003,28(14):1461-1477
    [65]杨孟军.高压储气竖井在城市燃气供应调峰中的应用研究[D].天津:天津大学,2007
    [66]钟德鑫,苑莉钗.高压管道储气调峰在城市配气设计中的应用[J].油气储运,2003,22(2):24-26
    [67]熊光德,毛云龙. LNG的储存和运输[J].天然气与石油,2005,23(2):6-8
    [68]傅细国.中小城镇气源的选择[J].煤气与热力,2005,25(7):47-48
    [69]刘新领. LNG供气站的建设[J].煤气与热力,2002,22(1):35-36
    [70]陈爱玲,李永鹏. CNG船舶运输新技术应用研究[J].船海工程,2005,(5):74-76
    [71]刘燕,马一太,唐曾乐,等.中小城镇燃气供应方式的探讨[J].煤气与热力,2004,24(6):299-303
    [72]蓝少健,邹华生,黄朝辉.吸附天然气(ANG)储存技术吸附剂研究进展[J].广东化工,2006,33(162):40-43
    [73]魏娜,赵乃勤,贾威.活性炭的制备及应用新进展[J].材料科学与工程学报,2003,21(4):777-780
    [74] Smadji S., Sudaryanto Y., Hartono S.B., et al. Activated carbon from char obtained fromvacuum pyrolysis of teak sawdusi: pore structure development and characterization [J].Bioresource Techonlogy,2005,96(12):1364-1369
    [75]王皆腾,孙俊芳,刘中良.天然气吸附储存容器的结构优化分析[J],工程热物理学报,2009,30(10):1729-1731
    [76]刘保华.天然气吸附用活性炭纤维的制备及储存容器的设计[D].天津:天津大学,2003
    [77]徐大坤.天然气吸附储存热效应研究[D].山东:山东建筑大学,2009
    [78]陈进富,李兴存,李术元.富微孔炭质吸附剂吸附天然气的热效应[J].化学工程,2005,33(1):1-4
    [79]周理,李明,周亚平.超临界甲烷在高表面活性炭上的吸附测量及其理论分析[J].中国科学(B辑),2000,30(1):50-56
    [80]傅国旗,周理.甲烷在活性炭上吸附等温线的测定及分析[J].天然气工业,2004,24(1):92-94
    [81] Li Zhou, Yan Sun. Enhancement of the Methane Storage on Activated Carbon byPreadsorbed Water[J], AIChE Journal,2002,10(48):2412-2416
    [82]周理,李明,周亚平.超临界甲烷在高表面活性炭上的吸附测量及其理论分析,中国科学(B辑),2000,30(1):50~56
    [83]杨晓东,顾安忠,林文胜,等.改善吸附储存天然气脱附性能的热管理方案及实验研究[C].2005燃气热力技术研讨会论文集,608-612
    [84] Sloan E. D. Clathrate Hydrate of Natural Gas[A]. New York: Marcel Dekker Inc,1989
    [85] Mac Donald G. T. The Future of Methane as an Enery Resource[J], Annual Review ofEnery,1990,(15)
    [86]巩艳,林宇,汝欣欣,等.天然气水合物储运天然气技术[J].天然气与石油,2010,28(2):3-6
    [87]胡高伟,王家生,业渝光.天然气水合物储运技术研究[J].油气储运,2006,25(10):21-25
    [88]胡高伟,业渝光,张剑,等.水合物储运技术新进展[J].海洋地质动态,2008,24(11):17-23
    [89]夏哲舫.天然气水合物储运的新技术经济性评价[J].石油化工设计,2006,23(3):61-64
    [90]王遇冬,陈慧芳.新型天然气水合物抑制剂的开发和应用[J].石油与天然气化工,1997,26(3):160-164
    [91] Lederhos J. P., Long J. P., et al. Effective Kinetic Inhibitors for Natural Gas[J]. HydrateChemical Engineering Science,1996,51(8):1221-1229
    [92] Ugur Karaaslan, Mahmut Parlaktuna. PEO-A New Hydrate Inhibitor Polymer[J]. Energy&Fuels,2002,16(6):1387-1391
    [93] Long J., Lederhos J. P., Sum A., et al. Kinetic inhibitors of natural gas hydrates[R]. NewOrleans LA: The73rd annual GPA convention,1994
    [94] Sefidroodi H., Cheng C. P., Kelland M. A. THF hydrate crystal growth inhibition withsmall anionic organic compounds and their synergistic properties with the kinetic hydrateinhibitor poly(N-vinyl caprolactam)[J]. Chem Eng Sci,2011,66(10):2050-2056
    [95] Zeng H., Wilson L. D., Walker V. K., et al. Effect of antifreeze proteins on the nucleation,growth, and the memory effect during tetrahydrofuran clathrate hydrate formation[J].Chem Soc,2006,128(9):2844-2850
    [96] Xiao C., Wibisono N., Adidharma H. Dialkylimidazolium halide ionic liquids as dualfunction inhibitors for methane hydrate[J]. Chem Eng Sci,2010,65(10):3080–3087
    [97] MacDonald A. W. R., Petrie M., Wylde J. J., et al. Is subcooling the right driving forcefor testing low-dosage hydrate inhibitors[R]. Calgary, Alberta, Canada: Proceedings ofthe SPE Gas Technology Symposium, May,2006
    [98]陈作义.天然气水合物概况及最新研究进展[J].海洋通报.2000,21(3):78-85
    [99] Steiner G. J. Method of oil and gas transportation[P]. WO:964l096.1996-l2-19
    [100] Cahn R. P., Uburn M., Johnson R. H., et al. Transportation of natural gas as a hydrate[P].US: Patent,3514274, l970-3-26
    [101] Guo Boyun, Socorro N. M., Bretz R. E., Lee R. L. Methods and apparatus forgenerating transporating and dissociating gas hydrates[P]. US: Patent,5473904,1993-l2-l2
    [102] Chersky N. V., Klimenko A. P., et a1. Method of pipeline transportation of nature gas[P].US: Patent,3888434,1974-3-l
    [103] Hisashi O., Sridhar N., Song F., et al. Synthesis of Methane Gas Hydrate in PorousSediments and Its Dissociation by Depressurizing[J]. Powder Technology,2002,(122):239-246
    [104]宋汉成.天然气水合物储运技术[J].上海煤气,2007(3):1-4
    [105]徐文东,沈红萍,刘建辉.一种天然气管网压力能高效利用方法及装置[P].中国:201010190814,2010
    [106] Wang Qiang, Li Yanzhong, Chen Xi. Exergy analysis of liqudefied natual gas coldenergy recovering cycle[J]. International Journal of Energy Research,2005,29:65-78
    [107] N. Yamanouchi and H. Nagasawa. Using LNG cold for air separation[J]. ChemicalEngineering Progress,1979,75(7):78-83
    [108] J.M. Bourguet. LNG cold: Still a problem[J]. Hydrocarbon Processing.1981,60(1):166-172
    [109] Anon. Using LNG cold energy more efficiently[J]. Oil&Gas Journal,1981,78(11):174-177
    [110] Yanni Liu, Kaihua Guo. A novel cryogenic power cycle for LNG cold energyrecovery[J]. Energy,2011,36(5):2828-2833
    [111] Giuseppe Oliveti, Natale Arcuri, Roberto Bruno, et al. A rational thermodynamic use ofliquefied natural gas in a waste incinerator plant[J]. Applied Thermal Engineering,2012,35:134-144
    [112] Na Zhanga, Noam Liorb. A novel near-zero CO2emission thermal cycle with LNGcryogenic exergy utilization[J]. Energy,2006,31:1666-1679
    [113] Vincenzo La Rocca. Cold recovery during regasification of LNG part two: Applicationsin an Agro Food Industry and a Hypermarket[J]. Energy,2011,36:4897-4908
    [114] Wang Qiang, Li Yanzhong, Wang Jiang. Analysis of power cycle based on cold energyof liquefied natural gas and low-grade heat source[J]. Applied Thermal Engineering,2004,24(4):539-548
    [115]高婷,林文胜,顾安忠.利用LNG冷能的轻烃分离高压流程[J].化工学报,2009,60(11):73-76
    [116] Yi Fang, Maosheng ZhanU, Ying Wang. The status of recycling of waste rubber[J].Materials and Design,2001,22:123-127
    [117] R. Scaffaro, N. Tzankova Dintcheva, M.A. Nocilla, etc. Formulation characterizationand optimization of the processing condition of blends of recycled polyethylene andground tire rubber: Mechanical and rheological analysis[J]. Polymer Degradatiom andStability,2005,90(2):281-287
    [118]朱鸿梅,孙恒,舒丹.利用天然气冷量的朗肯循环发电流程的工艺模拟[J].低温技术,2010,38(12):12-14
    [119]程文龙,伊藤猛宏,陈则韶.一种回收液化天然气冷能的低温动力循环系统[J].中国科学技术大学学报,1999,29(6):671-676
    [120]王坤,鲁雪生,顾安忠.液化天然气冷能利用发电技术浅析[J].低温工程,2005,(1):53-58
    [121]夏侯国伟,白菲菲,张早校.以中低温余热为热源的LNG冷能利用流程改进[J].天然气工业,2008,28(5):112-114
    [122]刘蔚蔚.利用液化天然气冷火用的燃气轮机热力系统的研究[D].北京:中国科学院工程热物理研究所,2003
    [123]陈则韶,程文龙,胡艾.一种利用LNG冷能的空气分离装里新流程[J].工程热物理学报,2004,25(6):913-916
    [124]曹文胜,鲁雪生.回收液化天然气冷能用于冷库的制冷装置[P].中国,200420114636.0,2006-2-15
    [125]黄美斌,林文胜,顾安忠.利用LNG冷能的低温冷库流程比较[J].制冷学报,2009,8(30):58-62
    [126]李亚军,尹华.乙烯深冷分离工艺中LNG冷能的利用[J].华南理工大学学报,2009,37(3):62-65
    [127]熊永强,华贲,李亚军,等.废旧橡胶低温粉碎中LNG冷能利用的集成分析[J].华南理工大学学报,2009,37(3):62-65
    [128]徐文东,樊栓狮,等.唐山LNG项目冷能利用项目可行性研究报告工作总结.2008
    [129] Yu Haiying. Purification of Natural Gas of High CO2component[J]. Modern Science,2008,4:64-65
    [130] Jianhui Liu, Shuanshi Fan, Xuemei Lang,Yanhong Wang. CO2removel from natural gasby hydrate formation[J]. MACE,2011
    [131] Liu Lu, Duan Zhenhong, He Gaohong. The Comparison and Development ofTechnology of CO2Removal From Natural Gas[J]. Chemical Technology andEngineering Process,2009,28(ISuPPIZ):290-292
    [132] He Shenghou. The Development Technique of Natural Gas Field with High Content ofH2S and CO2[M]. Beijing: China Petrochemical Press,2008:2-4.
    [133] Chen Guangjin, Sun Shangyu, Ma Qingyun. Gas Hydrate Science and Technology[M].Beijing: Chemical Industry Press,2007
    [134] Li Qijing, Xu Weixiu. The research and Prospect of Hydrate Formation SeparationTechnology[J]. Science&Technology Information,2006,4:66-69
    [135] Sloan E. D., Koh Carolyn A. Clathrates of Natural Gases[M].3rd ed. London: Taylor&Francis-CRC Press,2007
    [136] Mark van Denderen, Erik Ineje and Michael Golombok. CO2Removal fromContaminated Natural Gas Mixtures by Hydrate Formation[J].1nd. Eng. Chem. Res.2009,48:5802-5807
    [137] Zheng zhi, Han Yongjia, Wang Shuli. Discussion on the decarbonization process byforming hydrate in high-CO2gas fields[J]. Oil-Gasfield Surface Engineering,2010,1
    [138] Takashi Hatakeyama, Eisuke Aida, Takeshi Yokomori, et al. Fire extinction utilizingcarbon dioxide hydrate[C]. Proceedings of the6th International Conference on GasHydrate, ancouver, Bithish Columbia, CANADA,2008
    [139] Nena Dabrowski, Christoph Windmeier, and Lothar R. Oellrich. Purification of NaturalGases with High CO2Content Using Gas Hydrates[J]. Energy Fuels,2009,23:5603-5610
    [140] Han Yongjia, Wang Shuli, Zhang Pengyu, et al. The Current Situation and Developmentof CO2Separation and Trap Technology[J]. Natural Gas Industry,29(12):79-82
    [141] Wang Yutong. CO2Removal from Natrual Gas[J]. Oil-Gasfield Surface Engineering,2008,27(3)
    [142] Fihueroa Jose D., Fout Timtiothy, Plasynski Sean, et al. Advance in CO2capturetechnology-the US department of energy’s carbon sequestration program[J]. InternationalJournal of Greenhouse Gas Control,2008,2:9-20
    [143] Klara Scott M., Srivastave Ramesshwar D. US DOE integrated collaborativetechnology development program for CO2separation and Capture[J]. EnvironmentalProgress,2002,21(4):247-253
    [144] Zhang Yongjun, Yuan Huiming, Wan Shubao, etc. CO2Removal from Natrual Gas[J].Petrochemical Technology,2008,9:1-2
    [145] Kiyono Fumio, Yamazaki Akihiro, Ogasawara Keiichi. Cost estimation of CO2recoverytechnology using hydrate[J]. ACS Fuel Chemistry Division Preprints,2002,47(1):77-78
    [146] Li Shifeng, Fan Shuanshi, Wang Jinqu, et al. The Research Development of CO2Removal by Hydrate Formation[J]. Chemical Technology and Engineering Process,2009,28(5):744-748
    [147] Balla R, Misra M. Multi-scal Fisher discriminant analysis[C]. AICHE annual Meetingand Fall Showcase, New York,2005
    [148] Jianhui Liu, Qiuxiong Chen, Shuanshi Fan, et al. Analysis on the development prospectof naturnal gas utilization in Shenzhen[J]. International Journal Low-CarbonTechnologies,2012,10:1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700